@inproceedings{welivita-pu-2022-curating,
    title = "Curating a Large-Scale Motivational Interviewing Dataset Using Peer Support Forums",
    author = "Welivita, Anuradha  and
      Pu, Pearl",
    editor = "Calzolari, Nicoletta  and
      Huang, Chu-Ren  and
      Kim, Hansaem  and
      Pustejovsky, James  and
      Wanner, Leo  and
      Choi, Key-Sun  and
      Ryu, Pum-Mo  and
      Chen, Hsin-Hsi  and
      Donatelli, Lucia  and
      Ji, Heng  and
      Kurohashi, Sadao  and
      Paggio, Patrizia  and
      Xue, Nianwen  and
      Kim, Seokhwan  and
      Hahm, Younggyun  and
      He, Zhong  and
      Lee, Tony Kyungil  and
      Santus, Enrico  and
      Bond, Francis  and
      Na, Seung-Hoon",
    booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
    month = oct,
    year = "2022",
    address = "Gyeongju, Republic of Korea",
    publisher = "International Committee on Computational Linguistics",
    url = "https://preview.aclanthology.org/ingest-emnlp/2022.coling-1.293/",
    pages = "3315--3330",
    abstract = "A significant limitation in developing therapeutic chatbots to support people going through psychological distress is the lack of high-quality, large-scale datasets capturing conversations between clients and trained counselors. As a remedy, researchers have focused their attention on scraping conversational data from peer support platforms such as Reddit. But the extent to which the responses from peers align with responses from trained counselors is understudied. We address this gap by analyzing the differences between responses from counselors and peers by getting trained counselors to annotate {\ensuremath{\approx}}17K such responses using Motivational Interviewing Treatment Integrity (MITI) code, a well-established behavioral coding system that differentiates between favorable and unfavorable responses. We developed an annotation pipeline with several stages of quality control. Due to its design, this method was able to achieve 97{\%} of coverage, meaning that out of the 17.3K responses we successfully labeled 16.8K with a moderate agreement. We use this data to conclude the extent to which conversational data from peer support platforms align with real therapeutic conversations and discuss in what ways they can be exploited to train therapeutic chatbots."
}Markdown (Informal)
[Curating a Large-Scale Motivational Interviewing Dataset Using Peer Support Forums](https://preview.aclanthology.org/ingest-emnlp/2022.coling-1.293/) (Welivita & Pu, COLING 2022)
ACL