@inproceedings{bai-zhou-2020-automatic,
    title = "Automatic Detecting for Health-related {T}witter Data with {B}io{BERT}",
    author = "Bai, Yang  and
      Zhou, Xiaobing",
    editor = "Gonzalez-Hernandez, Graciela  and
      Klein, Ari Z.  and
      Flores, Ivan  and
      Weissenbacher, Davy  and
      Magge, Arjun  and
      O'Connor, Karen  and
      Sarker, Abeed  and
      Minard, Anne-Lyse  and
      Tutubalina, Elena  and
      Miftahutdinov, Zulfat  and
      Alimova, Ilseyar",
    booktitle = "Proceedings of the Fifth Social Media Mining for Health Applications Workshop {\&} Shared Task",
    month = dec,
    year = "2020",
    address = "Barcelona, Spain (Online)",
    publisher = "Association for Computational Linguistics",
    url = "https://preview.aclanthology.org/ingest-emnlp/2020.smm4h-1.10/",
    pages = "63--69",
    abstract = "Social media used for health applications usually contains a large amount of data posted by users, which brings various challenges to NLP, such as spoken language, spelling errors, novel/creative phrases, etc. In this paper, we describe our system submitted to SMM4H 2020: Social Media Mining for Health Applications Shared Task which consists of five sub-tasks. We participate in subtask 1, subtask 2-English, and subtask 5. Our final submitted approach is an ensemble of various fine-tuned transformer-based models. We illustrate that these approaches perform well in imbalanced datasets (For example, the class ratio is 1:10 in subtask 2), but our model performance is not good in extremely imbalanced datasets (For example, the class ratio is 1:400 in subtask 1). Finally, in subtask 1, our result is lower than the average score, in subtask 2-English, our result is higher than the average score, and in subtask 5, our result achieves the highest score. The code is available online."
}Markdown (Informal)
[Automatic Detecting for Health-related Twitter Data with BioBERT](https://preview.aclanthology.org/ingest-emnlp/2020.smm4h-1.10/) (Bai & Zhou, SMM4H 2020)
ACL