@inproceedings{lin-chen-2023-llm,
    title = "{LLM}-Eval: Unified Multi-Dimensional Automatic Evaluation for Open-Domain Conversations with Large Language Models",
    author = "Lin, Yen-Ting  and
      Chen, Yun-Nung",
    editor = "Chen, Yun-Nung  and
      Rastogi, Abhinav",
    booktitle = "Proceedings of the 5th Workshop on NLP for Conversational AI (NLP4ConvAI 2023)",
    month = jul,
    year = "2023",
    address = "Toronto, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://preview.aclanthology.org/ingest-emnlp/2023.nlp4convai-1.5/",
    doi = "10.18653/v1/2023.nlp4convai-1.5",
    pages = "47--58",
    abstract = "We propose LLM-Eval, a unified multi-dimensional automatic evaluation method for open-domain conversations with large language models (LLMs). Existing evaluation methods often rely on human annotations, ground-truth responses, or multiple LLM prompts, which can be expensive and time-consuming. To address these issues, we design a single prompt-based evaluation method that leverages a unified evaluation schema to cover multiple dimensions of conversation quality in a single model call. We extensively evaluate the performance of LLM-Eval on various benchmark datasets, demonstrating its effectiveness, efficiency, and adaptability compared to state-of-the-art evaluation methods. Our analysis also highlights the importance of choosing suitable LLMs and decoding strategies for accurate evaluation results. LLM-Eval offers a versatile and robust solution for evaluating open-domain conversation systems, streamlining the evaluation process and providing consistent performance across diverse scenarios."
}Markdown (Informal)
[LLM-Eval: Unified Multi-Dimensional Automatic Evaluation for Open-Domain Conversations with Large Language Models](https://preview.aclanthology.org/ingest-emnlp/2023.nlp4convai-1.5/) (Lin & Chen, NLP4ConvAI 2023)
ACL