@inproceedings{liu-etal-2022-bert,
    title = "{BERT}-Flow-{VAE}: A Weakly-supervised Model for Multi-Label Text Classification",
    author = "Liu, Ziwen  and
      Grau-Bove, Josep  and
      Orr, Scott Allan",
    editor = "Calzolari, Nicoletta  and
      Huang, Chu-Ren  and
      Kim, Hansaem  and
      Pustejovsky, James  and
      Wanner, Leo  and
      Choi, Key-Sun  and
      Ryu, Pum-Mo  and
      Chen, Hsin-Hsi  and
      Donatelli, Lucia  and
      Ji, Heng  and
      Kurohashi, Sadao  and
      Paggio, Patrizia  and
      Xue, Nianwen  and
      Kim, Seokhwan  and
      Hahm, Younggyun  and
      He, Zhong  and
      Lee, Tony Kyungil  and
      Santus, Enrico  and
      Bond, Francis  and
      Na, Seung-Hoon",
    booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
    month = oct,
    year = "2022",
    address = "Gyeongju, Republic of Korea",
    publisher = "International Committee on Computational Linguistics",
    url = "https://preview.aclanthology.org/ingest-emnlp/2022.coling-1.104/",
    pages = "1203--1220",
    abstract = "Multi-label Text Classification (MLTC) is the task of categorizing documents into one or more topics. Considering the large volumes of data and varying domains of such tasks, fully supervised learning requires manually fully annotated datasets which is costly and time-consuming. In this paper, we propose BERT-Flow-VAE (BFV), a Weakly-Supervised Multi-Label Text Classification (WSMLTC) model that reduces the need for full supervision. This new model (1) produces BERT sentence embeddings and calibrates them using a flow model, (2) generates an initial topic-document matrix by averaging results of a seeded sparse topic model and a textual entailment model which only require surface name of topics and 4-6 seed words per topic, and (3) adopts a VAE framework to reconstruct the embeddings under the guidance of the topic-document matrix. Finally, (4) it uses the means produced by the encoder model in the VAE architecture as predictions for MLTC. Experimental results on 6 multi-label datasets show that BFV can substantially outperform other baseline WSMLTC models in key metrics and achieve approximately 84{\%} performance of a fully-supervised model."
}Markdown (Informal)
[BERT-Flow-VAE: A Weakly-supervised Model for Multi-Label Text Classification](https://preview.aclanthology.org/ingest-emnlp/2022.coling-1.104/) (Liu et al., COLING 2022)
ACL