@inproceedings{liu-etal-2022-boosting,
    title = "Boosting Deep {CTR} Prediction with a Plug-and-Play Pre-trainer for News Recommendation",
    author = "Liu, Qijiong  and
      Zhu, Jieming  and
      Dai, Quanyu  and
      Wu, Xiao-Ming",
    editor = "Calzolari, Nicoletta  and
      Huang, Chu-Ren  and
      Kim, Hansaem  and
      Pustejovsky, James  and
      Wanner, Leo  and
      Choi, Key-Sun  and
      Ryu, Pum-Mo  and
      Chen, Hsin-Hsi  and
      Donatelli, Lucia  and
      Ji, Heng  and
      Kurohashi, Sadao  and
      Paggio, Patrizia  and
      Xue, Nianwen  and
      Kim, Seokhwan  and
      Hahm, Younggyun  and
      He, Zhong  and
      Lee, Tony Kyungil  and
      Santus, Enrico  and
      Bond, Francis  and
      Na, Seung-Hoon",
    booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
    month = oct,
    year = "2022",
    address = "Gyeongju, Republic of Korea",
    publisher = "International Committee on Computational Linguistics",
    url = "https://preview.aclanthology.org/ingest-emnlp/2022.coling-1.249/",
    pages = "2823--2833",
    abstract = "Understanding news content is critical to improving the quality of news recommendation. To achieve this goal, recent studies have attempted to apply pre-trained language models (PLMs) such as BERT for semantic-enhanced news recommendation. Despite their great success in offline evaluation, it is still a challenge to apply such large PLMs in real-time ranking model due to the stringent requirement in inference and updating time. To bridge this gap, we propose a plug-and-play pre-trainer, namely PREC, to learn both user and news encoders through multi-task pre-training. Instead of directly leveraging sophisticated PLMs for end-to-end inference, we focus on how to use the derived user and item representations to boost the performance of conventional lightweight models for click-through-rate prediction. This enables efficient online inference as well as compatibility to conventional models, which would significantly ease the practical deployment. We validate the effectiveness of PREC through both offline evaluation on public datasets and online A/B testing in an industrial application."
}