@inproceedings{cadotte-etal-2024-machine,
    title = "Machine Translation Through Cultural Texts: Can Verses and Prose Help Low-Resource Indigenous Models?",
    author = "Cadotte, Antoine  and
      Andr{\'e}, Nathalie  and
      Sadat, Fatiha",
    editor = "Ojha, Atul Kr.  and
      Liu, Chao-hong  and
      Vylomova, Ekaterina  and
      Pirinen, Flammie  and
      Abbott, Jade  and
      Washington, Jonathan  and
      Oco, Nathaniel  and
      Malykh, Valentin  and
      Logacheva, Varvara  and
      Zhao, Xiaobing",
    booktitle = "Proceedings of the Seventh Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2024)",
    month = aug,
    year = "2024",
    address = "Bangkok, Thailand",
    publisher = "Association for Computational Linguistics",
    url = "https://preview.aclanthology.org/ingest-emnlp/2024.loresmt-1.12/",
    doi = "10.18653/v1/2024.loresmt-1.12",
    pages = "121--127",
    abstract = "We propose the first MT models for Innu-Aimun, an Indigenous language in Eastern Canada, in an effort to provide assistance tools for translation and language learning. This project is carried out in collaboration with an Innu community school and involves the participation of students in Innu-Aimun translation, within the framework of a meaningful consideration of Indigenous perspectives.Our contributions in this paper result from the three initial stages of this project. First, we aim to align bilingual Innu-Aimun/French texts with collaboration and participation of Innu-Aimun locutors. Second, we present the training and evaluation results of the MT models (both statistical and neural) based on these aligned corpora. And third, we collaboratively analyze some of the translations resulting from the MT models.We also see these developments for Innu-Aimun as a useful case study for answering a larger question: in a context where few aligned bilingual sentences are available for an Indigenous language, can cultural texts such as literature and poetry be used in the development of MT models?"
}Markdown (Informal)
[Machine Translation Through Cultural Texts: Can Verses and Prose Help Low-Resource Indigenous Models?](https://preview.aclanthology.org/ingest-emnlp/2024.loresmt-1.12/) (Cadotte et al., LoResMT 2024)
ACL