@inproceedings{tars-etal-2022-teaching,
    title = "Teaching Unseen Low-resource Languages to Large Translation Models",
    author = {Tars, Maali  and
      Purason, Taido  and
      T{\"a}ttar, Andre},
    editor = {Koehn, Philipp  and
      Barrault, Lo{\"i}c  and
      Bojar, Ond{\v{r}}ej  and
      Bougares, Fethi  and
      Chatterjee, Rajen  and
      Costa-juss{\`a}, Marta R.  and
      Federmann, Christian  and
      Fishel, Mark  and
      Fraser, Alexander  and
      Freitag, Markus  and
      Graham, Yvette  and
      Grundkiewicz, Roman  and
      Guzman, Paco  and
      Haddow, Barry  and
      Huck, Matthias  and
      Jimeno Yepes, Antonio  and
      Kocmi, Tom  and
      Martins, Andr{\'e}  and
      Morishita, Makoto  and
      Monz, Christof  and
      Nagata, Masaaki  and
      Nakazawa, Toshiaki  and
      Negri, Matteo  and
      N{\'e}v{\'e}ol, Aur{\'e}lie  and
      Neves, Mariana  and
      Popel, Martin  and
      Turchi, Marco  and
      Zampieri, Marcos},
    booktitle = "Proceedings of the Seventh Conference on Machine Translation (WMT)",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, United Arab Emirates (Hybrid)",
    publisher = "Association for Computational Linguistics",
    url = "https://preview.aclanthology.org/ingest-emnlp/2022.wmt-1.33/",
    pages = "375--380",
    abstract = "In recent years, large multilingual pre-trained neural machine translation model research has grown and it is common for these models to be publicly available for usage and fine-tuning. Low-resource languages benefit from the pre-trained models, because of knowledge transfer from high- to medium-resource languages. The recently available M2M-100 model is our starting point for cross-lingual transfer learning to Finno-Ugric languages, like Livonian. We participate in the WMT22 General Machine Translation task, where we focus on the English-Livonian language pair. We leverage data from other Finno-Ugric languages and through that, we achieve high scores for English-Livonian translation directions. Overall, instead of training a model from scratch, we use transfer learning and back-translation as the main methods and fine-tune a publicly available pre-trained model. This in turn reduces the cost and duration of training high-quality multilingual neural machine translation models."
}