@inproceedings{ma-etal-2022-self,
    title = "{S}el{F}-Eval: Self-supervised Fine-grained Dialogue Evaluation",
    author = "Ma, Longxuan  and
      Zhuang, Ziyu  and
      Zhang, Weinan  and
      Li, Mingda  and
      Liu, Ting",
    editor = "Calzolari, Nicoletta  and
      Huang, Chu-Ren  and
      Kim, Hansaem  and
      Pustejovsky, James  and
      Wanner, Leo  and
      Choi, Key-Sun  and
      Ryu, Pum-Mo  and
      Chen, Hsin-Hsi  and
      Donatelli, Lucia  and
      Ji, Heng  and
      Kurohashi, Sadao  and
      Paggio, Patrizia  and
      Xue, Nianwen  and
      Kim, Seokhwan  and
      Hahm, Younggyun  and
      He, Zhong  and
      Lee, Tony Kyungil  and
      Santus, Enrico  and
      Bond, Francis  and
      Na, Seung-Hoon",
    booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
    month = oct,
    year = "2022",
    address = "Gyeongju, Republic of Korea",
    publisher = "International Committee on Computational Linguistics",
    url = "https://preview.aclanthology.org/ingest-emnlp/2022.coling-1.39/",
    pages = "485--495",
    abstract = "This paper introduces a novel Self-supervised Fine-grained Dialogue Evaluation framework (SelF-Eval). The core idea is to model the correlation between turn quality and the entire dialogue quality. We first propose a novel automatic data construction method that can automatically assign fine-grained scores for arbitrarily dialogue data. Then we train SelF-Eval with a multi-level contrastive learning schema which helps to distinguish different score levels. Experimental results on multiple benchmarks show that SelF-Eval is highly consistent with human evaluations and better than the state-of-the-art models. We give a detailed analysis of the experiments in this paper. Our code is available on GitHub."
}Markdown (Informal)
[SelF-Eval: Self-supervised Fine-grained Dialogue Evaluation](https://preview.aclanthology.org/ingest-emnlp/2022.coling-1.39/) (Ma et al., COLING 2022)
ACL
- Longxuan Ma, Ziyu Zhuang, Weinan Zhang, Mingda Li, and Ting Liu. 2022. SelF-Eval: Self-supervised Fine-grained Dialogue Evaluation. In Proceedings of the 29th International Conference on Computational Linguistics, pages 485–495, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.