@inproceedings{chen-kageura-2020-multilingualization,
    title = "Multilingualization of Medical Terminology: Semantic and Structural Embedding Approaches",
    author = "Chen, Long-Huei  and
      Kageura, Kyo",
    editor = "Calzolari, Nicoletta  and
      B{\'e}chet, Fr{\'e}d{\'e}ric  and
      Blache, Philippe  and
      Choukri, Khalid  and
      Cieri, Christopher  and
      Declerck, Thierry  and
      Goggi, Sara  and
      Isahara, Hitoshi  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Mazo, H{\'e}l{\`e}ne  and
      Moreno, Asuncion  and
      Odijk, Jan  and
      Piperidis, Stelios",
    booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
    month = may,
    year = "2020",
    address = "Marseille, France",
    publisher = "European Language Resources Association",
    url = "https://preview.aclanthology.org/ingest-emnlp/2020.lrec-1.512/",
    pages = "4157--4166",
    language = "eng",
    ISBN = "979-10-95546-34-4",
    abstract = "The multilingualization of terminology is an essential step in the translation pipeline, to ensure the correct transfer of domain-specific concepts. Many institutions and language service providers construct and maintain multilingual terminologies, which constitute important assets. However, the curation of such multilingual resources requires significant human effort; though automatic multilingual term extraction methods have been proposed so far, they are of limited success as term translation cannot be satisfied by simply conveying meaning, but requires the terminologists and domain experts' knowledge to fit the term within the existing terminology. Here we propose a method to encode the structural property of a term by aligning their embeddings using graph convolutional networks trained from separate languages. We observe that the structural information can augment the semantic methods also explored in this work, and recognize the unique nature of terminologies allows our method to fully take advantage and produce superior results."
}Markdown (Informal)
[Multilingualization of Medical Terminology: Semantic and Structural Embedding Approaches](https://preview.aclanthology.org/ingest-emnlp/2020.lrec-1.512/) (Chen & Kageura, LREC 2020)
ACL