@inproceedings{parvez-chang-2021-evaluating,
    title = "Evaluating the Values of Sources in Transfer Learning",
    author = "Parvez, Md Rizwan  and
      Chang, Kai-Wei",
    editor = "Toutanova, Kristina  and
      Rumshisky, Anna  and
      Zettlemoyer, Luke  and
      Hakkani-Tur, Dilek  and
      Beltagy, Iz  and
      Bethard, Steven  and
      Cotterell, Ryan  and
      Chakraborty, Tanmoy  and
      Zhou, Yichao",
    booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
    month = jun,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://preview.aclanthology.org/ingest-emnlp/2021.naacl-main.402/",
    doi = "10.18653/v1/2021.naacl-main.402",
    pages = "5084--5116",
    abstract = "Transfer learning that adapts a model trained on data-rich sources to low-resource targets has been widely applied in natural language processing (NLP). However, when training a transfer model over multiple sources, not every source is equally useful for the target. To better transfer a model, it is essential to understand the values of the sources. In this paper, we develop , an efficient source valuation framework for quantifying the usefulness of the sources (e.g., ) in transfer learning based on the Shapley value method. Experiments and comprehensive analyses on both cross-domain and cross-lingual transfers demonstrate that our framework is not only effective in choosing useful transfer sources but also the source values match the intuitive source-target similarity."
}Markdown (Informal)
[Evaluating the Values of Sources in Transfer Learning](https://preview.aclanthology.org/ingest-emnlp/2021.naacl-main.402/) (Parvez & Chang, NAACL 2021)
ACL
- Md Rizwan Parvez and Kai-Wei Chang. 2021. Evaluating the Values of Sources in Transfer Learning. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 5084–5116, Online. Association for Computational Linguistics.