@inproceedings{trung-etal-2022-unsupervised,
    title = "Unsupervised Domain Adaptation for Text Classification via Meta Self-Paced Learning",
    author = "Trung, Nghia Ngo  and
      Van, Linh Ngo  and
      Nguyen, Thien Huu",
    editor = "Calzolari, Nicoletta  and
      Huang, Chu-Ren  and
      Kim, Hansaem  and
      Pustejovsky, James  and
      Wanner, Leo  and
      Choi, Key-Sun  and
      Ryu, Pum-Mo  and
      Chen, Hsin-Hsi  and
      Donatelli, Lucia  and
      Ji, Heng  and
      Kurohashi, Sadao  and
      Paggio, Patrizia  and
      Xue, Nianwen  and
      Kim, Seokhwan  and
      Hahm, Younggyun  and
      He, Zhong  and
      Lee, Tony Kyungil  and
      Santus, Enrico  and
      Bond, Francis  and
      Na, Seung-Hoon",
    booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
    month = oct,
    year = "2022",
    address = "Gyeongju, Republic of Korea",
    publisher = "International Committee on Computational Linguistics",
    url = "https://preview.aclanthology.org/ingest-emnlp/2022.coling-1.420/",
    pages = "4741--4752",
    abstract = "A shift in data distribution can have a significant impact on performance of a text classification model. Recent methods addressing unsupervised domain adaptation for textual tasks typically extracted domain-invariant representations through balancing between multiple objectives to align feature spaces between source and target domains. While effective, these methods induce various new domain-sensitive hyperparameters, thus are impractical as large-scale language models are drastically growing bigger to achieve optimal performance. To this end, we propose to leverage meta-learning framework to train a neural network-based self-paced learning procedure in an end-to-end manner. Our method, called Meta Self-Paced Domain Adaption (MSP-DA), follows a novel but intuitive domain-shift variation of cluster assumption to derive the meta train-test dataset split based on the self-pacing difficulties of source domain{'}s examples. As a result, MSP-DA effectively leverages self-training and self-tuning domain-specific hyperparameters simultaneously throughout the learning process. Extensive experiments demonstrate our framework substantially improves performance on target domains, surpassing state-of-the-art approaches. Detailed analyses validate our method and provide insight into how each domain affects the learned hyperparameters."
}Markdown (Informal)
[Unsupervised Domain Adaptation for Text Classification via Meta Self-Paced Learning](https://preview.aclanthology.org/ingest-emnlp/2022.coling-1.420/) (Trung et al., COLING 2022)
ACL