@inproceedings{zhang-etal-2021-sage,
    title = "{S}a{GE}: 基于句法感知图卷积神经网络和{ELECTRA}的中文隐喻识别模型({S}a{GE}: Syntax-aware {GCN} with {ELECTRA} for {C}hinese Metaphor Detection)",
    author = "Zhang, Shenglong  and
      Liu, Ying  and
      Ma, Yanjun",
    editor = "Li, Sheng  and
      Sun, Maosong  and
      Liu, Yang  and
      Wu, Hua  and
      Liu, Kang  and
      Che, Wanxiang  and
      He, Shizhu  and
      Rao, Gaoqi",
    booktitle = "Proceedings of the 20th Chinese National Conference on Computational Linguistics",
    month = aug,
    year = "2021",
    address = "Huhhot, China",
    publisher = "Chinese Information Processing Society of China",
    url = "https://preview.aclanthology.org/ingest-emnlp/2021.ccl-1.60/",
    pages = "667--677",
    language = "zho",
    abstract = "隐喻是人类语言中经常出现的一种特殊现象,隐喻识别对于自然语言处理各项任务来说具有十分基础和重要的意义。针对中文领域的隐喻识别任务,我们提出了一种基于句法感知图卷积神经网络和ELECTRA的隐喻识别模型(Syntax-aware GCN withELECTRA SaGE)。该模型从语言学出发,使用ELECTRA和Transformer编码器抽取句子的语义特征,将句子按照依存关系组织成一张图并使用图卷积神经网络抽取其句法特征,在此基础上对两类特征进行融合以进行隐喻识别。我们的模型在CCL2018中文隐喻识别评测数据集上以85.22{\%}的宏平均F1分数超越了此前的最佳成绩,验证了融合语义信息和句法信息对于隐喻识别任务具有重要作用。"
}Markdown (Informal)
[SaGE: 基于句法感知图卷积神经网络和ELECTRA的中文隐喻识别模型(SaGE: Syntax-aware GCN with ELECTRA for Chinese Metaphor Detection)](https://preview.aclanthology.org/ingest-emnlp/2021.ccl-1.60/) (Zhang et al., CCL 2021)
ACL