@inproceedings{cabello-piqueras-sogaard-2022-pretrained,
    title = "Are Pretrained Multilingual Models Equally Fair across Languages?",
    author = "Cabello Piqueras, Laura  and
      S{\o}gaard, Anders",
    editor = "Calzolari, Nicoletta  and
      Huang, Chu-Ren  and
      Kim, Hansaem  and
      Pustejovsky, James  and
      Wanner, Leo  and
      Choi, Key-Sun  and
      Ryu, Pum-Mo  and
      Chen, Hsin-Hsi  and
      Donatelli, Lucia  and
      Ji, Heng  and
      Kurohashi, Sadao  and
      Paggio, Patrizia  and
      Xue, Nianwen  and
      Kim, Seokhwan  and
      Hahm, Younggyun  and
      He, Zhong  and
      Lee, Tony Kyungil  and
      Santus, Enrico  and
      Bond, Francis  and
      Na, Seung-Hoon",
    booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
    month = oct,
    year = "2022",
    address = "Gyeongju, Republic of Korea",
    publisher = "International Committee on Computational Linguistics",
    url = "https://preview.aclanthology.org/ingest-emnlp/2022.coling-1.318/",
    pages = "3597--3605",
    abstract = "Pretrained multilingual language models can help bridge the digital language divide, enabling high-quality NLP models for lower-resourced languages. Studies of multilingual models have so far focused on performance, consistency, and cross-lingual generalisation. However, with their wide-spread application in the wild and downstream societal impact, it is important to put multilingual models under the same scrutiny as monolingual models. This work investigates the group fairness of multilingual models, asking whether these models are equally fair across languages. To this end, we create a new four-way multilingual dataset of parallel cloze test examples (MozArt), equipped with demographic information (balanced with regard to gender and native tongue) about the test participants. We evaluate three multilingual models on MozArt {--}mBERT, XLM-R, and mT5{--} and show that across the four target languages, the three models exhibit different levels of group disparity, e.g., exhibiting near-equal risk for Spanish, but high levels of disparity for German."
}