@inproceedings{stanchev-etal-2020-towards,
    title = "Towards a Better Evaluation of Metrics for Machine Translation",
    author = "Stanchev, Peter  and
      Wang, Weiyue  and
      Ney, Hermann",
    editor = {Barrault, Lo{\"i}c  and
      Bojar, Ond{\v{r}}ej  and
      Bougares, Fethi  and
      Chatterjee, Rajen  and
      Costa-juss{\`a}, Marta R.  and
      Federmann, Christian  and
      Fishel, Mark  and
      Fraser, Alexander  and
      Graham, Yvette  and
      Guzman, Paco  and
      Haddow, Barry  and
      Huck, Matthias  and
      Yepes, Antonio Jimeno  and
      Koehn, Philipp  and
      Martins, Andr{\'e}  and
      Morishita, Makoto  and
      Monz, Christof  and
      Nagata, Masaaki  and
      Nakazawa, Toshiaki  and
      Negri, Matteo},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://preview.aclanthology.org/ingest-emnlp/2020.wmt-1.103/",
    pages = "928--933",
    abstract = "An important aspect of machine translation is its evaluation, which can be achieved through the use of a variety of metrics. To compare these metrics, the workshop on statistical machine translation annually evaluates metrics based on their correlation with human judgement. Over the years, methods for measuring correlation with humans have changed, but little research has been performed on what the optimal methods for acquiring human scores are and how human correlation can be measured. In this work, the methods for evaluating metrics at both system- and segment-level are analyzed in detail and their shortcomings are pointed out."
}Markdown (Informal)
[Towards a Better Evaluation of Metrics for Machine Translation](https://preview.aclanthology.org/ingest-emnlp/2020.wmt-1.103/) (Stanchev et al., WMT 2020)
ACL