@inproceedings{lee-2020-cross,
    title = "Cross-Lingual Transformers for Neural Automatic Post-Editing",
    author = "Lee, Dongjun",
    editor = {Barrault, Lo{\"i}c  and
      Bojar, Ond{\v{r}}ej  and
      Bougares, Fethi  and
      Chatterjee, Rajen  and
      Costa-juss{\`a}, Marta R.  and
      Federmann, Christian  and
      Fishel, Mark  and
      Fraser, Alexander  and
      Graham, Yvette  and
      Guzman, Paco  and
      Haddow, Barry  and
      Huck, Matthias  and
      Yepes, Antonio Jimeno  and
      Koehn, Philipp  and
      Martins, Andr{\'e}  and
      Morishita, Makoto  and
      Monz, Christof  and
      Nagata, Masaaki  and
      Nakazawa, Toshiaki  and
      Negri, Matteo},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://preview.aclanthology.org/ingest-emnlp/2020.wmt-1.81/",
    pages = "772--776",
    abstract = "In this paper, we describe the Bering Lab{'}s submission to the WMT 2020 Shared Task on Automatic Post-Editing (APE). First, we propose a cross-lingual Transformer architecture that takes a concatenation of a source sentence and a machine-translated (MT) sentence as an input to generate the post-edited (PE) output. For further improvement, we mask incorrect or missing words in the PE output based on word-level quality estimation and then predict the actual word for each mask based on the fine-tuned cross-lingual language model (XLM-RoBERTa). Finally, to address the over-correction problem, we select the final output among the PE outputs and the original MT sentence based on a sentence-level quality estimation. When evaluated on the WMT 2020 English-German APE test dataset, our system improves the NMT output by -3.95 and +4.50 in terms of TER and BLEU, respectively."
}Markdown (Informal)
[Cross-Lingual Transformers for Neural Automatic Post-Editing](https://preview.aclanthology.org/ingest-emnlp/2020.wmt-1.81/) (Lee, WMT 2020)
ACL