ACL 2017

The 55th Annual Meeting of the
Association for Computational Linguistics

Proceedings of the 2nd Workshop on Representation
Learning for NLP

August 3, 2017
Vancouver, Canada



(©2017 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street

Stroudsburg, PA 18360

USA

Tel: +1-570-476-8006

Fax: +1-570-476-0860

acl@aclweb.org

ISBN 978-1-945626-62-3

il



Introduction

Welcome to the 2nd Workshop on Representation Learning for NLP (RepL4NLP), held on August 3,
2017 and hosted by the 55th Annual Meeting of the Association for Computational Linguistics (ACL) in
Vancouver, Canada. The workshop is sponsored by DeepMind, Facebook AI Research, and Microsoft
Research.

The 2nd Workshop on Representation Learning for NLP aims to continue the spirit of previously
successful workshops at ACL/NAACL/EACL, namely RepLANLP at ACL'16, VSM at NAACL’15
and CVSC at ACL'13/EACL’14/ACL’15, which focused on vector space models of meaning,
compositionality, and the application of deep neural networks and spectral methods to NLP. It provides a
forum for discussing recent advances on these topics, as well as future research directions in linguistically
motivated vector-based models in NLP.
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11:00-11:45

Welcome and Opening Remarks

Keynote Session

Learning Joint Embeddings of Vision and Language
Sanja Fidler

A successful autonomous system needs to not only understand the visual world
but also communicate its understanding with humans. To make this possible, lan-
guage can serve as a natural link between high level semantic concepts and low
level visual perception. In this talk, I'll discuss recent work in the domain of vi-
sion and language, covering topics such as image/video captioning and retrieval,
and question-answering. I’ll also talk about our recent work on task execution via
language instructions.

Coffee Break

Keynote Session

Learning Representations of Social Meaning
Jacob Eisenstein

Language plays a critical role in structuring human relationships, while marking so-
cial properties of the speaker/writer, audience, and communicative situation. With
the increasing availability of big social media datasets, computational linguists have
begun to join with sociolinguists in working to elucidate language’s social dimen-
sion. However, this promising synthesis is threatened by a theoretical mismatch
between these two disciplines. Much of the research in the emerging field of com-
putational sociolinguistics involves social-theoretical models that uncritically assign
individuals to broad categories such as man/woman, black/white, northern/southern,
and urban/rural. Meanwhile, sociolinguists have worked for decades to elaborate a
more nuanced view of identity and social meaning, but it has proven difficult to
reconcile these rich theoretical models with scalable quantitative research methods.
In this talk, I will ask whether representation learning can help to bridge this gap.
The key idea is to use learned representations to mediate between linguistic data and
socially relevant metadata. I will describe applications of this basic approach in the
context of clustering, latent variable models, and neural networks, with applications
to gender, multi-community studies, and social network analysis.
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Representations in the Brain
Alona Fyshe

What can the brain tell us about computationally-learned representations of words,
phrases and beyond? And what can those computational representations tell us
about the brain? In this talk I will describe several brain imaging experiments that
explore the representation of language meaning in the brain, and relate those brain
representations to computationally learned representations of language meaning.

Lunch

Keynote Session

"A million ways to say I love you" or Learning to Paraphrase with Neural Machine
Translation
Mirella Lapata

Recognizing and generating paraphrases is an important component in many nat-
ural language processing applications. A well-established technique for automati-
cally extracting paraphrases leverages bilingual corpora to find meaning-equivalent
phrases in a single language by “pivoting” over a shared translation in another lan-
guage. In the first part of the talk I will revisit bilingual pivoting in the context of
neural machine translation and present a paraphrasing model based purely on neural
networks. The proposed model represents paraphrases in a continuous space, esti-
mates the degree of semantic relatedness between text segments of arbitrary length,
and generates paraphrase candidates for any source input. In the second part of the
talk I will illustrate how neural paraphrases can be seamlessly integrated in mod-
els of question answering and summarization, achieving competitive results across
datasets and languages.

Best Paper Session
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Sense Contextualization in a Dependency-Based Compositional
Distributional Model

Pablo Gamallo
Centro Singular de Investigacion en
Tecnoloxias da Informacién (CiTIUS)
Universidade de Santiago de Compostela, Galiza
pablo.gamallo@usc.es

Abstract

Little attention has been paid to distribu-
tional compositional methods which em-
ploy syntactically structured vector mod-
els. As word vectors belonging to differ-
ent syntactic categories have incompatible
syntactic distributions, no trivial compo-
sitional operation can be applied to com-
bine them into a new compositional vec-
tor. In this article, we generalize the
method described by Erk and Padé (2009)
by proposing a dependency-base frame-
work that contextualize not only lem-
mas but also selectional preferences. The
main contribution of the article is to ex-
pand their model to a fully compositional
framework in which syntactic dependen-
cies are put at the core of semantic com-
position. We claim that semantic compo-
sition is mainly driven by syntactic depen-
dencies. Each syntactic dependency gen-
erates two new compositional vectors rep-
resenting the contextualized sense of the
two related lemmas. The sequential ap-
plication of the compositional operations
associated to the dependencies results in
as many contextualized vectors as lemmas
the composite expression contains. At the
end of the semantic process, we do not
obtain a single compositional vector rep-
resenting the semantic denotation of the
whole composite expression, but one con-
textualized vector for each lemma of the
whole expression. Our method avoids the
troublesome high-order tensor representa-
tions by defining lemmas and selectional
restrictions as first-order tensors (i.e. stan-
dard vectors). A corpus-based experiment
is performed to both evaluate the quality

1

of the compositional vectors built with our
strategy, and to compare them to other ap-
proaches on distributional compositional
semantics. The experiments show that our
dependency-based compositional method
performs as (or even better than) the state-
of-the-art.

1 Introduction

Erk and Padé (2008) proposed a method in which
the combination of two words, a and b, returns
two vectors: a vector a’ representing the sense of
a given the selectional preferences imposed by b,
and a vector b’ standing for the sense of b given
the (inverse) selectional preferences imposed by a.
The main problem is that this approach does not
propose any compositional model for sentences.
Its objective is to simulate word sense disambigua-
tion, but not to model semantic composition at any
level of analysis. In Erk and Padé (2009), the au-
thors briefly describe an extension of their model
by proposing a recursive application of the com-
positional function. However, they only formalize
the recursive application when the composite ex-
pression consits of two dependent words linked to
the same head. So, they only explain how the head
is contextualized by its dependents, but not the
other way around. In addition, they do not model
the influence of context on the selectional prefer-
ences. In other terms, their recursive model does
not make use of contextualized selectional prefer-
ences.

In this article, we generalize the method de-
scribed in Erk and Pad6 (2009) by proposing
a dependency-base framework that contextualize
both lemmas and selectional preferences. The
main contribution of the article is to expand their
model to a fully compositional framework in
which syntactic dependencies are put at the core
of semantic composition.

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 1-9,
Vancouver, Canada, August 3, 2017. (©2017 Association for Computational Linguistics



In our model, lemmas and selectional prefer-
ences are defined as unary-tensors (standard vec-
tors), while syntactic dependencies are binary
functions combining vectors in an iterative and in-
cremental way.

For dealing with any sequence with N (lexical)
words and N — 1 dependencies linking them, the
compositional process can be applied N — 1 times
dependency-by-dependency in two different ways:
from left-to-right and from right-to-left. Figure 1
illustrates the incremental process of building the
sense of words dependency-by-dependency from
left-to-right. Given the composite expression “a b
¢” and its dependency analysis depicted in the first
row of the figure, several compositional processes
are driven by the two dependencies involved in
the analysis (m and n). First, m is decomposed
into two functions: the head function m+, and
the dependent one, m . The head function m;
takes as input the sense of the head word b and
the selectional preferences of a, noted here as a°,
and returns a new denotation of the head word,
b1, which represents the contextualized sense of
b given a at the m relation. Similarly, the depen-
dent function m| takes as input the sense of the
dependent word a and the selectional preferences
b°, and returns a new denotation of the dependent
word: a,,|. The green box is used to highlight the
result of each function. Next, the dependency n
between b and c is also decomposed into the head
and dependent functions: ny and n|. Function
nt combines the already contextualized head b,
with the selectional preferences c°, and returns a
still more specific sense of the head: by, 14,,1. Fi-
nally, function n| takes as input the sense of the
dependent word c and the already contextualized
selectional preferences b, |» and builds a contex-
tualized sense of the dependent word: ¢, |y, . At
the end of the process, we have not obtained one
single sense for the whole expression “a b ¢”, but
one contextualized sense per word: @, |, biitnts
and ¢, 4| . Notice that the two words involved in
the direct object dependency, b and ¢, have been
contextualized twice since they inherit the restric-
tions of the subject dependency. The root word, b,
is directly involved in the two dependencies and,
then, is assigned an intermediate contextualized
sense, by, 1, in the first combination with a.

In the second case, from right-to-left, the se-
mantic process is applied in a similar way, but
starting from the rightmost dependency, n, and

ending by the leftmost one, m. At the end of the
process, three contextualized word senses are also
obtained which might be slightly different from
those obtained by the left-to-right algorithm. The
main difference is that a is now contextualized by
both b and ¢, while c is just contextualized by b.
The iterative application of the syntactic depen-
dencies found in a sentence is actually the pro-
cess of building the contextualized sense of all the
content words constituting that sentence. So, the
whole sentence is not assigned only one mean-
ing - which could be the contextualized sense of
the root word-, but one sense per word, being the
sense of the root just one of them, as in the work
described in Weir et al. (Weir et al., 2016). This
allows us to retrieve the contextualized sense of
all constituent words within a sentence. The con-
textualized sense of any word might be required
in further semantic processes, namely for dealing
with co-reference resolution involving anaphoric
pronouns. Such an elementary operation is pre-
vented if the sense of the phrase is just one com-
plex sense, as in most compositional approaches.
The rest of the article is organized as follows.
In Section 2, several distributional compositional
approaches are introduced and discussed. Next,
in Section 3, our dependency-based compositional
model is described. In Section 4, a corpus-based
experiment is performed to build and evaluate the
quality of compositional vectors. Finally, relevant
conclusions are addressed in Section 5.

2 Related Work

To take into account “the mode of combination”,
some distributional approaches follow a strategy
aligned with the formal semantics perspective in
which functional words are represented as high-
dimensional tensors (Coecke et al., 2010; Baroni
and Zamparelli, 2010; Grefenstette et al., 2011;
Krishnamurthy and Mitchell, 2013; Kartsaklis and
Sadrzadeh, 2013; Baroni, 2013; Baroni et al.,
2014). Using the abstract mathematical frame-
work of category theory, they provide the distribu-
tional models of meaning with the elegant mecha-
nism expressed by the principle of composition-
ality, where words interact with each other ac-
cording to their type-logical identities (Kartsak-
lis, 2014). The categorial-based approaches de-
fine arguments as vectors while functions taking
arguments (e.g., verbs or adjectives that combine
with nouns) are n-order tensors, with the number
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Figure 1: Syntactic analysis of the expression “a b ¢” and left-to-right construction of the contextualized

word senses.

of arguments determining their order. Function
application is the general composition operation.
This is formalized as the tensor product, which is
nothing more than a generalization of matrix mul-
tiplication in higher dimensions. However, this
method results in an information scalability prob-
lem, since tensor representations grow exponen-
tially (Kartsaklis et al., 2014).

In our approach, by contrast, we operate with
only two types of semantic objects: first-order ten-
sors (or standard vectors) for lemmas and pref-
erences, and second-order functions for syntactic
dependencies. This solves the scalability problem
of high-order tensors. In addition, it also prevent
us giving different categorical representations to
verbs in different syntactic contexts. A verb is rep-
resented as a single vector which is contextualized
as it is combined with its arguments.

Some of the approaches cited above induce the
compositional meaning of the functional words
from examples adopting regression techniques
commonly used in machine learning (Baroni and
Zamparelli, 2010; Krishnamurthy and Mitchell,
2013; Baroni, 2013; Baroni et al., 2014). In our
approach, by contrast, functions associated with
dependencies are just basic arithmetic operations
on vectors, as in the case of the first arithmetic
approaches to composition (Mitchell and Lapata,
2008, 2009, 2010; Guevara, 2010; Zanzotto et al.,
2010). Arithmetic approaches are easy to imple-
ment and produce high-quality compositional vec-
tors, which makes them a good choice for practical
applications (Baroni et al., 2014).

However, given that our vector space is struc-

tured and enriched with syntactic information, the
vectors built by composition cannot be a sim-

ple mixture of the input vectors as in the bag-
of-words approaches (Mitchell and Lapata, 2008).
Our syntax-based vector representation of two re-
lated words encodes incompatible information and
there is no direct way of combining the informa-
tion encoded in their respective vectors. Vectors
of content words (nouns, verbs, adjectives, and ad-
verbs) live into different and incompatible spaces
because they are constituted by different types of
syntactic contexts. So, they cannot be merged.
To combine them, on the basis of previous work
(Thater et al., 2010; Erk and Pado, 2008; Melamud
et al., 2015), we distinguish between direct deno-
tation and selectional preferences within a depen-
dency relation. Our approach is an attempt to join
the main ideas of these syntax-based and struc-
tured vector space models into an entirely compo-
sitional model. More precisely, we generalize the
recursive model introduced by Erk and Pado (Erk
and Pado, 2009) with the addition of contextual-
ized selection preferences.

Finally, recent works make use of deep learn-
ing strategies to build compositional vectors, such
as recursive neural network models (Socher et al.,
2012; Hashimoto and Tsuruoka, 2015). Still in
the deep learning paradigm, special attention de-
serves a syntax-based compositional version of C-
BOW algorithm (Pham et al., 2015). Our method,
however, requires transparent and structured vec-
tor spaces to model compositionality.

3 The Method

In our approach, composition is modeled in terms
of recursive function application on word vectors
driven by binary dependencies. Each dependency
stands for two functions on vectors: the head func-



tion and the dependent one. Let us consider the
nominal subject syntactic dependency, which de-
notes two functions represented by the following
binary A-expressions:

Ax Ay°® nsubjr(x, y°©) (D
Ax® Ay nsubj|(x°,y) 2)

where nsubj; and nsubj| represent the head and
dependent functions, respectively; x, x°, y, and
y° stand for vector variables. On the one hand,
x and y represent the denotation of the head and
dependent lemmas, respectively. They represent
standard context distributions. On the other hand,
x° represents the selectional preferences imposed
by the head, while y° stands for the selectional
preferences imposed by the dependent lemma. Se-
lectional preferences are also vectors and the way
we build them is described later.

Consider now the vectors of two specific lem-
mas, cat and chase, and their respective selec-
tional preferences at the subject position. Each
function application consists of multiplying the di-
rect vector associated with a lemma and the selec-
tional preferences imposed by the other lemma:

nsubjr (chase, cat’) = chase ® cat® = chasensubjr
3)

nsubj, (chase®, cat) = cat © chase® = cat,sup;; (4)

Each multiplicative operation results in a com-
positional vector which represents the contextual-
ized sense of one of the two lemmas (either the
head or the dependent). Component-wise multi-
plication has an intersective effect: the selectional
preferences restricts the direct vector by assigning
frequency O to those contexts that are not shared
by both vectors. Here, cat® and chase® are se-
lectional preferences resulting from the following
vector addition:

cat® = Z w (5)
we S| (cat)

chase® = Z w (6)
we St(chase)

where S| (cat) returns the vector set of those verbs
having cat as subject (except the verb chase).

More precisely, given the nominal subject posi-
tion, the new vector cat® is obtained by adding
the vectors {w|w € S| (cat)} of those verbs (eat,
jump, etc) that are combined with the noun cat in
that syntactic context. Component-wise addition
of vectors has an union effect. In more intuitive
terms, cat® stands for the inverse selectional pref-
erences imposed by cat on any verb at the sub-
ject position. As this new vector consists of ver-
bal contexts, it lives in the same vector space than
verbs and, therefore, it can be combined with the
direct vector of chase.

On the other hand, St (chase) in equation 6 rep-
resents the vector set of nouns occurring as sub-
jects of chase (except the noun cat). Given the
subject position, the vector chase® is obtained by
adding the vectors {w|w € S;(chase)} of those
nouns (e.g. dog, man, tiger, etc) that might be at
the subject position of the verb chase.

The incremental application of head and de-
pendent functions contextualize the representa-
tion of each word in the phrase. Incremental-
ity also model the influence of context on the
selectional preferences. The incremental left-to-
right interpretation of “the cat chased a mouse”
is illustrated in Figure 2 (without considering the
meaning of determiners nor verbal tense): First,
the head and dependent functions associated with
the subject dependency nsubj build the composi-
tional vectors chase,,s,;;1 and cat,s4j). Then,
the head function associated with dobj produces a
more elaborate chasing event, chase,, supj1+dobjts
which stands for the final contextualized sense
of the root verb. In addition, the dependent
function of dobj yields a new nominal vector,
MOUSE,,5uhj | +dobj|» Whose internal information
only can refer to a specific animal: “the mouse
chased by the cat”. Notice that contextualization
may disambiguate ambiguous words: in the con-
text of a chasing event, mouse does not refer to a
computer’s device. In fact, to interpret “the cat
chased a mouse”, it is required to interpret “cat
chased” as a fragment that restricts the type of
nouns that can appear at the direct object position:
mouse, rat, bird, etc. In the same way “police
chases” restricts the entities that can be chased by
police officers: thieves, robbers, and so on.

In our approach, not only the lemmas are
contextualized but also the selectional prefer-
ences. The contextualized selectional preferences,



cat chase mouse
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cat chase, ;1 cat,supj|| chase
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Figure 2: Syntactic analysis of the expression “the cat chased a mouse” and left-to-right construction of

the contextualized word senses.

[¢]

chase, ., are obtained as follows:

> w
we Dy (chase)

(7
where D1 (chase) returns the vector set of those
nouns that are in the direct object role of chase
(except the noun mouse). The new vector result-
ing by this addition is combined by multiplication
(intersection) with the contextualized dependent
vector, cat,,,p;, to build the contextualized se-
lectional preferences. In more intuitive terms, the
selectional preferences built in equation 7 are con-
stituted by selecting the contexts of the nouns ap-
pearing as direct object of chase, which are also
part of cat after having been contextualized by the
verb at the subject position. This is the major con-
tribution with regard to the work described in Erk
and Pado6 (2009).

The dependency-by-dependency functional
application results in three contextualized word
senses: cat,supj|, chase,suyjttdon;p and
mMouUSe,,supj| +dobj|- 1hey all together represent
the meaning of the sentence in the left-to-right
direction.

chasezsubﬂ = catpsupj| ©

In the opposite direction, from right-to-left, the
incremental process starts with the direct object
dependency:

dobji(chase, mouse®) = chasegu;jt
dobj|(chase®, mouse) = mouseg,; |
nsubji(chasegopit, cat®) = chaseyobjtnsubjt

nsubj (chasezobﬁ, cat) = catdohj|+nsubj|

®)

In Equation 8, the verb chase is first restricted
by mouse at the direct object position, and then
by its subject cat. In addition, this noun is re-
stricted by the vector chasey,,; , which repre-
sents the contextualized selectional preferences
built by combining mouse,;;| with the vectors
of the nouns that are in the subject position of
chase (except cat). This new compositional vec-
tor represents a very contextualized nominal con-
cept: “the cat that chased a mouse”. The word cat
and its specific sense can be related to anaphorical
expressions by making use of co-referential rela-
tionships at the discourse level: e.g., pronoun if,
other definite expressions (“that cat”, “the cat”),
and so on.

4 Experiments

We carried out a corpus-based experiment based
on compositional distributional similarity to check
the quality of composite expressions, namely
NOUN-VERB-NOUN constructions (NVN) incre-



mentally composed with nsubj and dobj depen-
dencies.

4.1 The Corpus and the Structured Vector
Model

Our working corpus consists of both the English
Wikipedia (dump file of November 2015') and the
British National Corpus (BNC)Z2. In total, the cor-
pus contains about 2.5 billion word tokens. We
used the rule-based dependency parser DepPattern
(Gamallo and Gonzalez, 2011; Gamallo, 2015) to
perform syntactic analysis on the whole text.

Word vectors were built by computing their
co-occurrences in syntactic contexts. Two dif-
ferent types of vectors were built from the cor-
pus: nominal and verbal vectors. Then, for each
word we filtered out non relevant contexts using
simple count-based techniques inspired by those
described in (Bordag, 2008; Padré et al., 2014;
Gamallo, 2016), where matrices are stored in hash
tables with only non-zero values. More precisely,
the association between words and their contexts
were weighted with the Dunning’s likelihood ra-
tio (Dunning, 1993) and then, for each word, only
the IV contexts with highest likelihood scores were
stored in the hash table (where N = 500). So, the
remaining contexts were removed from the hash
(in standard vector/matrix representations, instead
of removing contexts we should assign them zero
values).

The process of matrix reduction resulted in the
selection of 330, 953 nouns (most of them proper
names) with 236, 708 different nominal contexts;
and 6,618 verbs with 140,695 different verbal
contexts. As the contexts of nouns and verbs
are not compatible, we created two different vec-
tor spaces. Words and their contexts were stored
in two hashes, one per vector space, which rep-
resent matrices containing only non-zero values.
To build compositional vectors from these matri-
ces, the strategy defined in the previous section
was implemented in PERL giving rise to the soft-
ware Depfunc’. Distributional similarity between
pairs of composite expressions was performed us-
ing Cosine.

'https://dumps.wikimedia.org/enwiki/

Mttp://www.natcorp.ox.ac.uk

3Software and models are available at http://
gramatica.usc.es/~gamallo/prototypes.htm

4.2 NVN Composite Expressions

This experiment consists of evaluating the qual-
ity of compositional vectors built by means of the
consecutive application of head and dependency
functions associated with nominal subject and di-
rect object. The experiment is performed on the
dataset developed by Grefenstette and Sadrzadeh
(2011a). The dataset was built using transi-
tive verbs paired with subjects and direct objects:
NVN composites.

Given our compositional strategy, we are able
to compositional build several vectors that some-
how represent the meaning of the whole NVN
composite expression. Take the expression “the
coach runs the team”. If we follow the left-to-
right strategy (noted nv-n), at the end of the com-
positional process, we obtain two fully contextu-
alized senses:

nv-n_head The sense of the head run, as a result
of being contextualized first by the prefer-
ences imposed by the subject and then by the
preferences required by the direct object. We
note nv-n_head the final sense of the head in
a NVN composite expression following the
left-to-right strategy.

nv-n_dep The sense of the object team, as a re-
sult of being contextualized by the prefer-
ences imposed by run previously combined
with the subject coach. We note nv-n_dep the
final sense of the direct object in a NVN com-
posite expression following the left-to-right
strategy.

If we follow the right-to-left strategy (noted n-
vn), at the end of the compositional process, we
obtain two fully contextualized senses:

n-nv_head The sense of the head run as a result of
being contextualized first by the preferences
imposed by the object and then by the sub-
ject.

n-nv_dep The sense of the subject coach, as a
result of being contextualized by the prefer-
ences imposed by run previously combined
with the object feam.

Table 1 shows the Spearman’s correlation val-
ues (p) between individual human similarity
scores and the similarity values predicted by the
different versions built from our Depfunc system.
The best score was achieved by averaging the



Systems p

non-compositional (V) 0.27
Depfunc (nv_head) 0.33
Depfunc (nv_dep) 0.19
Depfunc (vn_head) 0.36
Depfunc (vn_dep) 0.38
Depfunc (nv-n_head+dep) 0.35
Depfunc (nv-n_head) 0.33
Depfunc (nv-n_dep) 0.20
Depfunc (n-vn_head-+dep) 0.46
Depfunc (n-vn_head) 0.36
Depfunc (n-vn_dep) 0.42
Depfunc (n-vn+nv-n) 0.44

Grefenstette and Sadrzadeh (2011)  0.28
Hashimoto and Tsuruoka (2014) 0.43
Polajnar et al. (2015) 0.35

Table 1: Spearman correlation for transitive ex-
pressions using the benchmark by Grefenstette
and Sadrzadeh (2011)

head and dependent similarity values derived from
the n-vn (right-to-left) strategy. Let us note that,
for NVN composite expressions, the left-to-right
strategy seems to build less reliable compositional
vectors than the right-to-left counterpart. Besides,
the combination of the two strategies (n-vn+nv-n)
does not improve the results of the best one (n-
vn).*

The score value obtained by our n-vn_head+dep
right-to-left strategy outperforms other systems
tested for this dataset: Grefenstette and Sadrzadeh
(2011b); Polajnar et al. (2015), which are two
works based on the categorical compositional dis-
tributional model of meaning of Coecke et al.
(2010), and the neural network strategy described
in Hashimoto and Tsuruoka (2015).

At the top of Table 1, we show the non-
compositional baseline we have created for this
dataset: similarity beteween single verbs. The
table also shows four intermediate values result-
ing from comparing partial compositional con-
structions: the noun-verb (nv_head and nv_dep)
and the verb-noun (vn_head and vn_dep) combina-
tions. Two interesting remarks can be made from
these values when they are compared with the full
compositional constructions.

First, there is no clear improvement of perfor-
mance if we compare the full compositional infor-
mation of the two transitive constructions with the
partial combinations. On the one hand, the full
nv-n construction does not improve the scores ob-
tained by the partial intransitive nv. On the other

*n-vn+nv-n is computed by averaging the similarities of
both n-va_head+dep and nv-n_head+dep

hand, n-vn performs slightly better than vn but
only in the case of the dependent function which
makes use of contextualized selectional prefer-
ences: n-vin_dep = 0.42 / vn_dep = 0.38. The low
performance at the second level of composition
might call into question the use of contextualized
vectors to build still more contextualized senses.
The scarcity problem derived from the recursive
combination of contextualized vectors is an impor-
tant issue which could be faced with more corpus,
and which we should analyze with more complex
evaluation tests.

The second remark is about the difference be-
tween the two algorithms: left-to-righ and right-
to-left.  The scores achieved by the left-to-
right algorithm (nv, nv-n) are clearly below those
achieved by right-to-left (vn, n-vn) . This might be
due to the weak semantic motivation of the selec-
tional preferences involved in the subject depen-
dency of transitive constructions in comparison to
the direct object one. In fact, right-to-left and left-
to-right function application produces quite differ-
ent vectors because each algorithm corresponds
to a particular hierarchy of constituents. Change
of constituency implies different semantic entail-
ments such as we can easily observe if we consider
the different levels of constituency of noun mod-
ifiers (e.g. “fastest American runner” # “Amer-
ican fastest runner”). Finally, the poor results of
nv in this dataset might be explained because the
subject role is less meaningful in transitive clauses
than in intransitive ones. The subject of intransi-
tive clauses is assigned a complex semantic role
that tends to merge the notions of agent and pa-
tient. By contrast, the subject of transitive con-
structions tends to be just the agent of an action
with an external patient.

5 Conclusions

In this paper, we described a distributional compo-
sitional model based on a transparent and syntacti-
cally structured vector space. The combination of
two related lemmas gives rise to two vectors which
represent the senses of the two contextualized lem-
mas. This process can be repeated until no syntac-
tic dependency is found in the analyzed composite
expression. The compositional interpretation of a
composite expression builds the sense of each con-
stituent lemma in an incremental way.

Substantial problems still remain unsolved. For
instance there is no clear borderline between



compositional and non-compositional expressions
(collocations, compounds, or idioms). It seems to
be obvious that vectors of full compositional units
should be built by means of compositional oper-
ations and predictions based on their constituent
vectors. It is also evident that vectors of entirely
frozen expressions should be totally derived from
corpus co-occurrences of the whole expressions
without considering internal constituency. How-
ever, there are many expressions, in particular col-
locations (such as “save time”, “go mad”, “heavy
rain”, ...) which can be considered as both com-
positional and non-compositional. In those cases,
it is not clear which is the best method to build
their distributional representation: predicted vec-
tors by compositionality or corpus-observed vec-
tors of the whole expression?

Another problem that has not been considered
is how to represent the semantics of some gram-
matical words, namely determiners and auxiliary
verbs (i.e., noun and verb specifiers). For this pur-
pose, we think that it would be required a different
functional approach, probably closer to the work
described by Baroni (2014), who defines functions
as linear transformations on vector spaces.

Finally, as we have outlined above, generated
vectors tend to be too scarce when they are derived
from the recursive combination of already contex-
tualized vectors. Further experiments with more
complex phrases and larger training corpora are
required in order to deeply analyse this issue. For
this purpose, we will explore the strategy defined
in Kober et al. (2016) to improve sparse distribu-
tional representations.

In current work, we are defining richer semantic
word models by combining WordNet features with
semantic spaces based on distributional contexts
(Gamallo and Pereira-Farifia, 2017). This hybrid
method might also help overcome scarcity.
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Abstract

With a strikingly simple architecture and
the ability to learn meaningful word em-
beddings efficiently from texts containing
billions of words, word2vec remains one
of the most popular neural language mod-
els used today. However, as only a single
embedding is learned for every word in
the vocabulary, the model fails to optimally
represent words with multiple meanings
and, additionally, it is not possible to create
embeddings for new (out-of-vocabulary)
words on the spot. Based on an intuitive in-
terpretation of the continuous bag-of-words
(CBOW) word2vec model’s negative sam-
pling training objective in terms of predict-
ing context based similarities, we motivate
an extension of the model we call context
encoders (ConEc). By multiplying the ma-
trix of trained word2vec embeddings with
a word’s average context vector, out-of-
vocabulary (OOV) embeddings and repre-
sentations for words with multiple mean-
ings can be created based on the words’
local contexts. The benefits of this ap-
proach are illustrated by using these word
embeddings as features in the CoNLL 2003
named entity recognition (NER) task.

1 Introduction

Representation learning is very prominent in the
field of natural language processing (NLP). For
example, word embeddings learned by neural lan-
guage models (NLM) were shown to improve
the performance when used as features for super-
vised learning tasks such as named entity recogni-
tion (NER) (Collobert et al., 2011; Turian et al.,
2010). The popular word2vec model (Mikolov
et al., 2013a,b) learns meaningful word embed-

10

dings by considering only the words’ local con-
texts and thanks to its shallow architecture it can
be trained very efficiently on large corpora. The
model, however, only learns a single representation
for words from a fixed vocabulary. This means, if
in a task we encounter a new word that was not
present in the texts used for training, we cannot
create an embedding for this word without repeat-
ing the time consuming training procedure of the
model.! Additionally, a single embedding does not
optimally represent words with multiple meanings.
For example, “Washington” is both the name of a
US state as well as a former president and only by
taking into account the word’s local context one
can identify the proper sense.

Based on an intuitive interpretation of the con-
tinuous bag-of-words (CBOW) word2vec model’s
negative sampling training objective, we propose
an extension of the model we call context encoders
(ConEc). This allows for an easy creation of OOV
embeddings as well as a better representation of
words with multiple meanings simply by multi-
plying the trained word2vec embeddings with the
words’ average context vectors. As demonstrated
on the CoNLL 2003 NER challenge, using the
word embeddings created with ConEc instead of
word2vec as features improves the classification
performance significantly.

Related work In the past, NLM have addressed
the issue of polysemy in various ways. For exam-
ple, sense2vec is an extension of word2vec, where
in a preprocessing step all words in the training cor-
pus are annotated with their part-of-speech (POS)

"In practice the model is trained on such a large vocab-
ulary that it is rare to encounter a word that does not have
an embedding. Yet there are still scenarios where this is the
case, for example, it is unlikely that the term “W10281545”
is encountered in a regular training corpus, but we might still
want its embedding to represent a search query like “whirlpool
W10281545 ice maker part”.

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 10-14,
Vancouver, Canada, August 3, 2017. (©2017 Association for Computational Linguistics



tag and then the embeddings are learned for tokens
consisting of the words themselves and their POS
tags, thereby generating different representations
e.g. for words that are used both as a noun and verb
(Trask et al., 2015). Other methods first cluster the
contexts the words appear (Huang et al., 2012) or
use additional resources such as wordnet to identify
multiple meanings of words (Rothe and Schiitze,
2015). One possibility to create OOV embeddings
is to learn representations for all character n-grams
in the texts and then compute the embedding of a
word by combining the embeddings of the n-grams
occurring in it (Bojanowski et al., 2016). However,
none of these NLM are designed to solve both the
OOV and polysemy problem at the same time and
compared to word2vec they require more parame-
ters, resources, or additional steps in the training
procedure. ConEc on the other hand can generate
OOV embeddings as well as better representations
for words with multiple meanings simply by multi-
plying the matrix of trained word2vec embeddings
with the words’ average context vectors.

2 Background: CBOW word2vec trained
with negative sampling

Word2vec learns d -dimensional vector represen-
tations, referred to as word embeddings, for all
N words in the vocabulary. It is a shallow NLM
with parameter matrices Wy, W7 € RNV*4 which
are tuned iteratively by scanning huge amounts of
texts sentence by sentence. Based on some con-
text words the algorithm tries to predict the target
word between them. Mathematically, this is real-
ized by first computing the sum of the embeddings
of the context words by selecting the appropriate
rows from Wy. This vector is then multiplied by
several rows selected from WW7: one of these rows
corresponds to the target word, while the others
correspond to k ‘noise’ words, selected at random
(negative sampling). After applying a non-linear
activation function, the backpropagation error is
computed by comparing this output to a label vec-
tor t € R¥+1, which is 1 at the position of the
target word and O for all k£ noise words. After the
training of the model is complete, the word embed-
ding for a target word is the corresponding row of
Wo.

3 Context Encoders

Similar words appear in similar contexts (Harris,
1954), for example, two words synonymous with
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each other could be exchanged for one another in al-
most all contexts without a reader noticing. Based
on the context word co-occurrences, pairwise sim-
ilarities between all N words of the vocabulary
can be computed, resulting in a similarity matrix
S € RN*N (or for a single word w the vector
s, € RY) with similarity scores between 0 and 1.
These similarities should be preserved in the word
embeddings, e.g. the cosine similarity between the
embedding vectors of two words used in similar
contexts should be close to 1, or, more generally,
the scalar product of the matrix with word em-
beddings Y € RV*? should approximate S. Of
course, the most straightforward way of obtain-
ing word embeddings satisfying YY T ~ S would
be to compute the singular value decomposition
(SVD) of the similarity matrix S and use the eigen-
vectors corresponding to the d largest eigenvalues
(Levy et al., 2014, 2015). As our vocabulary typ-
ically comprises several 10,000 words, however,
performing an SVD of the corresponding similarity
matrix is computationally far too expensive. Yet,
while the similarity matrix would be huge, it would
also be quite sparse, as many words are of course
not synonymous with each other. If we picked a
small number k of random words, chances are their
similarities to a target word would be close to 0.
So, while the product of a single word’s embed-
ding y,, € R< and the matrix of all embeddings Y
should result in a vector §,, € R™ close to the true
similarities s,, of this word, if we only consider a
small subset of §,, corresponding to the word itself
and k£ random words, it is sufficient if this approxi-
mates the binary vector t,, € R¥*1, which is 1 for
the word itself and O elsewhere.

The CBOW word2vec model trained with neg-
ative sampling can therefore be interpreted as a
neural network (NN) that predicts a word’s similar-
ities to other words (Fig. 1). During training, for
each occurrence ¢ of a word w in the texts, a binary
vector X,,, € R, which is 1 at the positions of
the context words of w and O elsewhere, is used
as input to the network and multiplied by a set of
weights Wy to arrive at an embedding y,,, € R?
(the summed rows of Wy corresponding to the con-
text words). This embedding is then multiplied by
another set of weights W7, which corresponds to
the full matrix of word embeddings Y, to produce
the output of the network, a vector §,,, € R" con-
taining the approximated similarities of the word
w to all other words. The training error is then



computed by comparing a subset of the output to a
binary target vector t,,, € R*+1, which serves as
an approximation of the true similarities s,, when
considering only a small number of random words.
We refer to this interpretation of the model as con-
text encoders (ConEc), as it is closely related to
similarity encoders (SimEc), a dimensionality re-
duction method used for learning similarity pre-
serving representations of data points (Horn and
Miiller, 2017).

Input Embedding Output Target

cat

Yu, € R

Sw & ty, € R

Figure 1: Context encoder (ConEc) NN architec-
ture corresponding to the CBOW word2vec model
trained with negative sampling.

While the training procedure of ConEc is iden-
tical to that of word2vec, there is a difference in
the computation of a word’s embedding after the
training is complete. In the case of word2vec, the
word embedding is simply the row of the tuned W)
matrix. When considering the idea behind the opti-
mization procedure, however, we instead propose
to create the representation of a target word w by
multiplying Wy with the word’s average context
vector X, as this better resembles how the word
embeddings are computed during training.

We distinguish between a word’s ‘global’ and
‘local’ average context vector (CV): The global CV
is computed as the average of all binary CVs x,,,
corresponding to the M,, occurrences of w in the
whole training corpus:

1y
Xwglobal = M § :Xwﬂ
w .
=1

while the local CV x,,,_., is computed likewise but
considering only the m,, occurrences of w in a
single document. We can now compute the em-
bedding of a word w by multiplying Wy with the
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weighted average between both CVs:

yuw=(a- Xuwgiopa T (1—a) lencal)TWO (D
with a € [0,1]. The choice of a determines how
much emphasis is placed on the word’s local con-
text, which helps to distinguish between multiple
meanings of the word (Melamud et al., 2015).2 As
an out-of-vocabulary word does not have a global
CV (as it never occurred in the training corpus), its
embedding is computed solely based on the local
context, i.e. setting a = 0.

With this new perspective on the model and op-
timization procedure, another advancement is fea-
sible. Since the context words are merely a sparse
feature vector used as input to a NN, there is no
reason why this input vector should not contain
other features about the target word as well. For ex-
ample, the feature vector x,, could be extended to
contain information about the word’s case, part-of-
speech (POS) tag, or other relevant details. While
this would increase the dimensionality of the first
weight matrix Wy to include the additional fea-
tures when mapping the input to the word’s em-
bedding, the training objective and therefore also
W1 would remain unchanged. These additional
features could be especially helpful if details about
the words would otherwise get lost in preprocess-
ing (e.g. by lowercasing) or to retain information
about a word’s position in the sentence, which is ig-
nored in a BOW approach. These extended ConEcs
are expected to create embeddings that distinguish
even better between the words’ different senses by
taking into account, for example, if the word is
used as a noun or verb in the current context, simi-
lar to the sense2vec algorithm (Trask et al., 2015).
But instead of learning multiple embeddings per
term explicitly, like sense2vec, only the dimension-
ality of the input vector is increased to include the
POS tag of the current word as a feature, which is
expected to improve generalization if few training
examples are available.

4 Experiments

The word embeddings learned by word2vec and
context encoders are evaluated on the CoNLL 2003
NER benchmark task (Tjong et al., 2003). We use
a CBOW word2vec model trained with negative
sampling as described above where £ = 13, the
embedding dimensionality d is 200 and we use a
context window of 5 words. The word embeddings

This implicitly assumes a word is only used in a single
sense in one document.
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Figure 2: Results of the NER task based on three random initializations of the word2vec model. Left panel:
Overall results, where the mean performance using word2vec embeddings (dashed lines) is considered as
our baseline, all other embeddings are computed with ConEcs using various combinations of the words’
global and local CVs. Right panel: Increased performance (mean and standard deviation) on the test
fold when using ConEc: Multiplying the word2vec embeddings with global CVs yields a performance
gain of 2.5 percentage points (A). By additionally using local CVs to create OOV word embeddings
we gain another 1.7 points (B). When using a combination of global and local CVs (with a = 0.6) to
distinguish between the different meanings of words, the F1-score increases by another 5.1 points (C),
yielding a F1-score of 39.92%, which marks a significant improvement compared to the 30.59% reached
with word2vec features.

created by ConEc are built directly on top of the  as features, while of course the performance on
word2vec model by multiplying the original em-  this NER challenge is typically much higher when
beddings (Wj) with the respective context vectors.  other features such as a word’s case or POS tag are
Code to replicate the experiments is available on-  included as well.
line.? The word2vec embeddings were trained on the
documents used in the training part of the task and
Named Entity Recognition The main advan- OOV words in the development and test parts are
tage of context encoders is that they can use local  represented as zero vectors.* With three parameter
context to create OOV embeddings and distinguish  gettings we illustrate the advantages of ConEc:
between the different senses of words. The effects 4 ) Multiplying the word2vec embeddings by the
of this are most prominent in a task such as NER,  yords* average context vectors generally improves
where the local context of a word can make all the ;e embeddings. To show this, ConEc word embed-
difference, e.g. to distinguish between the “Chicago dings were computed using only global CVs (Eq. 1
Bears” (an organization) and the city of Chicago  ith ¢ = 1), which means OOV words again have
(a location). We tested this on the CONLL 2003 4 7erq representation. With these embeddings (la-
NER task by using the word embeddings as fea-  pejed ‘global’ in Fig. 2) the performance improves
tures together with a logistic regression classifier. 45 the dev and test folds of the task.
The reported F1-scores were computed using the g ) Useful OOV embeddings can be created from
official evaluation script. The results achieved with (16 10cal context of a new word. To show this, the
various word embeddings on the training, develop-  conEc embeddings for words from the training vo-
ment and test part of the CoNLL task are reported cabulary (w € N) were computed as in A), but
in Fig. 2. Please note that we are using this task as  ow the embeddings for OOV words (w' ¢ N)
an extrinsic evaluation to illustrate the advantages  yere computed using local CVs (Eq. 1 with a =
of ConEc embeddings over the regular word2vec 1 vy ¢ Nanda = 0 V' ¢ N; referred to as
embeddings. To isolate the effects on the perfor- <OV’ in the figure). The training performance
mance, we are only using these word embeddings

— “Since this is a very small corpus, we trained word2vec for
3https ://github.com/cod3licious/conec 25 iterations on these documents.
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stays the same, of course, as here all words have
an embedding based on their global contexts, but
there is a jump in the ConEc performance on the
dev and test folds, where OOV words now have a
representation based on their local contexts.

C) Better embeddings for a word with multiple
meanings can be created by using a combination
of the word’s average global and local CV's as in-
put to the ConEc. To show this, the OOV embed-
dings were computed as in B), but now for the
words occurring in the training vocabulary, the lo-
cal context was taken into account as well by set-
ting a < 1 (Eq. 1 witha € [0,1) Vw € N and
a =0Vw' ¢ N). The best performances on all
folds are achieved when averaging the global and
local CVs with around a = 0.6 before multiplying
them with the word2vec embeddings, which clearly
shows that ConEc embeddings created by incorpo-
rating local context can help distinguish between
multiple meanings of words.

5 Conclusion

Context encoders are a simple but powerful exten-
sion of the CBOW word2vec model trained with
negative sampling. By multiplying the matrix of
trained word2vec embeddings with the words’ av-
erage context vectors, ConEcs are able to easily
create OOV embeddings on the spot as well as
distinguish between multiple meanings of words
based on their local contexts. The benefits of this
were demonstrated on the CoNLL NER challenge.
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Abstract

We propose a recurrent neural model that
generates natural-language questions from
documents, conditioned on answers. We
show how to train the model using a com-
bination of supervised and reinforcement
learning. After teacher forcing for standard
maximum likelihood training, we fine-tune
the model using policy gradient techniques
to maximize several rewards that measure
question quality. Most notably, one of these
rewards is the performance of a question-
answering system. We motivate question
generation as a means to improve the per-
formance of question answering systems.
Our model is trained and evaluated on the
recent question-answering dataset SQuAD.

1 Introduction

People ask questions to improve their knowledge
and understanding of the world. Questions can be
used to access the knowledge of others or to direct
one’s own information-seeking behavior. Here we
study the generation of natural-language questions
by machines, based on text passages. This task
is synergistic with machine comprehension (MC),
which pursues the understanding of written lan-
guage by machines at a near-human level. Because
most human knowledge is recorded in text, this
would enable transformative applications.

Many machine comprehension datasets have
been released recently. These generally comprise
(document, question, answer) triples (Hermann
et al., 2015; Hill et al., 2015; Rajpurkar et al., 2016;
Trischler et al., 2016a; Nguyen et al., 2016), where
the goal is to predict an answer, conditioned on a
document and question. The availability of large

*Equal contribution.
T Supported by funding from Maluuba.
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Text Passage

in 10662 , duke william ii® of normandy conquered england
killing king harold ii at the battle of hastings. the invading
normans and their descendants® replaced the anglo-saxons
as the ruling class of england.

Questions Generated by our System

1) when did the battle of hastings take place?

2) in what year was the battle of hastings fought?

3) who conquered king harold ii at the battle of hastings?
4) who became the ruling class of england?

Table 1: Examples of conditional question genera-
tion given a context and an answer from the SQuAD
dataset, using the scheme referred to as Rppr + QA
below. Bold text in the passage indicates the an-
swers used to generate the numbered questions.

labeled datasets has spurred development of in-
creasingly advanced models for question answer-
ing (QA) from text (Kadlec et al., 2016; Trischler
et al., 2016b; Seo et al., 2016; Wang et al., 2016;
Shen et al., 2016).

In this paper we reframe the standard MC task:
rather than answering questions about a document,
we teach machines to ask questions. Our work
has several motivations. First, we believe that pos-
ing appropriate questions is an important aspect
of information acquisition in intelligent systems.
Second, learning to ask questions may improve the
ability to answer them. Singer and Donlan (1982)
demonstrated that having students devise questions
before reading can increase scores on subsequent
comprehension tests. Third, answering the ques-
tions in most existing QA datasets is an extractive
task — it requires selecting some span of text within
the document — while question asking is compar-
atively abstractive — it requires generation of text
that may not appear in the document. Fourth, ask-
ing good questions involves skills beyond those
used to answer them. For instance, in existing QA

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 15-25,
Vancouver, Canada, August 3, 2017. (©2017 Association for Computational Linguistics



datasets, a typical (document, question) pair speci-
fies a unique answer. Conversely, a typical (docu-
ment, answer) pair may be associated with multi-
ple questions, since a valid question can be formed
from any information or relations which uniquely
specify the given answer. Finally, a mechanism to
ask informative questions about documents (and
eventually answer them) has many practical appli-
cations, e.g.: generating training data for question
answering (Serban et al., 2016; Yang et al., 2017),
synthesising frequently asked question (FAQ) doc-
umentation, and automatic tutoring systems (Lind-
berg et al., 2013).

We adapt the sequence-to-sequence approach
of Cho et al. (2014) for generating questions, con-
ditioned on a document and answer: first we en-
code the document and answer, then output ques-
tion words sequentially with a decoder that condi-
tions on the document and answer encodings. We
augment the standard encoder-decoder approach
with several modifications geared towards the ques-
tion generation task. During training, in addition
to maximum likelihood for predicting questions
from (document, answer) tuples, we use policy
gradient optimization to maximize several auxil-
iary rewards. These include a language-model-
based score for fluency and the performance of a
pretrained question-answering model on generated
questions. We show quantitatively that policy gra-
dient increases the rewards earned by generated
questions at test time, and provide examples to il-
lustrate the qualitative effects of different training
schemes. To our knowledge, we present the first
end-to-end, text-to-text model for question genera-
tion.

2 Related Work

Recently, automatic question generation has re-
ceived increased attention from the research com-
munity. It has been harnessed, for example, as a
means to build automatic tutoring systems (Heil-
man and Smith, 2010; Ali et al., 2010; Lindberg
et al., 2013; Labutov et al., 2015; Mazidi and
Nielsen, 2015), to reroute queries to community
question-answering systems (Zhao et al., 2011),
and to enrich training data for question-answering
systems (Serban et al., 2016; Yang et al., 2017).
Several earlier works process documents as in-
dividual sentences using syntactic (Heilman and
Smith, 2010; Ali et al., 2010; Kumar et al., 2015)
or