@inproceedings{mhaskar-bhattacharyya-2021-pivot,
    title = "Pivot Based Transfer Learning for Neural Machine Translation: {CFILT} {IITB} @ {WMT} 2021 Triangular {MT}",
    author = "Mhaskar, Shivam  and
      Bhattacharyya, Pushpak",
    editor = "Barrault, Loic  and
      Bojar, Ondrej  and
      Bougares, Fethi  and
      Chatterjee, Rajen  and
      Costa-jussa, Marta R.  and
      Federmann, Christian  and
      Fishel, Mark  and
      Fraser, Alexander  and
      Freitag, Markus  and
      Graham, Yvette  and
      Grundkiewicz, Roman  and
      Guzman, Paco  and
      Haddow, Barry  and
      Huck, Matthias  and
      Yepes, Antonio Jimeno  and
      Koehn, Philipp  and
      Kocmi, Tom  and
      Martins, Andre  and
      Morishita, Makoto  and
      Monz, Christof",
    booktitle = "Proceedings of the Sixth Conference on Machine Translation",
    month = nov,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://preview.aclanthology.org/ingest-emnlp/2021.wmt-1.39/",
    pages = "336--340",
    abstract = "In this paper, we discuss the various techniques that we used to implement the Russian-Chinese machine translation system for the Triangular MT task at WMT 2021. Neural Machine translation systems based on transformer architecture have an encoder-decoder architecture, which are trained end-to-end and require a large amount of parallel corpus to produce good quality translations. This is the reason why neural machine translation systems are referred to as \textit{data hungry}. Such a large amount of parallel corpus is majorly available for language pairs which include English and not for non-English language pairs. This is a major problem in building neural machine translation systems for non-English language pairs. We try to utilize the resources of the English language to improve the translation of non-English language pairs. We use the pivot language, that is English, to leverage transfer learning to improve the quality of Russian-Chinese translation. Compared to the baseline transformer-based neural machine translation system, we observe that the pivot language-based transfer learning technique gives a higher BLEU score."
}Markdown (Informal)
[Pivot Based Transfer Learning for Neural Machine Translation: CFILT IITB @ WMT 2021 Triangular MT](https://preview.aclanthology.org/ingest-emnlp/2021.wmt-1.39/) (Mhaskar & Bhattacharyya, WMT 2021)
ACL