@inproceedings{ginev-miller-2020-scientific,
    title = "Scientific Statement Classification over ar{X}iv.org",
    author = "Ginev, Deyan  and
      Miller, Bruce R",
    editor = "Calzolari, Nicoletta  and
      B{\'e}chet, Fr{\'e}d{\'e}ric  and
      Blache, Philippe  and
      Choukri, Khalid  and
      Cieri, Christopher  and
      Declerck, Thierry  and
      Goggi, Sara  and
      Isahara, Hitoshi  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Mazo, H{\'e}l{\`e}ne  and
      Moreno, Asuncion  and
      Odijk, Jan  and
      Piperidis, Stelios",
    booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
    month = may,
    year = "2020",
    address = "Marseille, France",
    publisher = "European Language Resources Association",
    url = "https://preview.aclanthology.org/ingest-emnlp/2020.lrec-1.153/",
    pages = "1219--1226",
    language = "eng",
    ISBN = "979-10-95546-34-4",
    abstract = "We introduce a new classification task for scientific statements and release a large-scale dataset for supervised learning. Our resource is derived from a machine-readable representation of the arXiv.org collection of preprint articles. We explore fifty author-annotated categories and empirically motivate a task design of grouping 10.5 million annotated paragraphs into thirteen classes. We demonstrate that the task setup aligns with known success rates from the state of the art, peaking at a 0.91 F1-score via a BiLSTM encoder-decoder model. Additionally, we introduce a lexeme serialization for mathematical formulas, and observe that context-aware models could improve when also trained on the symbolic modality. Finally, we discuss the limitations of both data and task design, and outline potential directions towards increasingly complex models of scientific discourse, beyond isolated statements."
}Markdown (Informal)
[Scientific Statement Classification over arXiv.org](https://preview.aclanthology.org/ingest-emnlp/2020.lrec-1.153/) (Ginev & Miller, LREC 2020)
ACL