@inproceedings{tang-etal-2023-ji,
    title = "基于词向量的自适应领域术语抽取方法(An Adaptive Domain-Specific Terminology Extraction Approach Based on Word Embedding)",
    author = "Tang, Xi  and
      Jiang, Dongchen  and
      Jiang, Aoyuan",
    editor = "Sun, Maosong  and
      Qin, Bing  and
      Qiu, Xipeng  and
      Jiang, Jing  and
      Han, Xianpei",
    booktitle = "Proceedings of the 22nd Chinese National Conference on Computational Linguistics",
    month = aug,
    year = "2023",
    address = "Harbin, China",
    publisher = "Chinese Information Processing Society of China",
    url = "https://preview.aclanthology.org/ingest-emnlp/2023.ccl-1.17/",
    pages = "186--195",
    language = "zho",
    abstract = "``术语分布呈现长尾特性。为了有效提取低频术语,本文提出了一种基于词向量的自适应术语抽取方法。该方法使用基于假设检验的统计方法,自适应地确定筛选阈值,通过逐步合并文本的强关联性字符串获得候选术语,避免了因固定阈值导致的低频术语遗漏问题;其后,本文基于掩码语言模型获得未登录候选术语的词向量,并通过融合词典知识的密度聚类算法获得候选术语归属的领域簇,将归属于目标领域簇的候选术语认定为领域术语。实验结果表明,我们的方法不仅在但值上优于对比方法,而且在不同体裁的文本中表现更为稳定。该方法能够全面有效地抽取出低频术语,实现领域术语的高质量提取。''"
}Markdown (Informal)
[基于词向量的自适应领域术语抽取方法(An Adaptive Domain-Specific Terminology Extraction Approach Based on Word Embedding)](https://preview.aclanthology.org/ingest-emnlp/2023.ccl-1.17/) (Tang et al., CCL 2023)
ACL