@inproceedings{kim-etal-2022-kochet,
    title = "{K}o{CHET}: A {K}orean Cultural Heritage Corpus for Entity-related Tasks",
    author = "Kim, Gyeongmin  and
      Kim, Jinsung  and
      Son, Junyoung  and
      Lim, Heuiseok",
    editor = "Calzolari, Nicoletta  and
      Huang, Chu-Ren  and
      Kim, Hansaem  and
      Pustejovsky, James  and
      Wanner, Leo  and
      Choi, Key-Sun  and
      Ryu, Pum-Mo  and
      Chen, Hsin-Hsi  and
      Donatelli, Lucia  and
      Ji, Heng  and
      Kurohashi, Sadao  and
      Paggio, Patrizia  and
      Xue, Nianwen  and
      Kim, Seokhwan  and
      Hahm, Younggyun  and
      He, Zhong  and
      Lee, Tony Kyungil  and
      Santus, Enrico  and
      Bond, Francis  and
      Na, Seung-Hoon",
    booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
    month = oct,
    year = "2022",
    address = "Gyeongju, Republic of Korea",
    publisher = "International Committee on Computational Linguistics",
    url = "https://preview.aclanthology.org/ingest-emnlp/2022.coling-1.308/",
    pages = "3496--3505",
    abstract = "As digitized traditional cultural heritage documents have rapidly increased, resulting in an increased need for preservation and management, practical recognition of entities and typification of their classes has become essential. To achieve this, we propose KoCHET - a Korean cultural heritage corpus for the typical entity-related tasks, i.e., named entity recognition (NER), relation extraction (RE), and entity typing (ET). Advised by cultural heritage experts based on the data construction guidelines of government-affiliated organizations, KoCHET consists of respectively 112,362, 38,765, 113,198 examples for NER, RE, and ET tasks, covering all entity types related to Korean cultural heritage. Moreover, unlike the existing public corpora, modified redistribution can be allowed both domestic and foreign researchers. Our experimental results make the practical usability of KoCHET more valuable in terms of cultural heritage. We also provide practical insights of KoCHET in terms of statistical and linguistic analysis. Our corpus is freely available at \url{https://github.com/Gyeongmin47/KoCHET}."
}