@inproceedings{wuhrl-klinger-2022-recovering,
    title = "Recovering Patient Journeys: A Corpus of Biomedical Entities and Relations on {T}witter ({BEAR})",
    author = {W{\"u}hrl, Amelie  and
      Klinger, Roman},
    editor = "Calzolari, Nicoletta  and
      B{\'e}chet, Fr{\'e}d{\'e}ric  and
      Blache, Philippe  and
      Choukri, Khalid  and
      Cieri, Christopher  and
      Declerck, Thierry  and
      Goggi, Sara  and
      Isahara, Hitoshi  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Mazo, H{\'e}l{\`e}ne  and
      Odijk, Jan  and
      Piperidis, Stelios",
    booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
    month = jun,
    year = "2022",
    address = "Marseille, France",
    publisher = "European Language Resources Association",
    url = "https://preview.aclanthology.org/ingest-emnlp/2022.lrec-1.472/",
    pages = "4439--4450",
    abstract = "Text mining and information extraction for the medical domain has focused on scientific text generated by researchers. However, their access to individual patient experiences or patient-doctor interactions is limited. On social media, doctors, patients and their relatives also discuss medical information. Individual information provided by laypeople complements the knowledge available in scientific text. It reflects the patient{'}s journey making the value of this type of data twofold: It offers direct access to people{'}s perspectives, and it might cover information that is not available elsewhere, including self-treatment or self-diagnose. Named entity recognition and relation extraction are methods to structure information that is available in unstructured text. However, existing medical social media corpora focused on a comparably small set of entities and relations. In contrast, we provide rich annotation layers to model patients' experiences in detail. The corpus consists of medical tweets annotated with a fine-grained set of medical entities and relations between them, namely 14 entity (incl. environmental factors, diagnostics, biochemical processes, patients' quality-of-life descriptions, pathogens, medical conditions, and treatments) and 20 relation classes (incl. prevents, influences, interactions, causes). The dataset consists of 2,100 tweets with approx. 6,000 entities and 2,200 relations."
}