@inproceedings{li-etal-2020-ca,
    title = "{CA}-{EHN}: Commonsense Analogy from {E}-{H}ow{N}et",
    author = "Li, Peng-Hsuan  and
      Yang, Tsan-Yu  and
      Ma, Wei-Yun",
    editor = "Calzolari, Nicoletta  and
      B{\'e}chet, Fr{\'e}d{\'e}ric  and
      Blache, Philippe  and
      Choukri, Khalid  and
      Cieri, Christopher  and
      Declerck, Thierry  and
      Goggi, Sara  and
      Isahara, Hitoshi  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Mazo, H{\'e}l{\`e}ne  and
      Moreno, Asuncion  and
      Odijk, Jan  and
      Piperidis, Stelios",
    booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
    month = may,
    year = "2020",
    address = "Marseille, France",
    publisher = "European Language Resources Association",
    url = "https://preview.aclanthology.org/ingest-emnlp/2020.lrec-1.365/",
    pages = "2984--2990",
    language = "eng",
    ISBN = "979-10-95546-34-4",
    abstract = "Embedding commonsense knowledge is crucial for end-to-end models to generalize inference beyond training corpora. However, existing word analogy datasets have tended to be handcrafted, involving permutations of hundreds of words with only dozens of pre-defined relations, mostly morphological relations and named entities. In this work, we model commonsense knowledge down to word-level analogical reasoning by leveraging E-HowNet, an ontology that annotates 88K Chinese words with their structured sense definitions and English translations. We present CA-EHN, the first commonsense word analogy dataset containing 90,505 analogies covering 5,656 words and 763 relations. Experiments show that CA-EHN stands out as a great indicator of how well word representations embed commonsense knowledge. The dataset is publicly available at \url{https://github.com/ckiplab/CA-EHN}."
}Markdown (Informal)
[CA-EHN: Commonsense Analogy from E-HowNet](https://preview.aclanthology.org/ingest-emnlp/2020.lrec-1.365/) (Li et al., LREC 2020)
ACL
- Peng-Hsuan Li, Tsan-Yu Yang, and Wei-Yun Ma. 2020. CA-EHN: Commonsense Analogy from E-HowNet. In Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 2984–2990, Marseille, France. European Language Resources Association.