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Message from the General Chair

Welcome to the 2022 meeting of the North American Association for Computational Linguistics! Due
to the COVID-19 pandemic, NAACL-2021 was held virtually, and NAACL-2022 is the first major NLP
conference that is run as an hybrid conference in North America. It is my pleasure to welcome many of
you who are joining us in Seattle, as well as those who chose to participate in the conference virtually.

COVID safety is important to us and we will do whatever we can to help you enjoy the in-person confe-
rence despite the difficulties we all experience coming back to normality. At the same time, thanks to the
virtual conference platform put together by Underline, we hope that our virtual attendees will experience
the conference almost as if they are in Seattle and enjoy the conference.

NAACL-2022 decided, along with ACL-2022, to experiment with a new reviewing process, based on
“rolling review” (ARR). While we believe that, eventually, this process will converge to an efficient
review process that would benefit our community, pioneering such a process is not without difficulties.
This would not have been possible without the incredible effort, devotion, thoughtfulness, patience, and
many work hours put by our program chairs, Marine Carpuat, Marie-Catherine de Marneffe, and Ivan
Vladimir Meza Ruiz, and the help from the ACL-2022 program chairs, Smaranda Muresan, Preslav
Nakov, Aline Villavicencio. This process necessitated developing a new software package to support our
publication, an effort that was done in collaboration with ACL-2022, and I am thankful to Ryan Cotterell
who led this effort.

Among other innovations we installed in NAACL-2022 is a reproducibility track, where we attempted
to incentivize authors to release models, code, and other information necessary to reproduce the main
results and findings of their papers. We hope that this effort, led by Niranjan Balasubramanian, Jesse
Dodge, Annie Louis, Daniel Deutsch and Yash Kumar Lal, will be followed in future conferences. Other
initiatives include incorporating a “Responsible NLP Research” checklist into the submission process, a
new special theme on “Human-Centered Natural Language Processing”, and many innovative activities
led by our very active and thoughtful Diversity and Inclusion Committee, led by Diana Galvan, Snigdha
Chaturvedi and Yonatan Bisk, with Pranav A and Luciana Benotti as advisors.

Organizing a conference as large as NAACL, especially under the constraints of the times we live in,
requires the support of a large number of volunteers who care deeply about our community and are
willing to spend a lot of time and effort in this long process. It is an honor to coordinate such a team. I
would like to thank the members of the organizing committee for their dedication, creativity, and hard
work.

First, it is hard to imagine the amount of thought, care, and time, our program chairs Marine Car-
puat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz put into all aspects of organizing
this conference — resulting in an exciting and high quality scientific program.

Many other volunteers have worked hard to make this conference a success and it would not be possible
to name all of them here. I will only list the chairs of the main committees whose dedication, creativity,
hard work and lively communication contributed to making NAACL-2022 a successful event:

* The diversity & inclusion committee chaired by Diana Galvan, Snigdha Chaturvedi and Yonatan
Bisk, with advisors Pranav A and Luciana Benotti.

* The industry track chairs, Rashmi Gangadharaiah, Anastassia Loukina and Bonan Min, and advi-
sors Owen Rambow and Yunyao Li.

* The tutorial chairs, Cecilia Alm, Miguel Ballesteros and Yulia Tsvetkov.

* The demonstration chairs, Hannaneh Hajishirzi, Qiang Ning and Avi Sil.
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* The workshop chairs, Dan Goldwasser, Yunyao Li and Ashish Sabharwal.

* The student research workshop chairs, Daphne Ippolito, Liunian Harold Li, Maria Leonor Pacheco
and advisors, Danqgi Chen and Nianwen Xue.

* The publication chairs, Ryan Cotterell, Danilo Croce and Jordan Zhang.

* The reproducibility chairs, Niranjan Balasubramanian, Jesse Dodge, Annie Louis, Daniel Deutsch
and Yash Kumar Lal.

* The sponsorship chair, Byron Wallace.

* The volunteer chair, Daniel Khashabi.

* The publicity chairs, Nanyun (Violet) Peng, Emily Sheng, Sameer Singh.

* The virtual infrastructure chairs, Deepak Ramachandran, Martin Villalba, and Rishita Anubhai.

* The website chairs, Ice Pasupat and Vered Shwartz.

Many thanks to Chris Callison-Burch, the ACL Sponsorship Director, for helping the NAACL-2022
Sponsorship chair, Byron Wallace, managing the relations between the sponsors and NAACL-2022.

I am also very grateful to the chairs of previous years’ conferences, who were always ready to help and
share their experience, and to the members of the ACL and NAACL Executive Committees for their
support, feedback and advice.

As usual, special thanks go to Priscilla Rasmussen and to Jennifer Rachford who has stepped into the role
of the ACL business manager just in time to help us with NAACL-22. They have been our local organi-
zers and have dealt with all aspects of organizing and managing the conference, from room assignment,
to food, to COVID tests.

Finally, I would like to thank all authors, invited speakers and panelists, area chairs and reviewers, the
volunteers organizing and chairing sessions, and all attendees, in-person and virtual, for making this a
scientifically exciting and socially engaging conference.

Welcome and hope you all enjoy the conference!

Dan Roth

University of Pennsylvania and AWS Al Labs
NAACL-2022 General Chair

June 2022
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Message from the Program Chairs

Welcome to the 2022 Annual Conference of the North American Association for Computational Lingui-
stics! For the first time, NAACL-HLT 2022 is a hybrid conference. After two years of exclusively virtual
conferences due to the COVID-19 pandemic, we are pleased that attendees and presenters will be able to
join us in person in Seattle and from all over the world online for this year’s edition.

Review Process NAACL 2022 invited the submission of long and short papers featuring substantial,
original, and unpublished research in all aspects of Computational Linguistics and Natural Language
Processing (NLP). Our paper review process was organized in a hierarchical structure similar to recent
years. We recruited 62 senior area chairs (SACs) for 26 areas, following the areas defined for NAACL
2022. There were two paths for submitting papers: special theme papers were directly submitted to the
NAACL OpenReview site, and other main conference papers were reviewed through a new ACL-wide
centralized reviewing process. In coordination with the ACL 2022 organizers, we experimented with the
ACL Rolling Review (ARR) introduced as part of an initiative to improve efficiency and turnaround of
reviewing for ACL conferences. Within this system, reviewing and acceptance of papers to publication
venues was done in a two-step process: (1) centralized rolling review via ARR, where submissions recei-
ve reviews and meta-reviews from ARR reviewers and action editors; (2) commitment to a publication
venue (e.g., NAACL 2022), so that Senior Area Chairs and Program Chairs make acceptance decisions
for a submission using the ARR reviews and meta-reviews. During the first phase of the review pro-
cess, we served as guest Editors in Chief for the ACL Rolling Review and worked to ensure that all
papers submitted received at least three review and one meta-review, while balancing the reviewing load
for reviewers and action editors. NAACL SACs acted as guest senior area chairs in the ARR system,
by helping monitor review progress and supporting the 408 action editors and 3379 reviewers in their
work. While the new reviewing mechanism was not as smooth as one could have hoped for, all papers
submitted to ARR received at least three reviews and a meta-review, so that authors could decide to
commit it to NAACL 2022 if they wanted to. The ACL Executive Committee, based on feedback from
the community, will decide whether the advantages of a centralized rolling review system outweigh the
disadvantages, taking into account the fast growth of our research field. Once papers were committed
to the NAACL OpenReview site, SACs were in charge of making acceptance recommendation per area,
taking into account the submission itself, (meta-)reviews, as well as comments to SACs provided by the
authors and ethics reviews when applicable.

In coordination with Jesse Dodge, Anna Rogers, Margot Mieskes, Amanda Stent, and the ACL Ethics
Committee, we incorporated a “Responsible NLP Research” checklist into the submission process, de-
signed to encourage best research practices in our field, from an ethics and reproducibility perspective.
The ARR Responsible NLP Research checklist is largely based on the NeurIPS 2021 paper checklist,
the reproducible data checklist from Rogers, Baldwin, Leins’s paper “Just What do You Think You’re
Doing, Dave? A Checklist for Responsible Data Use in NLP”, and the NLP Reproducibility checklist
introduced by Dodge, Gururangan, Card, Schwartz and Smith in “Show Your Work: Improved Reporting
of Experimental Results”. Authors were asked to follow the ACL code of ethics and to fill the checklist
to ensure that best practices are put in place. Reviewers were asked to consult the checklist when deci-
ding whether the paper requires ethics review. Based on input from reviewers and action editors, SACs
flagged papers that required an in-depth ethics review, which was handled by a committee of 11 ethics
reviewers. The ethics chairs provided guidance and office hours to help SACs decide when ethics review
was required. The ethics reviews were integrated in the final acceptance recommendation by SACs and
decisions by PCs.

Special Theme We highlighted “Human-Centered Natural Language Processing” as the special theme
for the conference. As NLP applications increasingly mediate people’s lives, it is crucial to understand
how the design decisions made throughout the NLP research and development lifecycle impact people,
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whether there are users, developers, data providers or other stakeholders. For NAACL 2022, we invi-
ted submissions that address research questions that meaningfully incorporate stakeholders in the design,
development, and evaluation of NLP resources, models and systems. We particularly encouraged submis-
sions that bring together perspectives and methods from NLP and Human-Computer Interaction. Given
their interdisciplinary nature, theme papers were reviewed through a dedicated process by reviewers with
expertise in NLP and in Human-Computer Interaction. We received 52 submissions to the special theme,
of which 14 have been accepted to appear at the conference.

Submission Statistics The ACL Rolling Review received 196 submissions in December and 1897 in
January, which were the two submission deadlines between the ACL and NAACL commitment deadli-
nes. Of these 2103 submissions, 56% (1073) were committed to NAACL 2022 for the senior program
committee to make an acceptance decision. We accepted a total of 442 papers (358 long papers and
84 short papers), representing 21.96% of papers submitted to ARR in December and January and to
the NAACL special theme, and 41.19% of papers committed to NAACL (including the special theme
papers). As a reference point, NAACL-HLT 2021 received 1797 submissions and accepted 477 papers,
including 350 long and 127 short, for an overall acceptance rate of 26%. From the accepted papers,
and based on the nominations from SACs, the best paper committee selected best papers, as well as a
small number of outstanding papers with the goal of recognizing diverse types of contributions (inclu-
ding contributions to the special theme on human-centered NLP; innovation in model design, training or
evaluation; resource or dataset contribution).

Additionally, 209 submissions (183 long and 26 short) were accepted for publications in the “Findings
of ACL: NAACL 2022” (or Findings for short), an online companion publication for papers that are
not accepted for publication in the main conference, but nonetheless have been assessed by the program
committee as solid work with sufficient substance. A total of 5 accepted Findings papers were withdrawn.
Findings paper were given the option to be presented as posters during the main conference: 183 took
this opportunity and will be presented either in person or virtually.

NAACL 2022 will also feature 15 papers that were published at Transactions of the Association for
Computational Linguistics (TACL) and 3 papers from the journal of Computational Linguistics (CL).

Program Format The conference program was designed to allow for presentation and attendance in
person in Seattle and virtually from all over the world. Oral sessions will consist of presentations done
either in person or virtually. The Q&A session for each paper will alternate between in-person and online
questions, with a volunteer helping monitor the online questions. All oral sessions will be live-streamed
and recorded. All main conference posters will be presented with a 5-minute video pitch available online
and with a virtual Q&A session, where papers will be grouped by topic to foster discussion. In addition,
authors who attend the conference in Seattle will present their poster in person during traditional poster
sessions. Finally, asynchronous interaction between authors and attendees will be made possible before,
during and after the conference on the Underline platform. We also chose to start the conference early in
the morning to overlap with normal waking hours in distant time zones.

The program includes several plenary sessions, which we hope will provide thought-provoking perspec-
tives that will enrich discussions during the conference and beyond. In addition to a session for best
paper awards, we are delighted to have keynote talks by Batya Friedman (University of Washington) and
Manuel Montes-y-Gémez (National Institute of Astrophysics, Optics and Electronics of Mexico). Dan
Roth (University of Pennsylvania and Amazon) will moderate a discussion on the role of linguistics and
symbolic representations in NLP, with panelists Chitta Baral (Arizona State University), Emily Bender
(University of Washington), Dilek Hakkani-tur (Amazon), and Christopher D. Manning (Stanford Uni-
versity). The industry track, demonstrations track and the student research workshop will have dedicated
sessions during the main conference to round up the program, including a plenary panel on careers in
NLP organized by the industry track chairs.
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Gratitude NAACL would not have been possible without the hard work of many volunteers. We
are very grateful to all who contributed to make the conference possible, especially given the ongoing
challenges raised by the COVID-19 pandemic.

We would like to start by thanking all the authors who submitted their work to the ACL Rolling Review
and NAACL 2022. We could only accept a small fraction of submissions but hope that most papers
received valuable feedback.

Next,

we would like to thank all members of the Program Committee — who are too numerous to be all

named here, but are listed elsewhere in the proceedings:

The senior area chairs, who were incredibly responsive throughout the reviewing process and
patiently helped improve the new reviewing infrastructure.

ARR action editors and reviewers. Special thanks to those who stepped in at the last minute to
serve as emergency reviewers. This was tremendously appreciated!

The special theme area chair, Jeff Bigham, and all reviewers, with a special note of appreciation
for those who contributed their time and expertise even though they do not usually publish in NLP
conferences.

The ethics Chairs, Kai-Wei Chang, Dirk Hovy and Diyi Yang, for designing a process to encourage
consistent evaluation of ethical considerations during the review process, and their timely input to
ensure the integration of ethics review in acceptance recommendations and decisions.

The ethics reviewers: Yonatan Bisk, Kevin Bretonnel Cohen, Francien Dechesne, Jack Hessel, Jin-
Dong Kim, Anne Lauscher, Dave Lewis, Margot Mieskes, Xanda Schofield, Lyle Ungar, Jingbo
Xia.

The outstanding reviewers and action editors who were nominated by the senior area chairs for
writing reviews that were particularly helpful in the decision making process. They are recognized
by name later in this volume.

Experimenting with a new reviewing system on the large scale required by NAACL would not have been
possible without the following people:

Amanda Stent and Goran Glavas, as ARR Editors-in-Chiefs, for their tireless work in support of
the ARR December and January cycles.

Graham Neubig, Dhruv Naik and Nils Dycke, as ARR Tech Team for these two cycles.
Celeste Martinez Gomez, Melisa Bok, and Nadia L’Bahy, as OpenReview Tech Team.

Elijah Rippeth for his help coordinating the special theme submissions.

The following committees helped shape the conference in countless ways:

The best paper committee: Thamar Solorio (Chair), Isabelle Augenstein, Gemma Bel Enguix,
Alona Fyshe, Shafiq Joty and Emily Prud’hommeaux who enthusiastically read and recommended
papers for awards in a short time frame.

The diversity & inclusion committee chaired by Diana Galvan, Snigdha Chaturvedi and Yonatan
Bisk, with advisors Pranav A and Luciana Benotti.

The industry track chairs, Rashmi Gangadharaiah, Anastassia Loukina and Bonan Min, and advi-
sors Owen Rambow and Yunyao Li.

The tutorial chairs, Cecilia Alm, Miguel Ballesteros and Yulia Tsvetkov.

The demonstration chairs, Hannaneh Hajishirzi, Qiang Ning and Avi Sil.



The workshop chairs, Dan Goldwasser, Yunyao Li and Ashish Sabharwal.

The student research workshop chairs, Daphne Ippolito, Liunian Harold Li, Maria Leonor Pacheco
and advisors, Danqgi Chen and Nianwen Xue.

The publication chairs, Ryan Cotterell, Danilo Croce and Jordan Zhang.

The reproducibility chairs, Niranjan Balasubramanian, Jesse Dodge, Annie Louis, Daniel Deutsch
and Yash Kumar Lal.

The sponsorship chair, Byron Wallace.

The volunteer chair, Daniel Khashabi.

The publicity chairs, Nanyun (Violet) Peng, Emily Sheng, Sameer Singh.

The virtual infrastructure chairs, Deepak Ramachandran, Martin Villalba, and Rishita Anubhai.

The website chairs, Ice Pasupat and Vered Shwartz for their exceptional reactivity and thorough
checks of the conference schedule.

Finally, we would not have been able to organize this conference without the guidance, advice and
cooperation of the following people:

Damira Mrsic, Jernej Masnec, and Sol Rosenberg from Underline, who have been very prompt at
answering all our questions and very helpful in setting up the virtual platform.

Priscilla Rasmussen and Jenn Rachford who make all the logistics of the conference possible.

Smaranda Muresan, Preslav Nakov, Aline Villavicencio, the Program co-Chairs of ACL 2022 who
shared with us their materials and recent experience, and provided moral support.

Anna Rumshisky, Thamar Solorio and Luke Zettlemoyer, as previous Program co-Chairs of NAA-
CL, who answered many questions and provided invaluable guidance.

TACL Editorial Assistant Cindy Robinson, and CL Editor-in-Chief Hwee Tou Ng for coordinating
TACL and CL presentations with us.

And last but not least, our General Chair, Dan Roth, whose guidance and support throughout the
process were truly invaluable: his quiet strength, big picture thinking, and respect for all the parties
involved were a soothing balm and an inspiration.

We hope you will enjoy the NAACL 2022 conference!

Marie-Catherine de Marneffe, Marine Carpuat and Ivan Vladimir Meza Ruiz
NAACL 2022 Program Committee Co-Chairs
June 2022
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Keynote Talk: Shaping Technology with Moral Imagination:
Leveraging the Machinery of Value Sensitive Design

Batya Friedman
Information School, University of Washington

Abstract:

Monday, July 11, 2022 - Room: Columbia A/C/D & 302 Beckler - Time: 9:15-10:15

Abstract: Tools and technologies are fundamental to the human condition. They do no less than create
and structure the conditions in which we live, express ourselves, enact society, and experience what it
means to be human. They are also the result of our moral and technical imaginations. Yet, with our
limited view, it is not at all obvious how to design and engineer tools and technology so that they are
more likely to support the actions, relationships, institutions, and experiences that human beings care
deeply about — a life and society of human flourishing.

Value Sensitive Design (VSD) was developed as an approach to address this challenge from within te-
chnical design processes. Drawing on over three decades of work, in this plenary talk I will provide an
introduction to value sensitive design foregrounding human values in the technical design process. My
remarks will present some of value sensitive design’s core theoretical constructs. Along the way, I'll pro-
vide some examples of applying value sensitive design to robots for healthcare and to bias in computing
systems as well as demonstrate one toolkit—The Envisioning Cards—in the context of a design activity.

As time permits, I will turn to a discussion of structure, scale and time: we act within existing structure
in the now, from which futures unfold across time and scale. I will unpack these observations and their
implications for artificial intelligence and machine learning technologies. Thinking longer-term and sy-
stemically, I will bring forward a range of potential challenges and offer some constructive ways forward.
My comments will engage individual lives, society writ large, what it means to be human, the planet and
beyond.

Please have scratch paper and a pencil handy for the design activity.

Bio: Batya Friedman is a Professor in the Information School and holds adjunct appointments in the Paul
G. Allen School of Computer Science & Engineering, the School of Law, and the Department of Human
Centered Design and Engineering at the University of Washington where she co-founded the Value Sen-

sitive Design Lab and the UW Tech Policy Lab. Dr. Friedman pioneered value sensitive design (VSD), an
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established approach to account for human values in the design of technical systems. Her work in value
sensitive design has resulted in robust theoretical constructs, dozens of innovative methods, and practical
toolkits such as the Envisioning Cards. Value sensitive design has been widely adopted nationally and
internationally where it has been used in architecture, biomedical health informatics, civil engineering,
computer security, energy, global health, human-computer interaction, human-robotic interaction, infor-
mation management, legal theory, moral philosophy, tech policy, transportation, and urban planning,
among others. Additionally, value sensitive design is emerging in higher education, government, and
industry as a key approach to address computing ethics and responsible innovation. Today, Dr. Friedman
is working on open questions in value sensitive design including multi-lifespan design, and designing for
and with non-human stakeholders — questions critical for the wellbeing of human societies and the planet.

Dr. Friedman’s 2019 MIT Press book co-authored with David Hendry, Value Sensitive Design: Shaping
Technology with Moral Imagination, provides a comprehensive account of value sensitive design. In
2012 Dr. Friedman received the ACM-SIGCHI Social Impact Award and the University Faculty Lectu-
rer award at the University of Washington, in 2019 she was inducted into the CHI Academy, in 2020 she
received an honorary doctorate from Delft University of Technology, and in 2021 she was recognized as
an ACM Fellow. She is also a stone sculptor and mixed media artist. Dr. Friedman received both her
B.A. and Ph.D. from the University of California at Berkeley.
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Keynote Talk: NLP in Mexican Spanish: One of many stories

Manuel Montes-y-Gomez
National Institute of Astrophysics, Optics and Electronics INAOE)

Abstract:

Wednesday, July 13, 2022 - Room: Columbia A/C/D & 302 Beckler - Time: 16:15-17:15

Abstract: Spanish is one of the most widely spoken languages in the world, however, the development
of language technologies for it has not been in the same proportion. This is particularly true for some of
its Latin American variants, such as the Mexican Spanish. This talk will focus on presenting the develo-
pment of NLP for Mexican Spanish, emphasizing one of its many research stories related to the analysis
of social media content.

This talk will present some data on the languages spoken in Mexico and on the development of the area
of Natural Language Processing in our country, and will describe a research project that combined the
efforts of several groups: the identification of abusive language in Mexican tweets. The talk will conclu-
de by exposing some calls for collaboration, with the intention of increasing and improving the research
in Mexican Spanish as well as in the many indigenous languages spoken in Mexico.

Bio: Manuel Montes-y-Gémez is Full Professor at the National Institute of Astrophysics, Optics and
Electronics (INAOE) of Mexico. His research is on automatic text processing. He is author of more
than 250 journal and conference papers in the fields of information retrieval, text mining and authorship
analysis.

He has been visiting professor at the Polytechnic University of Valencia (Spain), and the University
of Alabama (USA). He is also a member of the Mexican Academy of Sciences (AMC), and founding
member of the Mexican Academy of Computer Science (AMEXCOMP), the Mexican Association of
Natural Language Processing (AMNLP), and of the Language Technology Network of CONACYT. In
the context of them, he has been the organizer of the National Workshop on Lanuage Technologies (from
2004 to 2016), the Mexican Workshop on Plagiarism Detection and Authorship Analysis (2016-2020),
the Mexican Autumn School on Language Technologies (2015 and 2016), and a shared task on author
profiling, aggressiveness analysis and fake news detection in Mexican Spanish at IberLEF (2018-2021).
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Panel: ‘“The Place of Linguistics and Symbolic Structures”

Tuesday, July 12, 2022 - Room: Columbia A/C/D & 302 Beckler - Time: 9:15-10:15

The widespread adoption of neural models in NLP research and the fact that NLP applications increasin-
gly mediate people’s lives have prompted many discussions about what productive research directions
might look like for our community. Since NAACL is a meeting of a chapter of the Association for
Computational Linguistics, we would like to highlight specifically the role that linguistics and symbolic
structures can play (or not) in shaping these research directions.

Moderator: Dan Roth, University of Pennsylvania & AWS Al Labs

Bio: Dan Roth is the Eduardo D. Glandt Distinguished Professor at the Department of CIS, UPenn, the
NLP Lead at AWS AlI, and a Fellow of the AAAS, ACM, AAAI, and ACL. In 2017 Roth received the
John McCarthy Award. Roth has published broadly in ML, NLP, KRR, and learning theory, and has
given keynote talks and tutorials in all ACL and AAAI major conferences. Roth was the Editor-in-Chief
of JAIR until 2017, and the program chair of AAAI’11, ACL’03 and CoNLL’02.

Emily M. Bender, University of Washington

Bio: Emily M. Bender is a Professor of Linguistics at the University of Washington and the Faculty
Director of UW’s Professional Master’s in Computational Linguistics. Her research interests include
computational semantics, multilingual grammar engineering, the interplay between linguistics and NLP,
and societal impacts of language technology. She is the author of two books which present linguistic
concepts in a manner accessible to NLP practitioners: Linguistic Fundamentals for Natural Language
Processing: 100 Essentials from Morphology and Syntax (2013) and Linguistic Fundamentals for Natu-
ral Language Processing II: 100 Essentials from Semantics and Pragmatics (2019; with Alex Lascarides),
as well as the co-author of recent influential papers such as Climbing towards NLU: On Meaning, Form,
and Understanding in the Age of Data (ACL 2020) and On the Dangers of Stochastic Parrots: Can Lan-
guage Models Be Too Big? (FAcct 2021).

Dilek Hakkani-Tiir, Amazon Alexa Al

Bio: Dilek Hakkani-Tiir is a senior principal scientist at Amazon Alexa Al, focusing on enabling natural
dialogues with machines. Prior to joining Amazon, she was a researcher at Google, Microsoft Resear-
ch, International Computer Science Institute at UC Berkeley and AT&T Labs-Research. Her research
interests include conversational Al, natural language and speech processing, spoken dialogue systems,
and machine learning for language processing. She received best paper awards for publications she
co-authored on conversational systems from IEEE Signal Processing Society, ISCA and EURASIP. Re-
cently, she served as a program chair for NAACL 2020, the editor-in-chief of IEEE Transactions on
Audio, Speech, and Language Processing and an IEEE Distinguished Industry Speaker. She is a fellow
of ISCA and IEEE.

Chitta Baral, Arizona State University
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Bio: Chitta Baral is a Professor in the School of Computing and Al at Arizona State University. His
research interests include Knowledge Representation and Reasoning (KR & R), Natural Language Un-
derstanding (NLU), Image/Video Understanding; and their applications to Molecular Biology, Health
Informatics and Robotics. Chitta is the author of the book “Knowledge Representation, Reasoning and
Declarative Problem Solving” and a past President of KR Inc. His current research focus is on levera-
ging decades of research in KR & R for better understanding of natural language and images/videos.
Towards that end he has worked on a framework for translating natural language to formal representa-
tions (NL2KR); abducing missing knowledge and knowledge hunting; exploring NLU challenges where
reasoning with knowledge, reasoning about actions, and commonsense reasoning are crucial; exploring
the use of natural language as a knowledge representation and instructional formalism; and exploring the
role of reasoning and knowledge in enhancing generalizability, robustness, and few-shot learning.

Christopher D. Manning, Stanford University

Bio: Christopher Manning is a professor of linguistics and computer science at Stanford University,
Director of the Stanford Artificial Intelligence Lab (SAIL), and an Associate Director of the Stanford In-
stitute for Human-Centered AI (HAI). He is a leader in applying deep neural networks to natural language
processing (NLP), including work on neural machine translation, tree-recursive models, natural language
inference, summarization, parsing, question answering, and the GloVe word vectors. Manning founded
the Stanford NLP group (@stanfordnlp), teaches and has co-written textbooks for NLP (CS 224N) and
information retrieval (CS 276), co-developed Stanford Dependencies and Universal Dependencies, ma-
nages development of the Stanford CoreNLP and Stanza software, is the most-cited researcher in NLP,
and is an ACM, AAAI, and ACL Fellow and a Past President of ACL.
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Panel: “Careers in NLP”’

Monday, July 11, 2022 - Room: Columbia A/C/D & 302 Beckler - Time: 13:15-14:15

The Careers in NLP Panel is a standing feature of NAACL Industry Track. The panel is addressed to
graduate students and junior researchers as well as their supervisors and mentors, although all NAACL
participants are welcomed. The panellists will discuss the diversity of career paths in NLP: from more
research-oriented NLP scientist roles to careers in product.

Moderator: Yunyao Li, Apple Knowledge Platform

Bio: Yunyao Li is the Head of Machine Learning, Apple Knowledge Platform, where her team builds the
next-generation machine learning solutions to help power features such as Siri and Spotlight. Previously
she was a Distinguished Research Staff Member and Senior Research Manager at IBM Research - Al-
maden. She is particularly known for her work in scalable NLP, enterprise search, and database usability.
She has built systems, developed solutions, and delivered core technologies to over 20 IBM products
under brands such as Watson, InfoSphere, and Cognos. She has published over 80 articles with multiple
awards and a book. She was an IBM Master Inventor, with over 50 patents filed/granted. She is an ACM
Distinguished Member. She was a member of the inaugural New Voices program of the US National
Academies (1 out of 18 selected nationwide) and represented US young scientists at World Laureates
Forum Young Scientists Forum in 2019 (1 of 4 selected nationwide).

Yang Liu, Amazon, Alexa Al

Bio: Yang Liu is currently a principal scientist at Amazon, Alexa Al. Her research interest is in spee-
ch and language processing. She received her BS and MS from Tsinghua University, and Ph.D. from
Purdue University. Before joining Amazon, she was the head of LAIX Silicon Valley Al lab, a research
scientist at Facebook, visiting scientist at Google, a faculty member at the University of Texas at Dallas,
and researcher at ICSI in Berkeley. She received NSF CAREER award and Air Force Young Investiga-
tor Program award. She is currently a member of the IEEE SLTC committee, a senior area editor for
IEEE/ACM Transactions on Audio, Speech and Language Processing, an action editor for TACL. She
was one of the program chairs for EMNLP 2020, and has served regularly as an area chair and reviewer
in the past NLP conferences. She is a fellow of IEEE and ISCA.

Timo Mertens, Grammarly

Bio: Timo Mertens is the Head of Machine Learning & NLP Products at Grammarly. In his role, he
oversees the teams that design and build products that use machine learning and natural language proces-
sing. These technologies empower Grammarly to offer a digital writing assistant that helps millions of
users write more clearly and effectively every day. Timo has focused on the intersection between machi-
ne learning and delivering impactful products throughout his career, spanning academia—with a Ph.D.
in Speech Recognition—and industry, where he’s held product leadership positions across Microsoft,
Google, and Dropbox.
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Thamar Solorio, University of Houston and Bloomberg LP

Bio: Thamar Solorio is a Professor of Computer Science at the University of Houston (UH) and she
is also a visiting scientist at Bloomberg LP. She holds graduate degrees in Computer Science from the
Instituto Nacional de Astrofisica, Optica y Electrénica, in Puebla, Mexico. Her research interests inclu-
de information extraction from social media data, enabling technology for code-switched data, stylistic
modelling of text, and more recently multimodal approaches for online content understanding. She is the
director and founder of the Research in Text Understanding and Language Analysis Lab at UH. She is
the recipient of an NSF CAREER award for her work on authorship attribution, and recipient of the 2014
Emerging Leader ABIE Award in Honor of Denice Denton. She is currently serving a second term as an
elected board member of the North American Chapter of the Association of Computational Linguistics.

Luke Zettlemoyer, University of Washington and Meta

Bio: Luke Zettlemoyer is a Professor in the Paul G. Allen School of Computer Science & Engineering
at the University of Washington, and a Research Scientist at Meta. His research focuses on empirical
methods for natural language semantics, and involves designing machine learning algorithms, introdu-
cing new tasks and datasets, and, most recently, studying how to best develop self-supervision signals
for pre-training. His honors include being named an ACL Fellow as well as winning a PECASE award,
an Allen Distinguished Investigator award, and multiple best paper awards.
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Abstract

Humans use natural language, vision, and con-
text to resolve referents in their environment.
While some situated reference resolution is triv-
ial, ambiguous cases arise when the language is
underspecified or there are multiple candidate
referents. This study investigates how prag-
matic modulators external to the linguistic con-
tent are critical for the correct interpretation of
referents in these scenarios. In particular, we
demonstrate in a human subjects experiment
how the social norms applicable in the given
context influence the interpretation of referring
expressions. Additionally, we highlight how
current coreference tools in natural language
processing fail to handle these ambiguous cases.
We also briefly discuss the implications of this
work for assistive robots which will routinely
need to resolve referents in their environment.

1 Introduction

Humans interacting in natural language need to
resolve referential expressions often referring to
referents in their environment; utterances like pick
up the green box or pick it up, for instance, high-
light some referring expressions that point to a ref-
erent. These expressions appear in various forms,
from clear and specific—the green box—to under-
specified and ambiguous—ir. But reference res-
olution, especially situated reference resolution,
also requires vision and pragmatic context to dis-
ambiguate references. In the linguistically under-
specifed example of pick it up, a listener may have
to look for the candidate objects in the environment
to figure out what ir refers to. Additionally, the so-
cial setting can modulate what referent is intended,
given the same referring expression and objects in
the environment; in a dining room, for instance, a
spoon on the ground may be the more likely candi-
date than a pencil. In this paper we investigate the
role of pragmatic modulators like this in reference
resolution.
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The psycholinguistics literature has leveraged
eye tracking to infer what referents humans resolve
in various contexts (Tanenhaus et al., 1995; Spivey
et al., 2001). Pragmatic modulators outside of the
linguistic content can further constrain the referen-
tial domain and affect referent interpretation, such
as task-relevant constraints (Hanna and Tanenhaus,
2004). There is a gap, however, in understanding
how other pragmatic modulators, such as social
norms and conventions affect the interpretation of
referents. For example, while there has been work
on modeling what social norms are activated in
various contexts and settings (Malle et al., 2020),
it is unclear how norms guide humans to interpret
referring expressions. Similarly, conventions such
as standing on the right side of an escalator while
walking on the left, or sitting in the back of cab, can
have modulatory influence on reference resolution
and object selection.

The aim of this paper is to demonstrate the role
of pragmatic modulators, especially social norms,
in guiding situated reference resolution. First we
provide background on reference resolution and
context, with a focus on situated reference resolu-
tion in particular. Then, we show how referents are
guided by social norms in certain contexts through
a human-subjects experiment. We proceed to com-
pare results from this experiment—the referents
selected given the situational context and referring
expressions—against several coreference tools that
attempt to resolve these referents. Lastly, with an
eye towards assistive robots, we conclude by out-
lining an approach for teaching robots to leverage
social norms and context for object selection.

2 Background

2.1 Reference Resolution in NLP

Reference resolution is a key task in natural lan-
guage processing. State-of-the-art approaches in
NLP—through significant strides in deep learning—
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perform well on text-based reference resolu-
tion by learning important syntactic and seman-
tic features. Indeed, coreference phenomenon
are naturally guided by several linguistic phe-
nomena as discussed in (Jurafsky and Martin,
2009). Among them are gender agreement, num-
ber agreement, person agreement, recency, bind-
ing constraints, verb semantics, and selectional
restrictions—features often useful for coreference
models in NLP such as CoreNLP (Finkel et al.,
2005). A more recent end-to-end neural model,
part of AllenNLP (Lee et al., 2017), moves away
from traditional engineered features and syntac-
tic information and instead relies on word embed-
dings within and around potential coreferent men-
tion spans as well as the distance between spans,
among other approaches.

However, while powerful models encode impor-
tant linguistic cues for reference interpretation, and
use word embeddings to capture word similarity,
they fail to take into account contextual knowledge
(Emami et al., 2018). This renders current NLP
tools insufficient for situated reference resolution.

Recently, coreference tasks such as the Wino-
grad Schema Challenge (WSC), proposed by
Levesque et al. (2012), challenge coreference mod-
els to handle world knowledge and common sense
reasoning. The KnowRef dataset (Emami et al.,
2018), a coreference corpus of natural texts, pro-
vides a new benchmark for coreference resolution
that requires systems to reason about context. The
coreference task created sentences stripped of lin-
guistic cues from syntax, gender agreement, and
number agreement, forcing systems to rely on con-
text and world knowledge. Emami et al. (2018)
fine-tuned a BERT model on the KnowRef dataset
to improve its accuracy over other state-of-the-art
models. This shows that reference resolution sys-
tems can encode world knowledge and common
sense reasoning to an extent when trained on these
Winograd Schema type datastets. Yet these pow-
erful models remain opaque and do not explicitly
model the pragmatic constraints of social norms
and conventions.

3 Pragmatic Constraints and Social
Norms

Work on multi-modal reference resolution gets
closer to modeling pragmatic constraints, mainly
by moving beyond text and considering gesture
and context to help disambiguate referring expres-

sions (Matuszek et al., 2014; Whitney et al., 2016;
Chai et al., 2004). Whitney et al. (2016), in addi-
tion to speech and gesture, incorporates contextual
knowledge to improve the accuracy of their model
on a dataset where people refer to objects on a
table. The model exploits information from the
kitchen domain and uses recipes as a knowledge
base to understand tools and ingredients that typi-
cally belong together. Chai et al. (2004) also uses
domain knowledge in a graph-matching algorithm
for multi-modal referring expressions with a map
showing houses and prices. The guiding context,
here, is conversational history and domain knowl-
edge about house pricing.

Within the psycholinguistics literature, Hanna
and Tanenhaus (2004) use eye-tracking in a cook-
ing simulation to show that pragmatic constraints
have modulatory influence on the interpretation
of referring expressions. In this experiment, par-
ticipants followed a confederate cook’s instruc-
tions for a recipe, where the cook used the the
definite noun phrase the cake mix to signal po-
tential referents in the cooking space. The ad-
dressee’s domain of interpretation changed with
the task-based constraints—cued perceptually with
the cook’s hands being empty or full. As the ad-
dressees monitor the speaker, they tend to interpret
the referent in the cook’s area when the cook’s
hands were full and the referent in their own area
when the cook’s hands were empty. The results
support constraint-based models, where speaker
constraints are taken into account for interpretation
alongside linguistic ones; indeed, this study high-
lights how a definite referring expression can point
to a few possible candidate objects in a restricted
domain, just based on its linguistic form, yet people
can disambiguate which referent is being referred
to from the pragmatic context. While this study
focuses on speaker-based constraints, there is still a
lack of knowledge about the modualtory influence
of social norms and conventions in interpreting re-
ferring expressions.

A promising step in this direction are attempts
to computationally model social norms with the
ultimate aim of creating norm competent artificial
agents (Malle et al., 2020). Malle et al. (2020)
experimentally collected responses from humans to
generate social norms for eight contexts, including
a library, boardroom, bathroom, and restaurant,
among others. While social norms can be elusive
and challenging to define, since they vary by cul-



ture and appear on various levels of demand, Malle
et al. (2020) follows Janoff-Bulman et al. (2009)
in viewing social norms as prescriptions and
prohibitions and giving attention the gradability of
these norms by mapping the deontic force—how
strong or weak these norms are to be followed—to
the collected prescriptions and prohibitions. Malle
et al. (2020) define norms more formally as such:

A norm is an instruction, in a given community,
to (not) perform an action in a given context,
provided that a sufficient number of individuals in
the community (i) demand, to a certain degree, of
each other to follow the instruction and (ii) do in
fact follow it.

We will adopt this definition for social norms in
this study, which formalizes the idea of prescrip-
tions and prohibitions being followed by many peo-
ple. We also broaden the definition of social norms
to include descriptive norms and conventions, al-
though Bicchieri (2005) makes a more fine-grained
distinction between social norms, conventions, and
descriptive norms. We do not consider moral norms
or legal obligations in the present paper.

Equally important, this study offers an approach
for teaching norms to robots for guiding actions and
balancing norms with goals. They outline an en-
riched Markvov Decision Process (MDP) approach
that uses a starting norm base, which are predefined
norms collected in the experiment, and refines it
through human interaction and feedback. We look
at this proposal optimistically for, in a similar vein,
teaching embodied agents the specific behavior of
performing situated reference resolution.

A referring expression can appear in a variety
of linguistic forms, but pragmatics, regardless of
the linguistic form, has the potential to modulate
the meaning of the sentence and referent entirely.
This will be true for humans that use natural lan-
guage with robots as well. Imagine a situation
where someone commands an assistive robot in a
home: fake it away. The robot can use the natural
language and vision input to scan the area for poten-
tial referents of it. If a shoe and a spoon are salient
objects on a dining room table, the convention of
a shoe not belonging on a table would make the
shoe the more likely candidate. Alternatively if a
shoe and a spoon are salient objects on the floor of
a bedroom, the spoon would likely be the referent.

Marrying the work on pragmatic constraints on

reference resolution and social norms, we conduct
an experiment where humans are tasked with iden-
tifying the referent of an ambiguous referring ex-
pression across various contexts and, thus, various
social norms and conventions.

This experiment relates to previous work that
leverages crowd sourcing for collecting anaphora
annotations and judgments (Poesio et al., 2019,
2013; Chamberlain et al., 2008; Kicikoglu et al.,
2019). Although this body of work focuses on a
game-with-a-purpose (GWAP) approach to crowd
sourcing (Von Ahn, 2006), our study does not gam-
ify our annotation task but it does avoid using
linguistic and annotation terminology for partic-
ipants. Poesio et al. (2019), specifically, collects
several judgements and disagreements over am-
biguous cases of anaphora. Similarly, our study
captures the reasons and explanations people make
when resolving a referent, although there is no adju-
dication process. Through overall decisions and ex-
planations, we are then able to study the agreement
and interpretations over our ambiguous scenarios.

4 Experiment and Results

Here, we report the details of an online vignette-
based human-subjects experiment designed to ex-
plicate the potential role of social norms in resolv-
ing references in context. We recruited 50 par-
ticipants on Prolific (see https://prolific.
co), an online participant recruitment site which
is known to provide better results on tasks like
ours. Participants were free to leave the study at
any point, their data was anonymized, and they re-
ceived adequate payment for the study. A consent
form was presented at the beginning of each study
with information on how their data would be used.
We restricted our recruitment to people living in
the United States and at the time of the study and
native speakers of English.

Each participant was presented with eight text
vignettes where each vignette described a scene
within a daily-life context. Each scene contains
four pieces of information: an explicit mention of
the setting (The scene takes place in a library), a
description of the background—that is, the objects
and people in the scene—an underspecified refer-
ring expression (e.g., remove it), and an actor in
the scene acting on an object. There are always
two salient referents that are potential candidates
for the referring expression. Participants must de-
termine whether the referent chosen by the actor in
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Contexts Items Hypothesized Norms
Library head seat, side seat | do not interrupt someone at the library; give space to others
Boardroom head seat, side seat do not sit at the head of the table
Taxicab front seat, back seat you should sit in the front seat

Friend’s Car front seat, back seat

you should sit in the back seat

Dining Room shoe, spoon a shoe should not be on a dining table

Leather Shop shoe, spoon a spoon should not be on a non dining table
Bookstore magazine, toothbrush a toothbrush should not be on the floor of a bathroom
Bathroom magazine, toothbrush a magazine for display should not be on the ground

Table 1: Overview of contexts in the experiment, the items mentioned in the reference task, and some hypothesized

norms activated in each context.

the scene was the correct one.

With the information still in view, participants
are asked to select the best explanation for their
answer and are provided a multiple choice listing
of five potential explanations and one open text
response option labeled other. These reasons in-
clude: typical for the setting, object is mentioned
first, object is mentioned more recently, time sensi-
tive option, more convenient option, and other. We
included reasons that could explain that the correct
referent was the one that was intended, rather than
subjective options that potentially frame the ques-
tion as a personal preference. We also offered a text
response if none of the options fit.! We summarize
the contexts, candidate objects, and a hypothesized
norm associated with each context in Table 1.

Each context, some of which are inspired by
Malle et al. (2020), are assumed to activate their
own inventory of norms to help disambiguate the
referring expression. Our hypothesized norms are
partly based on intuition but also inspired by pre-
vious work on norms and behavior. Aarts and Di-
jksterhuis (2003), for instance, conducted a survey
with undergraduates to confirm the normative be-
havior of acting silently in a library setting. This
norm is applied to our study in a library scene:
there is an open seat at a table right next to someone
and a seat further away from someone. Although
there is no mention to noise, seating right next to
someone else—a stranger—is potentially noisy and
interruptive. Additionally, similar to the norm of
not littering (Cialdini et al., 1991), we focused on

"The experimental design of a posthoc explanation of
whether the referent was “correct” was chosen after initial
pilot experiments showed that asking subjects for the correct
referent rather than providing them with the choice of the
actor in the scene led to a confound: subjects often choose the
referent they would have chosen instead of hypothesizing the
referent the actor in the given context would have selected.

prohibitions of objects not belonging in certain con-
texts; a shoe is not supposed to be on a clean dining
room table and a toothbrush should not be on the
bathroom floor. We posit other norms that tend
to influence frequent behavior such as sitting with
your friend in their car, as opposed to the backseat,
and sitting in the back of a taxicab.

Similar to Winograd schema datasets, each refer-
ring expression is stripped of linguistic surface cues
such as gender, number, and person that would give
away the referent. Instead, these scenes are set up
so that subjects in the experiment have to rely on
information outside of the text to help them make
a decision. The only linguistic cue we maintain in
the study, however, is recency, where we change
the ordering of the referents. These scenes include:
library, boardroom, taxicab, friend’s car, dining
room, leather shop, bookstore, home bathroom.

Each scene has a complementary scene that
shares the same referents; the library and board-
room share two seats, the taxicab and friend’s car
share two seats, the dining room and leather shop
share a shoe and a spoon, and the bookstore and
home bathroom share a toothbrush and a magazine.
The purpose of creating complementary scenes
with the same referent was to demonstrate how,
when the referring expression is constant, the con-
text, and thus the social norms and conventions
associated with it, modulate the interpretation of
the referent. We posit, for instance, that people will
select the seat in the back of the cab as opposed to
the front of the cab. This would be guided by the
norm of sitting in the back of a cab. Alternatively,
people would most likely choose to sit in the front
seat in a friend’s car and not the back seat, also for
conventional reasons.

The following excerpts show examples of the
scenes participants read during the experiment. The



one below is for the dining room context:

The scene takes place in a dining room.
There is a shoe and a spoon sitting on a
dining room table. Dinner is about to be
served.

Someone says, “remove it.”

Someone else removes the shoe from the
table.

This next example, describing a leather shop,
shows a complementary scene using the same can-
didate objects of the shoe and spoon and the same
definite referring expression, remove it.

The scene takes place in a leather shop.
There is a spoon and a shoe sitting on a
worktable. Nothing else is on the table.
A customer is coming into the store.

Pointing to the worktable, someone in the
room says, “remove it.”

The employee removes the spoon.

While each participant sees all eight scenes,
there are two conditions where the ordering of the
referents mentioned in the text are flipped. Condi-
tion A lists the intended (correct) referent last and
condition B lists the intended referent first. In the
dining room scene, for instance, condition A lists
the spoon first and then the shoe and condition B
lists the shoe first and then the spoon. We create
these conditions to test whether people are biased
by the recency of referents and to also evaluate
these texts on coreference tools which may be bi-
ased by recency in performing reference resolution.

The results in Table 2 show how many people
agreed that the selected referent was correct or in-
correct in a “yes-no” question. Overall, the major-
ity of people agreed that the referent selected was
the correct one across all scenes, and the frequency
distributions seem consistent across both condi-
tions. Stronger agreement trends towards scenes
with seats as referents—that is, the library, board-
room, taxicab, and friend’s car. The scenes with the
most disagreement were the bookstore and home
bathroom scenes, which used a toothbrush and mag-
azine as candidate objects. For these scenes, we
hypothesized contexts with a prohibition type norm
where it is unacceptable for a toothbrush and a mag-
azine to be on the ground. But these were, perhaps,
less airtight scenarios. In a home bathroom, maga-
zines can be stowed in the corner for casual reading,

A B

Contexts yes no | yes no | Total
Library 21 3 | 22 4 | 437
Boardroom 23 1 26 0 | 49-1
Taxicab 24 0 | 26 0 | 500
Friend’sCar | 23 1 | 25 1 48-2
Dining Room | 23 1 | 25 1 | 48-2
Leather Shop | 20 4 | 21 5 | 419

Bookstore 16 8 | 20 6 | 36-14
Bathroom 23 1 23 3 46-4

Table 2: Counts for yes or no in response asking whether
the referent identified is correct. Results reported for
conditions A and B where each condition is a different
ordering of the referents mentioned in the text (e.g. ...
shoe and spoon ... v.s. ... spoon and shoe ... )

but a toothbrush has a its place in a cabinet or cup
holder. In a bookstore, a magazine should belong
on the shelf along with other books and magazines,
but a stray toothbrush in a public space can be left
alone, unless a norm of not littering is competing.
The explanations people chose offer some more
clarity to this picture.

Table 3 provides an overview of the reasons peo-
ple gave for their agreement or disagreement with
the selected referent. One obvious trend that stands
out is that Convention (displayed as typical for the
setting in the study) outnumbers the other reasons
across all scenes and conditions. Where there was
high consensus on the correct referent for the seat
related scenes, there was a commensurate high rate
of selecting the conventional explanation. For the
library scene, however, we see a tension between
conventional explanation and a convenient choice
for choosing a seat at the head of the table rather
than a seat next to someone else. For some, it
seems, the convention of keeping distance from a
stranger at a library, as not to cause a disruption, is
either not activated or is overruled by convenience.

Then there are the bookstore and home bath-
room scene that have a lower consensus and,
thus, a higher count of alternative explanations.
Interestingly, when people disagree that the
selected object was correct, their explanations
suggest a normative reason is stronger in the
other direction. For example, if a magazine is
more conventional in a bookstore (prescription)
a toothbrush is unconventional and suggests
a prohibition norm. We present a sample of
explanations for these scenes:



Convention Last First Time Sensitive Convenient Other
Library A 10 2 0 0 9 3
Library B 10 0 0 0 9 7
Boardroom A 20 0 0 0 2 2
Boardroom B 23 0 1 0 1 1
Taxicab A 23 0 0 0 0 1
Taxicab B 25 0 1 0 0 0
Friend’s Car A 19 0 0 0 5 0
Friend’sCar B 17 0 1 0 8 0
Dining Room A 16 0 1 0 1 6
Dining Room B 22 0 0 0 1 3
Leather Shop A 12 1 0 1 1 9
Leather Shop B 17 0 1 1 4 3
Bookstore A 13 1 2 0 1 7
Bookstore B 16 1 3 1 0 5
Bathroom A 16 0 1 3 1 3
Bathroom B 11 1 5 3 0 6

Table 3: Counts for best explanation for correct or incorrect referent selected. The shortened label Convention
corresponds to the typical for the setting option in the experiment; Last to object is mentioned more recently;
First to object is mentioned first; Other to other with free text response; Time Sensitive to time sensitive option;

Convenient to more convenient option

Bookstore:

toothbrush doesn’t belong...

the toothbrush is the more out-of-place object, and
therefore, it is implied to have that removed rather
than the magazine

the toothbrush does
ting/misplaced

not match the set-

Home Bathroom:
object is irrelevant to the setting and should be
removed

We also note that for these scenes and others
in the study, some of the explanations people
articulate can be classified as norms even though
they did not select the normative option in the
multiple choice:

Home Bathroom:
The toothbrush should not be on the floor tooth-
brush does not belong on the floor

Boardroom:
The boss usually sits at the head of the table.

Library:
The head of the table doesn’t have anyone sitting

next to it.

Although it was unclear for some that typical for
the setting subsumed the normative or conventional
explanations, the fact that people gave normative
explanations support that reasoning even more.

To summarize this experiment, given the same
two referents, people interpreted one referent as
correct in one context and the other as correct in
another context, each according to specific norms
that are activated in that context. This suggests that
social norms activated by the context had enough
modulatory influence to determine the interpreta-
tion of an ambiguous referring expression favored
by the norm. As a consequence, not knowing the
norms that apply in these context will likely lead to
incorrect interpretations of referential expressions
as other factors not necessarily congruent with the
norm-based interpretation will be used for refer-
ence resolution, as the next section on current NLP
tools will demonstrate.

4.1 Evaluating NLP Tools

To complement our empirical study, we evaluated
several coreference and natural language process-
ing tools on our experimental scenes to determine if
they achieve human performance for norm-guided
reference resultion tasks. These include Neural-



NLP Tool Context C Answer
NeuralCoref Dining Room A  coordination X
Dining Room B  coordination X
Leather Shop A  [the worktable] X
Leather Shop B  [the worktable] X
Bookstore A coordination X
Bookstore B  coordination X
Bathroom A non-referential X
Bathroom B  non-referential X
CoreNLP Dining Room A [dinner] X
Dining Room B [ashoe] v
Leather Shop A  [the room] X
Leather Shop B  [the room] X
Bookstore A [atoothbrush] X
Bookstore B [amagazine] v
Bathroom A [amagazine] X
Bathroom B [atoothbrush] v/
AllenNLP Dining Room A coordination X
Dining Room B [ashoe] v/
Leather Shop A coordination X
Leather Shop B  coordination X
Bookstore A coordination X
Bookstore B coordination X
Bathroom A coordination X
Bathroom B  coordination X
GPT-3: Dining Room A coordination X
Curie Dining Room B  coordination X
Leather Shop A  coordination X
Leather Shop B  coordination X
Bookstore A non-referential X
Bookstore B coordination X
Bathroom A coordination X
Bathroom B  coordination X
GPT-3: Dining Room A coordination X
Davinci Dining Room B  [the spoon] X
Leather Shop A coordination X
Leather Shop B  coordination X
Bookstore A [toothbrush] X
Bookstore B [toothbrush] X
Bathroom A [toothbrush] v
Bathroom B  [toothbrush] v/

Table 4: Evaluation of coreference tools on contexts
that use a definite reference. The dining room scene and
leather shop scene both use the referring expression re-
move it; the bookstore scene and home bathroom scene,
similarly, use the referring expression pick it up. We
report whether these tools can detect if it is referential
and refers to the correct object.

Coref, an extension of SpaCy (Honnibal and John-
son, 2015) and based on (Clark and Manning,
2016), Stanford CoreNLP (Finkel et al., 2005), Al-
lenNLP (Lee et al., 2017). We also evaluated the
GPT-3 base models, Davinci and Curie, by OpenAl,
(Brown et al., 2020) designed for text generation
and question-answering tasks. For this experiment,
we specifically focus on the scenes that use a defi-
nite referring expression such as pick it up, in the
bookstore and home bathroom scenes, and remove
it, in the dining room and leather shop scenes. For
the GPT-3 models, we prompt the Davinci model
with the phrase which one but do not prompt the
Curie model with a question. We made this deci-
sion to probe the different capabilities of these mod-
els; for the Curie model, we chose not to prompt
it to see if would coherently generate the rest of
the text and the resolve the correct referent likely
to follow from the referring expression in the com-
mand (e.g. pick it up, remove it); for the Davinci
model, we tested the question-answering capabil-
ities by providing a question. This evaluation did
not use a similar question as the main study—Was
this the correct object?— as understanding a yes-
no response is more opaque and we wanted to see
if it could return the referents. We also note that
all of these models were used off the shelf without
fine tuning.

Results are summarized in Table 4 where we
list the referents that the tools selected to match
the referring expression. We represent an entity
in brackets and also note when the referent is the
coordination of the two referents (e.g. a shoe and a
spoon) or the referring expression was interpreted
as non-referential. A check mark v denotes the cor-
rect referent and an Xdenotes the incorrect referent.

The experimental conditions have a role, here,
since the recency or distance of the referent serves
as a traditional feature for coreference models in
NLP. Swapping the ordering of the referents en-
sures that if a model resolves the correct referent, it
is consistent and is more likely taking into account
the context then the surface structure. This swap-
ping method is similar to (Emami et al., 2018)’s
evaluation of BERT on the KnowRef test set for
consistency.

In the results, there are only three cases where
the coreference models choose the right referent.
CoreNLP and AllenNLP both correctly link [a
shoe] and it in the dining room scene. For this
condition (condition B), shoe is mentioned first in



the text. Although, once the objects are switched,
the models choose the wrong object—CoreNLP
selects [dinner] (none of the candidate referents)
and AllenNLP selects both the shoe and the spoon
in a coordination. CoreNLP seems to do the best
by selecting another correct referent: [a magazine]
in the bookstore scene. But it fails yet again once
the objects are swapped.

The GPT-3 models perform poorly overall but
the Davinci model, prompted by which one, gets
closer to the right answer by picking out individual
referents more often than the Curie model. Davinci
is consistently incorrect in the bookstore scene but
consistently correct in the bathroom scene, yield-
ing the only correct result when the referents are
switched. The correct referent selected in the bath-
room, the toothbrush, was also selected in the book-
store for both conditions. This suggests that the
model is biased towards picking the toothbrush
over the magazine more generally.

For most of the tools doing reference resolution
on these scenarios, we see a theme of referring
back to the coordination of the two referents, when
only one referent should be selected. Therefore, it
is clear these results do not match human intuition
for this specific reference resolution task and, more
importantly, fail to understanding social norms in
order to consistently infer the correct referent.

5 Discussion & Future Implementations

The coreference task performed by humans and the
NLP tools show a striking difference in outcomes.
Given the same context and text, people tended to
agree on the correct referent. Since the examples
were stripped of linguistic cues that would give
away the referent, people relied on context and
social norms based on the reasons they selected
and the written explanations they provided. No-
tably, however, the inconsistent agreement across
all scenes can be reconciled with the fact that so-
cial norms and conventions are not equally shared
across all people. This is supported, in part, by the
written responses too. Additionally, these results
also suggest that not every norm is weighed the
same; the deontic force—how strongly the norm
is to be followed—potentially influences how the
norm guides a behavior or interpretation and com-
petes with other norms. Admittedly, a limitation
of our study is that we do not explicitly categorize
our hypothesized social norms and conventions in
a gradable fashion, but future work will consider

deontic force for a more fine-grain understanding
of social norms.

NLP tools, on the other end, tell a different story.
Many of the tools specifically designed for coref-
erence resolution failed to consistently select the
correct referent. The more powerful NLP engines,
such as GPT-3 model, also performed poorly. This
shows that relying on such a system to resolve ref-
erences in these contexts would be problematic.
The Davinci model when prompted by the question
which one? justifies its response with an explana-
tion of grammatical appropriateness: If we use the
noun that appears in the context, it is clear that
the speaker is referring to the toothbrush. There
is no other “it” in the sentence... We would never
say, “Pick up the magazine." This is why it’s im-
portant to know whether the noun is the subject
or object of a sentence. This explanation echoes
something meaningful about grammar, yet is faulty
and unclear. Rather, this argument is produced
from statistical correlations the system extracted
from large corpora. Furthermore, the system has
no understanding of norms or how to apply them.
The potential danger, here, is that simply employ-
ing deep learning systems without giving them a
sense of norms will lead such systems to also vi-
olate norms. While the consequences of breaking
norms can range in severity, at the most extreme
end, they can include harm to other people.

A norm aware reference resolution system, there-
fore, will not only help to disambiguate referents
but help a system know what not to do. This is
especially important with embodied agents whose
actions in the real world will be influenced by its
reference resolution capabilities and natural lan-
guage understanding.

5.1 Implementation in Embodied Agents

Inspired by our experimental results, we outline
a potential methodology for robots to use social
norms and conventions in performing situated ref-
erence resolution. In order to make the inferences
necessary for selecting the correct referent in our
scenarios, a novel pragmatic component must be
tightly integrated with vision and natural language
processing in a robotic cognitive architecture. All
three inputs will simultaneously contribute to the
interpretation of a referring expression.

A pragmatic component will serve as a knowl-
edge base specifically for social norms and it would
require a baseline representation of norms, which



can be collected experimentally for a particular do-
main (Malle et al., 2020). Upon hearing natural
language input from a co-located speaker, a robot
will begin incrementally processing the natural lan-
guage and look for a referring expression. At the
same time, the visual system will scan the environ-
ment for two purposes: to search for perceptually
salient objects that potentially match the referring
expression and to trigger the setting to activate a set
of norms. For example, spotting a fork, plate, or ta-
ble, the robot can infer with greater probability that
it is located in a dining room and cue an inventory
of social norms operationalized as prescriptions
and prohibitions. Some of these prescriptions, in-
formally, might be: food or drinks are allowed on
the table or you are allowed to sit at the dinner
table. Alternatively, some prohibitions might be X
items should not be on the dining table or food and
drink should be contained on the dinner table.

Incremental processing will allow the robot to
gradually look for potential referents in the scene
and, if it finds potential candidates to match the
referring expression, it will also consider the joint
probability of each referent given the social norms.
The social norms activated from the setting should
contribute to the interpretation from the start, not
only when an ambiguous situation arises, since
they can modulate the interpretation at any point;
as seen from our experimental results, regardless of
the linguistic form of the referring expression, the
social norms can flip the interpretation of the refer-
ent when everything else is constant. An advantage
to using an inventory of social norms in this way
is that they can eliminate potential referents right
away. The strength of the norm, roughly corre-
sponding to their deontic force, must be considered
for a fine-grained application of norms as some
norms will compete with each other. Additionally,
it will be critical to understand what norms may or
may not be overruled as not to cause harm to hu-
man users. While norm activation begins early on,
it can continually update through visual and natural
language input. If the robot is uncertain about the
setting, for instance, it can ask clarifying questions
to gain more information. This approach seems
applicable in preventing harm where it might be
better in many instances to ask questions in uncer-
tain contexts than to overstep boundaries.

To walk through a situated reference resolution
scenario, and use a scenario from our experiment,
imagine someone commanding the robot: remove it.

Even if the speaker pauses after the verb remove, in-
cremental processing begins to parse the utterance
and the robot visually scans the environment for the
setting and salient objects. The robots activates the
norms stored in the social norm knowledge base
and continues processing the input. Once the utter-
ance is completely processed, the expression, if, is
linked to either a shoe or a spoon. With no other cue
from the linguistic input, the prohibition of shoes
on dining room tables pushes the interpretation to-
wards removing the shoe. The norm is determined
to be strong enough for the robot to act and so it
proceeds to remove the shoe. Thus, the robot suc-
cessfully uses its norm knowledge base in tandem
with its vision and natural language processing abil-
ities, to handle what appears on the surface to be
an underspecified referring expression.

6 Conclusions

We conducted a human subjects study to demon-
strate how social norms can guide reference res-
olution. Given a text vignette and a referring ex-
pression stripped of linguistic cues, the majority
of subjects confirmed the intended referent in each
context and relied on knowledge of conventions
to make their decision. In contrast, several NLP
tools evaluated on the same examples consistently
failed to select the correct referent. We argue that
these NLP tools critically lack an understanding
of conventions and social norms and should not
be completely relied on for reference resolution as
they can also violate norms.

Finally, we integrate our findings into designing
a methodology for teaching robots to use social
norms and conventions to perform situated refer-
ence resolution. In future work, we experiment
with using visual scenes for activating norms and
evaluate larger NLP models with fine-tuning to our
task. Lastly, we will implement our methodology
into a cognitive architecture and look more closely
at how the gradability of social norms influences
reference resolution.
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Abstract

This paper introduces TRUncated ReinForcement
Learning for Language (TrufLL), an original
approach to train conditional language models
without a supervised learning phase, by only us-
ing reinforcement learning (RL). As RL methods
unsuccessfully scale to large action spaces, we
dynamically truncate the vocabulary space using
a generic language model. TrufLL thus enables to
train a language agent by solely interacting with
its environment without any task-specific prior
knowledge; it is only guided with a task-agnostic
language model. Interestingly, this approach
avoids the dependency to labelled datasets and
inherently reduces pretrained policy flaws such as
language or exposure biases. We evaluate TrufLL
on two visual question generation tasks, for
which we report positive results over performance
and language metrics, which we then corroborate
with a human evaluation. To our knowledge, it
is the first approach that successfully learns a
language generation policy without pre-training,
using only reinforcement learning. !

1 Introduction

Since the development of generic language models
trained on massive unlabelled text corpora (Radford
et al., 2019; Brown et al., 2020), state-of-the art
language processing systems rely on sequential
transfer learning (Ruder, 2019). The pretrained
Language Model (LM) is fine-tuned on the down-
stream task using a standard supervised learning (SL)

'Code is available at

AMDonati/RL-NLP

https://github.com/

12

Olivier Pietquin
Google Brain

Agent

Agent

Truncation with LM

: What is the tall boy
. holding ? H
VQA model
: Bat -+

What is the

Language
Model

car boy run the tall

X X

T o=t

Figure 1: (left) In a conditional language generation task as
VQG, TrufLL truncates the vocabulary space by using a language
model. Here, run,” and ’the’ are syntactically incorrect and thus
truncated. Yet, ’car’ is not trimmed as the LM is not visually
grounded. (right) In a VQG training loop, the agent generates a
question given an image-answer pair, which is then fed to a VQA
model predicting an expected answer. If both answers match,
the agent is rewarded.

objective (Wu et al., 2019; Peters et al., 2019). Yet,
such an approach suffers from several issues (Chen
et al., 2020): (i) catastrophic forgetting when a model
forgets previously learned knowledge and overfits
to target domains, (ii) computational inefficiency
from fine-tuning billion-parameters networks, and
(iii) the need of supervised datasets. Moreover,
task-specific language models learned with SL suffer
from well-studied text degeneration issues (Holtzman
et al., 2019), such as the exposure bias (Bengio et al.,
2015), language biases (Saleh et al., 2020; Jaques
et al., 2020), or a lack of diversity (Li et al., 2015).
On the other hand, text generation can be naturally
framed as a sequential decision making problem, with
the sequence of words seen as successive actions over
a vocabulary. Thus, some researchers have recently
focused on learning language models using instead
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Reinforcement Learning (RL) (Strub et al., 2017; Das
et al., 2017; Narasimhan et al., 2015). RL methods
allow acquiring language through interactions within
rich and diverse environments (Luketina et al., 2019),
help understanding language acquisition and language
pragmatics (Lazaridou et al., 2016; Bisk et al., 2020).
"Reward is enough"” (Silver et al., 2021) highlights
the necessity of using RL for Al systems to acquire
language in its full richness. Indeed, (i) language may
be intertwined with other modalities of action and ob-
servation, (ii) the utility of language varies according
to situations and behaviours, (iii) it is consequential
and purposeful, and (iv) some linguistic problems
are better solved dynamically, through experience
(such as using a diplomatic tone in a speech.) In
addition, RL allows optimizing a non-differentiable
learning signal, hence handles more diverse objective
functions, and also avoids some of the text degener-
ation issues previously mentioned. So far, RL-based
text-generation tasks have relied on a pre-training
phase to ease learning: the policy language model
is trained with SL on the task dataset, before being
fine-tuned with policy gradient methods (Sutton et al.,
1999) on the task at hand. Those approaches often
require human-labelled datasets. Besides, combining
pre-training and fine-tuning phases either barely
change the policy distribution, or induces language
drift (Lazaridou et al., 2020; Lu et al., 2020b), i.e the
generated language drifts semantically or syntactically
from natural language.

In this paper, we aim at learning a conditional
language model using RL without a pre-training
phase, so that (i) we get free from datasets with human
annotations, and (ii) we avoid the text generation
flaws induced by the common methods. While
appealing, such an approach requires overcoming
the hurdle of the combinatorial language action space,
a vocabulary usually containing more than 10,000
words. Yet, while large and discrete, a language
action space contains a specific structure, made of
all the syntactical and semantics rules of a given
language. TrufLL leverages such structure to drive the
exploration of the RL-based language agent during
training. At each time step of the text generation
process, TrufLL truncates its effective action space
to a small subset of words provided by a pretrained
task-agnostic language model. Such an approach
injects a generic prior linguistic knowledge into the
RL algorithm, is usable on tasks lacking in-domain
labeled data, and can be easily transferred to new
RL-based text generation tasks. Thus, TrufLL can
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be applied to any language generation task given a
generic LM and a reward. We here evaluate it on two
Visual Question Generation (VQG) tasks, the syn-
thetic CLEVR dataset (Johnson et al., 2017), and the
natural language VQAvV2 dataset (Goyal et al., 2017).
Unlike alternative RL without pre-training approaches,
TrufLL manages to ask meaningful and valid ques-
tions on large vocabularies, exhibiting success rate
and language metrics close to pretrain models with
labeled data, while producing more original language.

2 Background

Language Generation as an RL Problem. We
cast the word-based text generation task as a Markov
Decision Process to apply RL methods (Sutton et al.,
1998). In this setting, a language model agent gen-
erates a sequence of words w<; = (wp,w1,...,W_1)
drawn from a vocabulary V, given an initial context
c associated with a reward r;. Translation, text sum-
marization or image captioning are examples of such
tasks respectively using a source sentence, a text arti-
cle, or an image as a context (c). During this process,
the agent may be rewarded with language scores (Ran-
zato et al., 2016), human preferences (Stiennon et al.,
2020) or task completion scores (Strub et al., 2017).
Formally, a language generation agent is defined
by a policy 7y (a distribution over )) parametrized by
6, first initialized with the context c. At each time step
t, the agent samples a new word w; from its policy
mo(wi|w<y,c). It moves to a new state (w<yy1,c)
and receives a reward 1y =r(w<,c,wy ), where r is a
reward function relative to the language task. The RL
language agent aims to learn a policy that maximizes
Ex, [ZtT:o r¢],> while generating the sequence of
words wr, where E,, is the expectation under 7y,
and 7" the maximal length of the words sequence.

Policy Gradient This optimization process
may be performed through Policy Gradient (PG)
algorithms (Sutton et al., 1999). In the language
literature, REINFORCE (Williams, 1992) has been
used as a simple Monte Carlo approximation of this
gradient (Strub et al., 2017; Li et al., 2016).Yet, in
this paper, we use a Proximal Policy Optimization
approach (PPO) (Schulman et al., 2017) to have a
lower variance and better convergence rate; PPO clips
the gradient estimate to have smooth policy updates.
For all 0 <t <T, let s; = (w<¢,c) and a; =w; be the
state and action at time ¢. Policy gradient methods

2We cast the language modelling as an episodic problem with
=1 and omit the discount factor in the paper for clarity.



minimize the objective:

T

Ly (0)=Er, [Zlogwa(at]st)fit
=0

I

where A; is an estimator of the advantage func-
tion, here defined as A, = Zfit Ty — Va(st)
with Vj(s) an estimator of the value function
Vig(8) = By [0, 7(5u, au)|s: = s]. PPO then
keeps track of the previous policy 7y, before the PG
update to compute the training objective:

T
LppO(‘g):Emold ZP?At/\Clip(l_QP?al‘i‘f)At )
t=0

where for all real numbers a, b, a A b = min(a,b),
pY = mo(ar|st)/m,,,(ar|st), € is a hyper-parameter
controlling the magnitude of the policy updates, and
clip(a,z,b) is the function that clips « in interval [a,b].
The expectation is estimated in practice using a Monte
Carlo approach, with an empirical average over a
finite batch of episodes, i.e a succession of transitions
(st,at ~ T (.\st),rt) from an initial state sq to a ter-
minal state s7. Finally, the training loss is completed
first with a value-based loss to learn the baseline V,
that reduces the gradient variance; it computes for
each timestep ¢ of an episode the mean squared error
]Zg:tru —V(st)|?-3 Secondly, the loss is completed
with an entropy term to soften the policy distribution,
which computes for each timestep ¢ of an episode
H(mg(a¢|st)), where H is the entropy function.

3 TrufLL

We here aim at making RL. methods feasible in the
language setting by dynamically reducing the action
space, i.e., by restricting the language agent to select
a word within a subset of the vocabulary at each time
step. We detail below the action space’s truncation
model and the associated RL algorithm to learn the
language agent.

3.1 Dynamic Vocabulary Truncation

TrufLL. combines two distinct language models,
which share the same vocabulary V: a RL language
agent 7y and a pretrained language model frys. At
each timestep ¢, TrufLL restricts the vocabulary space
of the RL language agent with:

Vt_ = {w‘w € vatrunc(w’w<t) = 1}7

3Note that other TD-based losses are applicable (Sutton et al.,
1998; Schulman et al., 2016; Espeholt et al., 2018).
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where giunc 1S a truncation function based on fr,7
which either associates O or 1 with each word in
the vocabulary given the past words w«;. From a
language modelling perspective, the vocabulary space
of the language agent is reduced from ) to YV~ where
|V~| < |V|, with |-| the cardinal of a finite set. From a
RL perspective, the RL agent follows a truncated pol-
icy m, which only samples actions over the subset ).
In practice, such a policy is computed using a masked
softmax function over the truncated vocabulary V; :
7, (Jw<y,c) =softmax(mxlogitsy, (w<,c)) where
m=1 when gync(w|w<;) =1 otherwise m = —oo.

3.2 Truncation Functions

We here list the different truncation functions ggyync
explored through the paper.

Top-k words: This function selects the & words
with the highest probability given by f7as(.|w<¢):

Grop(ie) (We|w<t3k) = Lo, ctop(e) (fr s (Jwer))-

Probability threshold (a): This function only
keeps words having a probability f7a/(.|w<;) greater
than a:

gpth(oz) (wt‘w<t;a) = ]]'fLM(’LUt|w<t)>OI‘

Top-p: This function is based on nucleus sam-
pling (Holtzman et al., 2019), and it keeps the most
likely words contained in a probability mass p of
Jri(Jw<t). Formally, we define VY as:

VP = argmin {w|w €V, Z frv(wlwet) >p},
[Vi,V:CV weVi

and readily, Gtop(p) (wlwegsp) = 1, evr-

Sample (k): This function randomly samples k
words from the language model with replacement to
directly build the truncated vocabulary:

Gsample(k) (Wi W<t:K) = Lo e fuwim frar (Joce) i€, M}

Only top(k) provides a fixed number of words at
each time step. pgn (), top(p), and sample(k) have
a dynamic truncation, whose size at ¢ depends on the
language model entropy.

3.3 Task-Specific vs. Generic LM

We benchmark two types of language models for trun-
cation. On the one hand, we use an external language
model pretrained on a large task-agnostic language cor-
pora. Such a model provides a generic linguistic prior
to the RL agent exploration process, solely encoding
syntactic and semantic information. On the other hand,



we use a task-related language model pretrained on
the supervised dataset associated with the task. Such
a model provides a task-specific linguistic prior to the
RL language agent, and captures language pragmatics.
We emphasize that this paper aims at leveraging task-
agnostic language models as they discard the need for
task-specific data. For the sake of completeness, we
also study the truncation with the task-related LM as
an additional benchmark to assess our approach.

4 Experimental Setting

We here list the experimental setting and detail the
network and hyperparameters in Appendix A.4.

4.1 Visual Question Generation

We showcase TrufLLL on the task of Visual Question
Generation (VQG) (Mostafazadeh et al., 2016), which
is a form of Visual Jeopardy! ™ (Ferrucci, 2012).
There, the language agent observes an image-answer
pair and has to generate a question that results in a
similar answer, as illustrated in Figure 1. Such a task
presents multiple advantages. First, by combining vi-
sion, scene understanding and language generation, it
requires high-level reasoning and exhibits a large spec-
trum of language difficulties. Secondly, the success
criterion is naturally non-differentiable, hence a natu-
ral fit for RL methods. Such a criterion, unlike metrics
based on ground-truth sentences, allows generating di-
verse grounded questions given an image-answer pair.

Formally, the initial context ¢ is composed of
the image-answer pair (Z,.A). The RL agent then
generates a sequence of words w«; of maximum
length T'. We then provide the generated question to
a pretrained VQA model. This model takes as inputs
the image Z, the generated question w; and outputs
a predicted answer A. Finally, the agent receives a
reward r(wg,w<¢,c) based on A and A.

4.2 Datasets

We evaluate TrufLL. on the CLEVR and VQAv2
datasets to simulate large-scale VQG datasets. The
two datasets have been originally created for the
task of Visual Question Answering (VQA), i.e. for
multi-modal classification algorithms predicting an
answer given an image-question pair.

CLEVR The CLEVR VQA dataset (Johnson et al.,
2017) is made of template questions on synthetic im-
ages, which contain simple objects with four distinct
properties (shape, material, color, size). The vocab-
ulary contains 86 words and 28 potential answers,
making it a valuable proof of concept for assessing
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TrufLL. Both language models are single-layer
LSTMs (Hochreiter and Schmidhuber, 1997) with
512 units, and 512 word embedding dimension. The
task-specific LM is trained over the full train dataset
of CLEVR questions. The external language model
is trained on the mixture of CLOSURE (Bahdanau
et al., 2019) and CLEVR-Dialog (Kottur et al., 2019)
datasets. Although those two datasets share the
CLEVR vocabulary, their language distribution differs
from vanilla CLEVR. Finally, we use a pretrained
GT-Vector-NMN (Bahdanau et al., 2019) to compute
the reward r(wy,w<¢,c) =1 4_ 5, ;, where 1 is
the indicator function.

VQAv2 The VQAV2 dataset (Goyal et al., 2017) is
made of natural language and open-formed questions
on images from the MS-Coco Dataset (Lin et al.,
2014). It has a vocabulary of 14,810 words and
3,149 answers. The task-specific language model is
a one-layer LSTM with 512 units and a 512 word em-
bedding dimension, pretrained over the full training
dataset of VQAV?2 questions. The External Language
Model is Open-Al’s GPT-2 (Radford et al., 2019). The
original language model outputs a probability distribu-
tion over 50,257 tokens, but we use a masked softmax
function to restrict the probability distribution to the
14,810 tokens of the VQAv2 dataset. Unlike most
NLP tasks relying on pretrained generic language
models, we do not fine-tune it on the task dataset.
Instead, we leverage the few-shot generalization
capabilities of GPT-2, by feeding the language model
with the prompt "Here are a few examples:" followed
by 100 random questions g-1go from the dataset. The
truncation is then based on the probability distribution

gﬁ? (.|g<100,w<¢). Finally, we used a pretrained Vil-
BERT to compute the reward (Lu et al., 2020a). Given
the large number of answers, we use as reward a de-
creasing function of the rank of the reference answer
rk(A): 7(wi,we,¢) = Ly ay<10,=1-1 e k(A2 a5
further explained in Appendix A.5.

In these two settings, we acknowledge that the task
dataset is still used to train the VQA models. Please
note that the VQA modules are only used to model
the environment, i.e. to provide a positive/negative
feedback to the agent. In other settings, TruflLL
would still work if we replace the VQA model
by any language interface: text-game (e.g. Zork),
expert-systems, or humans. Here, we only use the
VQG framework as a proof of concept that natural
language can be learned through pure interaction
given any task reward. Other language generation
applications are discussed in Section 5.3.



4.3 Baselines

In this paper, we aim to show that a RL language
agent can be trained from scratch, i.e. without the
usual pre-training phase by solely interacting with
another language system, the VQA model, when
supported by truncation methods. The truncation
with the task-related LM is referred to as TrufLL
(Task-LM), while the one with the External LM is
referred as TrufLL (Ext-LM). We first emphasize the
difficulty of training an RL language agent without
a supervised pre-training phase through two baselines.
We trained a simple on-policy PPO algorithm
without any action space pruning, and refer to it as
scratch. Then, we added a Kullback-Leibler (KL)
regularization term to the loss, Axr,KL(mg||frar),
with Akr, > 0, to incorporate language prior to
the agent as in (Jaques et al., 2017, 2019). We
refer to it as scratch + KL-task when distilling
the task-specific language model, and scratch +
KL-ext with the external language model. Finally,
we include two baselines with a pre-training phase.
We trained a language agent on the task-dataset with
a log-likelihood objective, and refer to it as pretrain.
Then, we fine-tune the pretrained language agent with
PPO without truncation, and refer to it as pretrain +
RL fine-tune. These two baselines should be viewed
as gold standards as they rely on task-related data;
additionally, pretrain + RL fine-tune is today the
state-of-the-art method for learning RL-based LM.

4.4 Metrics and Evaluation Methods

Evaluating text generation is an open-research
problem in language literature. We decompose
automatic language evaluation into three categories
to assess different facets of language, and perform
as well a human evaluation study.

Performance metrics. We measure the task-
completion score or recall @ 1 which states whether
the target answer 4 is the top answer of the VQA
models, and the recall @ 5 (R@5), which assesses
whether A is in the 5 top answers. These scores
measure the task-solving abilities of the agent, but
they are also conditioned by the VQA model abilities.

Language Metrics. First, we used n-grams metrics,
BLEU (Papineni et al., 2002), METEOR (Banerjee
and Lavie, 2005) and CIDEr (Vedantam et al., 2015),
to measure the similarity between the generated
question and the reference questions in the evaluation
set. While those scores can capture syntactic and
semantic properties of language, they also fall short
when dealing with open-form language, e.g. an
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identical answer may arise from two non-overlapping
but syntactically correct questions. Thus, we also com-
pute two metrics assessing the quality of the language
independently of reference questions, the perplexity
of the question given an external LM (ppl-e), and its
perplexity given the task-related LM (ppl-t).

Diversity Metrics. We here estimate a self-BLEU
(sBLEU) score (Zhang et al., 2017) over 10 questions
generated on the same image-answer pair. Although
such score detects potential mode collapse, i.e., when
the language utters identical sequences of words, it
also values babbling, i.e., outputting random words.
We thus also measure the probability mass of the ten
most frequent words (Choshen et al., 2020), and refer
to it as peakiness (peak).

Human Evaluation. On the VQAV?2 task, we also
performed human evaluation by surveying 53 partic-
ipants on the first 50 questions produced by some of
the models at test time. The study (further detailed
in Appendix C) is based on pairwise comparison of
question samples produced by the concurrent algo-
rithms according to four criteria. First, we evaluated
the language quality of the question samples, by
asking the participants to select the most syntactically
and semantically correct question among the two
samples of the questions pair. Secondly, we evaluated
language grounding, i.e adequacy of the sample to the
image-answer pair, by asking the participants to select
the question most suitable given the two elements.
Thirdly, we evaluated the language originality and
diversity, by asking participants to select the question
the most different from the dataset reference question.
Finally, we evaluated the number of syntax errors
by asking participants to tick the question if it is
grammatically incorrect. Examples of questions asked
during the study are included in the Appendix C.

4.5 Sampling methods for text generation

When generating text from a trained language model,
the quality and diversity of samples depend on
the decoding algorithm (Zhang et al., 2020). We
consider three text generation methods. greedy uses
the argmax of the policy, while sampling uses the
multinomial distribution. Finally, we sampled ten
text sequences from the policy, and selected the one
with the lowest perplexity according to the external
language model, and refer to it as /m-ranking. This
process has been used recently in Text-to-Image
Generation tasks (Ramesh et al., 2021).



Method | Score R@5 | BLEU Meteor CIDEr ppl-t ({) ppl-e () | sBLEU ({) peak.({)
Pretrain 0.30 0.71 0.19 0.38 0.83 3.1 31 0.44 0.96
Pretrain + RL fine-tune 0.44 0.86 0.17 0.34 0.70 4.0 35 0.46 0.95
Scratch 0.17 0.47 0.05 0.08 0.10 10° 10° 0.14 0.26
Scratch + KL-task 0.14 0.38 0.15 0.30 0.53 92 102 0.34 0.94
Scratch + KL-ext 0.17 0.44 0.14 0.27 0.43 10% 28 0.37 0.95
TrufLL (Task-LM) 0.56 0.90 0.17 0.32 0.66 34 23 0.95 1.00
Truf LL (Ext-LM) 0.48 093 0.08 0.18 0.34(4£0.10) 10° 3.0 0.95 1.00

Table 1: CLEVR metrics on 5k test episodes with 50k train episodes on 20k Images. Scores are averaged over the three decoding
procedures mentioned in Section 4.5 and over 5 seeds; standard deviations are displayed when greater than 0.01 for accuracy metrics.
We here report the models with the highest task-success:, i.e. the scratch+KL baselines with Axr, =0.1, and the truncation model
with a probability threshold, psn(av=0.05). Best values are underlined, best values without task-data (from scratch) are in bold.

Human

There is a blue thing that is the same shape as the big cyan metallic object ; what is its size?

A:Small

pretrain
pretrain + RL

There is a red metallic object that is the same size as the yellow rubber block ; what is its size?
What size is the thing that is the same color as the matte cube ? [

scratch
scratch+KL-task
scratch+KL-ext

size sphere small blue or a yellow green large else in cylinders cubes color and how matte objects cube
How big is the shiny cylinder ?
How many other objects in the are of same color as that shiny object ?

How big is the thing that is to the right of the big matte thing ? &
What is the size of the thing that is right of the big cyan thing and is the same shape? [

A:Black

TrufLL (Task-LM)

TrufLL (Ext-LM)

Human What color is the cat

pretrain What color is the cat’s collar? &
pretrain + RL What color is the cat?

scratch
scratch+KL-task
scratch+KL-ext

AmazingAmazingAmazingAmazingAmazingAmazingAmazing
‘What color is their hat of the fingers of this?
The the first time is a bit of the way

TrufLL (Task-LM)
TrufLL (Ext-LM)

What color is her outfit? &
What color can these cats look like in real life? &I

Figure 2: Samples on CLEVR and VQA: the checkbox indicates that the question generates the correct answer.

5 Results

5.1 CLEVRresults

Quantitative performance: In Table 1, vanilla
RL from scratch fails to have a decent performance
even with synthetic language. Besides, adding a KL
regularisation term does kick-start the learning pro-
cess. Yet, as soon as we apply the dynamic truncation,
TrufLL matches the pretrained baselines performance
when using the external LM, and even outperforms
them with the task-specific LM. In this synthetic VQG
setting, TrufLL. seems to be a viable and promising
procedure to learn a RL language agent without a
supervised training phase. Pretrained baselines have
high language scores when assessed with dataset-
based metrics, e.g BLEU or task-perplexity. Yet, they
also remain close to the original dataset distribution
with a medium external perplexity. Noticeably,
TrufLL with the task-specific LM follows the same
pattern. On the other hand, TrufLL with the external
LM reports poor dataset-based language scores, while
maintaining a low external perplexity. Therefore,
TrufLL seems to correctly capture the language distri-
bution of the initial LM. As the performance score is
high when using an external LM, it suggests that our
approach can learn a policy on a language task with-
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out the need of a task-related dataset. Less positively,
TrufLL diversity metrics suggest potential mode
collapse, with a high peakiness and self-BLEU score.

Qualitative performance: We display qualitative
samples in Figure 2 and Appendix D. On the one hand,
the pretrained baselines generate either a question in-
consistent with the visual context, or which fails to an-
swer the expected answer. They inaccurately capture
the pragmatics of the task. On the other hand, TrufLLL
generate adequate questions, resulting in the expected
answer. Interestingly, they are often grounded with
different objects of the image. It is remarkable that
TrufLL with a generic LM still manages to capture the
necessary subtleties of VQG, without any prior task
knowledge. Despite a peaky distribution, TrufLLL has
moderate repetitions across images, and is mostly over-
confident. As for the scratch+KL samples, they are ei-
ther not grounded, or showcase degenerated language.

Truncation function in CLEVR: In Table 2, we
evaluate the different truncation functions defined in
Section 3. While all truncation methods report similar
task performance, the dynamic truncation functions,
ie. pw(a), top(p) and sample(k), outperform the
top(k) regarding language metrics. Interestingly, the
sample(k) one, which generates a stochastic truncated



Trunc. | Score | BLEU CIDEr ppl-ed) | SBLEU(})
TrufLL (Task-LM)

top(k) 0.50 0.12 0.32 100 0.93
pen (@) 0.54 0.17 0.65 24 0.95
top(p) 0.51 0.17 0.69 12 0.96
sample(k) 0.50 0.18 0.73 16 0.89
TrufLL (Ext-LM)

top(k) 0.52 0.06 0.15 151 0.94
Pth (@) 048 0.08 0.34(+0.10) 3.0 0.95
top(p) 0.45 0.10 040(£0.17) 3.3 0.92
sample(k) 041 0.13 0.46(+0.16) 2.7 0.92

Table 2: CLEVR task: Truncation functions with parameters:
top(k=10), pe(=0.05) top(p=0.85), sample(k=20).
Best values are underlined, best values for each TrufLL
algorithms are in bold.

action space, while having a lower performance, yields
to the most correct and diverse language, with higher
language scores and a lower self-BLEU. A stochastic
action space might be harder to explore efficiently
for reaching good task-solving abilities, but might
strengthen the agent language generation properties.

52 VQAV2 task

In CLEVR, we observe that TrufLL seems a promis-
ing approach to learn a language policy without a
supervised training phase, by solely interacting with
another language system. We scale our approach to
natural language with large vocabulary (15k tokens)
through the VQAv2 dataset.

Quantitative performance: Table 3 reports the
VQAV2 results, for which TrufLL and the baselines
present a similar trend than on CLEVR. First, the
scratch baselines keep failing to learn a valuable
policy, with performance scores and n-grams metrics
close to zero. Although TrufL.L does not outperform
the performance of the pretrained baselines anymore,
it still leads to similar performances, and satisfactory
language scores. The similarity between TrufLL
(Task-LM) and TrufLL (Ext-LM) results suggests
that the truncation approach is viable when using a
generic LM whose original vocabulary distribution
differs from the task. Interestingly, TrufLL displays
a self-BLEU score similar to the pretrained baselines.
This suggests that the poor diversity behavior
observed on CLEVR is likely attributable to the small
vocabulary and synthetic language distribution.

Qualitative performance: In Figure 2 and Ap-
pendix D, we display question samples for all models.
TrufLL. and the pretrained baselines successfully
generate a question giving the expected answer
("Black"), while the RL from scratch baselines fail,
and even showcase degenerated language. Pretrained
baselines tend to output a question closer to the
reference question whereas TrufLLLL outputs original
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questions which differs from the VQA distribution,
yet consistent with the context.

Human Evaluation: Figure 3 details the Human
Evaluation results. Among the RL from scratch
baselines, we selected scratch+KL-task as the only
model producing sometimes meaningful questions.
Yet, it fails to generate correct and grounded language;
it is thus not a viable approach despite its diverse
output. In line with the automatic metrics, the
supervised baselines produce the best language,
while being accurately grounded. Yet, they exhibit
significantly less diversity with the reference lan-
guage; this suggests in particular that pretrain+RL
fails to go beyond the initial task-data distribution.
Finally, unlike TrufLL (Task-LM) which suffers
from syntactic errors, TrufLL (Ext-LM) produces
language that qualitatively competes with pretrain
models (53%), with a similar ratio of syntactic
uncorrect samples. Although its questions are less
grounded, they are diverse, which suggests that they
follow a different distribution from the initial VQA
dataset. It confirms that TrufLL (Ext-LM) could be
an alternative approach as it has an excellent trade-off
between language quality, diversity, and grounding.

Decoding procedure: In Table 4, we evaluate the
text sampling procedures described in Section 4.5.
While greedy decoding produces the best outcome for
pretrained models, Im-ranking provides an excellent
trade-off between task performance and language
quality with RL-based methods. As PG solely
optimizes the task success ratio, this may reduce
overall language quality, the re-ranking thus retrieves
the best syntactically sentences a posteriori.

5.3 Discussion

Removing the truncation at evaluation with off-
policy RL. So far, TrufLL directly learns the trun-
cated policy over the truncated vocabulary ;™ in an
on-policy scheme. Hence, the algorithm requires the
truncation, and a fortiori the language model, at test
time. In this section, we investigate if we can directly
learn a policy over the full vocabulary, and thus remov-
ing the truncation at test time. In such a setting, we
adopt an off-policy training scheme, where the trajec-
tories used to learn the behavior 7y at training time are
sampled under a different policy, the truncated policy
7, - Thus, we need to unbiased the PG by using an
importance sampling term between the exploratory
policy 7, and the behavior policy g (Degris et al.,



Method | Score R@5 | BLEU Meteor CIDEr ppl-t ({) ppl-e (1) | sBLEU (}) peak.({)

Pretrain 038 0.59 0.30 0.40 0.93 12 24 0.80 0.99
Pretrain + RL fine-tune 041 0.63 031 041 0.98 21 50 078 0.99
Scratch 0.01 0.04 0.00 0.00 0.00 107 10 0.75 1.00
Scratch + KL-task 0.11 0.29 0.24 0.27 0.24 102 102 027 0.74
Scratch + KL-ext 0.01 0.05 0.06 0.04 0.01 108 103 0.10 0.20
TrufLL (Task-LM) 0.35 0.56 0.21 0.15 0.11 24 102 0.78 0.99
TrufLL (Ext-LM) 0.34 0.52 0.18 0.15 0.04 102 24 0.83 0.99

Table 3: VQAV2 metrics on 20k test episodes with 100k train episodes. Scores are averaged over the three decoding procedures.
scratch+KL has Ak 1, =0.05, the truncation for TrufLL with (Task-LM) and TrufLL (Ext-LM) are respectively p¢n (c=0.005) and
pen(ae=0.0075). Best values are underlined, best values without task-data are in bold.

presrein (21 o - e presrein i1 o --. presrein (31 o ---
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Pairwise comparisons: % of questions chosen for the model in bold (rows) when compared to the concurrent model (columns).

| pretrain (2) | pretrain+RL (3) | scratch+KL-task (5) | TrufLL (Task-LM) (4) | TrufLL (Ext-LM) (1)
Syntax errors | 16% | 17% \ 27% \ 24% \ 15%

Figure 3: VQAW2 results for Human Evaluation study detailed in Section 4.4. The three matrices on top are pairwise comparisons:
each cell displays the proportion of questions chosen for the models in the row (bold) when compared to the concurrent model in
the column. The table at the bottom displays the proportion of incorrect questions coming from each model among all incorrect samples.
In all figures, bracket numbers indicates the model rank per criteria, from 1="best" to 5="worst".

Method Tge:ei;" ‘ SOCZ: ‘ BOL;U Clﬂz]fr - 11-e monitor the probability mass of the policy attributed
pretrain sampling | 037 | 030 088 6 to the truncated action space (sumVA). The policy
il | 037 | 04 087 % only samples words within the truncated action space

pretrain + RL sfrlsgﬁzg % % % 2? when sumVA = 1, without needing the truncation.
imranking | 040 | 031 099 % On CLEVR, the TrufLL.g has lower - yet close

TrufLL (Task-LM) sangf;ﬁzg 0% | o0 onm 9 i} performanc.e on language. and task scores than
Imranking | 034 | 021 01l 95 TrufLL. As its sumVA ratios are very close to 1,

TrfLL (ExtLM) sf;f;ﬁrylg o6 o8 0 2 the agent has learned to generalize over the full
Imranking | 033 | 019 015 20 vocabulary. However, the approach does not manage

to sufficiently scale to VQAV2. It could be improved
with regularisation techniques and the use of TruFLL
within state-of-the-art off-policy RL algorithms. We
leave such possibilities to future works.

Table 4: VQAv2: Ablation on the sampling methods. Overall
best values are underlined, TrufLL best values are in bold.

2012). Formally, the off-policy PPO loss is defined by:

of f(p) — in (7P ; =0 Al S BLEU CIDEr ppl- sBLEU  sumVA
L35 (0) _Eﬂe_ [min(pf Ag,clip(1—€,p{,1+€) Ay)], CEEZVR | Score | r pple | s sum
(aalse) TrufLL 056 | 0.17 006 10° | 078  NA
_ uy’) at¢|St) . . 4
where p) = ”9(“(”3() e is the new ratio 4 TrufL Lo 050 | 004 043 10* | 088 096
001 0t15t) w5 (at|st) VQAv2

Table 5 displays the on-policy and off-policy "T[TLfLLL ‘ 833 ‘ 83; 8(1) } 18?1 8(3)2 ON 5;
results on both VQG tasks for TrufLL (task-LM), UfLLoge . . . . .
and is further detailed in Appendix B.3. We also

Table 5: On-policy vs. off-policy scores: when training with

. L . L an off-policy loss, we remove the truncation at test time.
“Note that we did not simplify the expression to highlight the potey

importance sampling ratio.
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Additional experiments. We sweep over truncation
hyper-parameters in Table 6 of Appendix B. In
Table 8, we observe that rewarding an agent with a
BLEU score is sub-optimal in both language and task
scores on CLEVR. In VQA, we apply temperature
scheduling on the LM to perform fine-grained
truncations in Table 9 of B.2. Finally, we explore
TrufLL with a pre-training phase in Table 10.

Generalization of the approach. TrufLL learns
conditional language models able to solve specific
Natural Language Generation tasks given a context c.
For solving such tasks, it only requires the context, a
reward function that scores the language generated by
the RL agent with respect to the task, and eventually
a few natural language demonstrations fed as input
prompt to the generic language model used in the
truncation algorithm. Hence, the method is transfer-
able to a wide variety of NLG tasks, without requiring
upfront large-scale labelled datasets. Additionally, the
RL framework allows to optimize non-differentiable
objectives, making TrufLLL a natural choice to learn
end-to-end task-oriented dialogs, such as (De Vries
et al., 2017; Das et al., 2017). Other interesting tasks
for TrufLL include the ones typically found in Vision
and Language Representation Learning (Lu et al.,
2020a), such as Image Captioning, Grounding Refer-
ring Expressions (generation of a referring expression
over a specific bounding box of an image), Caption-
based Image Retrieval (generation of a caption that
discriminates an image between a set of images).
Reward functions for such tasks can be based on
similarity scores between the generated language and
the associated image or image region, which can be
computed using pretrained language representations
such as BERT (Devlin et al., 2019) or multi-modal
pretrained systems such as VILBERT (Lu et al.,
2019). The context can be any kind of data structure
(natural language, database, video, etc): if it is a
linguistic input, TrufLLL can be applied for instance
to text summarization, paraphrase generation (with
reward functions based on similarity scores between
the context and the generated language) or text-based
games (Ammanabrolu and Riedl, 2018).

6 Related work

RL and NLP Tasks. Following (Singh et al., 2002;
Lemon and Pietquin, 2007), recent RL-based task-
oriented dialogues (De Vries et al., 2017; Das et al.,
2017; Lewis et al., 2017; Narasimhan et al., 2015)
have been developed, where the policy language
model is generally pretrained with SL followed RL
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fine-tuning. Yang et al. (2018); Fan et al. (2018)
focused on tackling VQG tasks with RL, respectively
on CLEVR and on the VQG dataset. Yet, the former
uses slot filling with template questions, while the
later computes a mixed objective with a MLE loss
using ground-truth sentences. Bahdanau et al. (2016);
Rennie et al. (2017) use RL to train language models
as an alternative to SL to prevent typical text degen-
eration issues, but within training algorithms relying
on ground-truth examples from labelled datasets.

RL methods for Language Action Spaces. Sev-
eral RL algorithms have been developed to tackle
large discrete action spaces. Hence, Dulac-Arnold
et al. (2015); Tennenholtz and Mannor (2019); Chan-
dak et al. (2019) embed the actions into a continuous
action space, and then use classic RL algorithms to
learn a policy over this continuous space. Zahavy
et al. (2018); Seurin et al. (2020) proposes Q-learning
algorithms with an elimination signal to eliminate for-
bidden actions. Closer to our work, a few algorithms
(Ammanabrolu and Riedl, 2018) use the structure
of language to prune the action space of text-based
games, but within value-based algorithms, which are
less scalable to large vocabularies. Similarly to Tru-
fLL, CALM (Yao et al., 2020) combines a pretrained
language model to prune the action space with a Deep-
Q network, aka DRNN (He et al., 2016). Yet, its trun-
cation language model remains fine-tuned on the RL
dataset. Besides, CALM is only evaluated on a vocab-
ulary of 697 tokens, and on 4-words action sequences.

Learning Language Models from scratch.
(Ziegler et al., 2019; Garg et al., 2021) finetune
pretrained GPT-2 models with RL for language
generation tasks without task-related data, only using
reward signals. Yet, they still face optimization and
computational challenges (Parisotto et al., 2020).

7 Conclusion

We proposed TrufLLL, an original approach to learn
a natural language generation (NLG) task using
RL, without the usual pre-training phase requiring
supervised datasets. To our knowledge, this is the
first RL-based algorithm dedicated to learning a
word-based text-generation task, which does not
rely on a pre-training phase while scaling to large
vocabularies. Although it comes with its limitations,
the truncated RL algorithm provided by TrufLL gets
free from labelled data in task-oriented language
models, presents interesting language generation
properties, and provides a generic and transferable
method to learn any NLG problem.
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A Dataset and training details

A.1 Evaluation Metrics

For the BLEU and METEOR scores, we used the NLTK? implementations with the smoothing function number
2 for the BLEU score. For the CIDEr score, we used the nlg-eval implementation®.

A.2  Answer filtering

For each dataset, we remove yes and no question-answer pairs which frequency largely exceeds other answers,
to avoid any bias in the question generation process, as usually done in the VQG litterature (Mostafazadeh
et al., 2016).

A.3 Dataset split

For CLEVR (resp. VQAV2), the RL language agent is trained for 50k (resp. 100k) episodes over the first 20k
images (resp. all the images) of the training dataset, and is then evaluated on the first 5k (resp. 20k) images
of the validation set. Besides, we uniformly sample the answer in the set of reference answers for each image
to reduce the bias in the distribution of answers. Finally, questions are limited to 20 (resp. 10) words.

A4 Language Agent Networks and Training

For CLEVR (resp. VQAV2), we used a single-layer LSTM with 64 (resp. 256) units for the policy network.
At every time step, the LSTM input is then the concatenation of the word embedding of dimension 32 (resp.
128), the answer embedding of dimension 32 (resp. 128), and the image representation. For CLEVR, the image
representation is extracted from a pretrained ResNet50 and projected into a tensor of size (32,7,7) before being
flattened. For VQAV2, the image representation is the average of 200 bounding box features of dimension
1048, extracted from a faster R-CNN (Ren et al., 2015).

We optimize the full loss L= Lppo+alLyrp+SLg witha=0.5, 3=0.01 and a PPO clipping ratio e =0.02
(resp. 0.01) for CLEVR (resp. VQAv2). We use Adam optimizer (Kingma and Ba, 2014) with a learning rate
(Ir) of 1073 for TrufLL and the scratch baseline, 10~° (resp. 10~5) for RL algorithms with a pre-training phase
on CLEVR (resp. VQAV2), and 5 10~ for models including a KL regularization term. We use a batch size (bs)
of 128 for all models except the ones with KL regularization, for which we use a batch size of 64. Finally, for
the RL from scratch baselines, we perform gradient clipping (gladclip) of 1 (resp. 5) for CLEVR and VQAV2.

Such hyper-parameters were selected, after conducting an extensive hyper-parameter search. The
following values were tested: 5 € {0.01, 0.02, 0.05, 0.1}, ¢ € {0.01, 0.02, 0.05, 0.1, 0.5, 0.9}, Ir
€{1076,1075,107%,5%x1074,1073,5%1073,1072,5%10~2}, gradclip € {None,1,5,10,100}, bs € {32,64,128}.

Additionally, we also tested for VQAV2 policy networks with 64, 256 and 1024 units, with respectively
32, 128 and 512 word embedding dimensions. We kept the network size giving the best performances, i.e.
policy network of 256 units and 128 word embedding dimension.

A.5 Reward formula for VQAv2

In this section, we detail the reward function used for the VQAV2 task. 7 (wy,w<¢,¢) = 1 A)Slo,t:T_le*rk(A)/ 2,
with rk(A) the rank of the ground-truth answer given by the VQA model, when predicting the actual answer
from the terminal state (c,w-r). Formally, it is defined as:

rk(A) =rank(VQA (c,w<r)[A]),
with VQA (c,w<r) the probability distribution given by the VQA model over the set of answers, and rank
the function which ranks the probability of answer .4 within VQA (c,w-7) probability distribution.
B Additional experiments
B.1 CLEVR

Table 6 displays the complete ablation on the truncation functions with parameters sweep. The ’sizeVA’ variable
indicates the average size of the truncated action space for each truncation function. Table 7 displays the

Shttps://www.nltk.org/
*https://github.com/Maluuba/nlg-eval
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ablation over the three decoding procedures defined in Section 4.5. Such an ablation presents a similar pattern
than VQAV?2 results described in section 5.2.

Finally, Table 8 reports CLEVR metrics when using the BLEU score as the reward. While on such a task
TrufLL still exhibits promising language scores, the n-grams metrics remain lower than the pretrained baselines.
This illustrates that using a language similarity score as a reward signal is much less interesting than a reward
based on a task completion score.

Table 6: CLEVR task: Ablation on the truncation functions with parameters sweep. Best values are in bold.

trunc. | Score | BLEU CIDEr ppl-e(]) | SBLEU(]) Size VA
TrufLL (Task-LM)

top(k=10)) 050 | 012 032 107 0.93 10
top(k=20) 045 | 010 024 108 0.87 20
pwn(a=0.05) 055 | 018 063 25 0.96 44
pen(=0.1) 047 | 0.18 0.87 6.7 0.98 2.4
pm(a=1/V) 050 | 016 049 41 0.97 6.6
top(p=0.85) 052 | 017 069 104 0.96 4.6
top(p=0.9) 051 | 017 069 115 0.96 5.1
sample(k=20) | 050 | 0.18  0.73 189 0.86 54
sample(k=30) | 050 | 0.8  0.73 16.1 0.89 6.1
TrufLL (Ext-LM)

top(k=10)) 052 [ 006 0.5 107 0.94 10
top(k=20) 048 | 005 012 102 0.89 20
pen(a=0.05) 048 | 008 034 3.03 0.95 33
pm(a=0.1) 045 | 017 074 22 0.99 2.1
pn(a=1/V) 044 | 0.11 0.37 37 0.96 5.7
top(p=0.85) 045 | 010 039 32 0.92 4.1
top(p=0.9) 048 | 015 057 2.8 0.97 43
sample(k=20) | 045 | 0.14 050 24 0.92 4.1
sample(k=30) | 043 | 0.3 046 2.7 0.92 4.6

Table 7: CLEVR task: Ablation on sampling methods. Best overall values are underlined, while best values for TruFLL are in bold.

method text-gen | score | BLEU CIDEr ppl-e
greedy 0.32 0.22 1.01 14
pretrain sampling 0.29 0.17 0.76 58
Im-ranking | 0.28 0.18 0.73 20
greedy 0.53 0.18 0.73 24
pretrain + RL  sampling 0.40 0.16 0.68 39
Im-ranking | 0.40 0.17 0.68 5
greedy 0.57 0.17 0.65 39
Task-LM sampling 0.55 0.17 0.66 24
Im-ranking | 0.51 0.16 0.65 9
greedy 0.48 009  0.340.11) 3.0
Ext-LM sampling 048 0.10 0.35(+0.11) 3.1
Im-ranking | 0.48 0.06 0.34(40.11) 29

B2 VQAW2

Temperature scheduling: On the CLEVR task, we observed that dynamic truncations outperform static
ones such as top(k): indeed, they better take into account the inherent variability of the language structure
at the sentence-level. When scaling up to the 15k words of the VQAV2 task, we also dynamically decrease
the truncation size through training, by applying a decreasing temperature schedule on the language model.
While temperature scaling (Bahdanau et al., 2015) is usually used at test time to control the smoothness of
the language model distribution, temperature schedules during training of language models have been used in
several settings (Jang et al., 2016; Zhang et al., 2018; Wang et al., 2020). Formally, f7rs(w;|w<;) distribution is
computed as softmax(xz;) =e %/ /3" e /7, with 2; the LM logits and 7 the temperature, which decreases
from Tpq0 tO Trin by a factor T every T, training step. In Table 9, both TrufLL (Task-LM) and TrufLLLL
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Table 8: CLEVR, BLEU reward. Scores are averaged over the three decoding procedures detailed in Section 4.5 and over 5
seeds, standard deviation are displayed whenever greater than 0.01 for accuracy metrics. We here report the models with the highest
task-success, i.e. the scratch with KL regularization baseline with Ax 7, =0.1, and the truncation model with a probability threshold,
pen(@=0.05). Baseline and Metrics are respectively detailed in Section 4.4 and 4.3. Best overall values are underlined, while best
values for models without task-data (i.e RL from scratch algorithms) are in bold.

Method | Score R@5 | BLEU Meteor CIDEr ppl-t () ppl-ed) | SBLEU(])  peak.(})
pretrain 0.30 0.71 0.19 0.38 0.83 3.1 31 0.44 0.96
pretrain + RL fine-tune 034 0.80 0.20 038 0.83 3.8 12 0.56 0.96
scratch 0.03 0.19 0.06 0.09 0.09 108 108 0.13 0.14
scratch + KL-task 0.09 033(+0.15) | 0.15 031 0.58(+0.23) 38 63 0.34 0.95
scratch + KL-ext 0.06 030(£0.23) | 0.13 0.25 0.42 108 3.6 0.37 0.96
scratch + Truncation-task 0.17 0.51 0.18 0.37 0.80 2.6 17 0.63 1.0
scratch + Truncation-ext 0.07 0.36 0.16 0.29 049 102 23 0.60 1.0

(Ext-LM) benefit slightly from truncation with a temperature schedule compared to a vanilla truncation. The
former displays the best performance/language scores trade-off for the schedule "7: 3 > 1. & 7;,=5,000", while
the latter has the best metrics trade-off for "7: 1.5 > 1. & 1,,=5,000".

Finally, Figure 4 displays the evolution of the training return for TrufLL and the baselines. As expected,
the pretrain+RL fine-tune baseline return does not evolve much, confirming that the policy distribution almost
does not shift through the fine-tuning phase. The training curves of TrufLL present a steady increase in the
return until reaching convergence, confirming that our approach, by guiding the exploration of the action space,
provides a sufficient learning signal. On the other hand, the scratch+KL baselines stay stuck to a low training
return. This suggests that the KL regularization term, while encouraging the policy distribution to resemble
the language model distribution, fails to capture the task pragmatics, which requires generating a language
that is visually grounded.

Table 9: VQA task: Ablation on the temperature schedules. "no temp. sch" is a classic truncation without temperature scheduling.
We then report different schedules 7 : Tyaz > Timin, Tu, With Tmaz, Tmin, Tu, and Ty =0.75 as defined in section B.2. Best values
are in bold.

Scheduling Score | BLEU CIDEr ppl-e(}) | sBLEU(})
TrufLL (Task-LM)

no temp. sch 0.35 0.20 0.11 107 0.78
715> 1. T.=5,000 0.34 0.18 0.11 102 0.79
T:3>1. T..=5,000 0.35 0.22 0.13 102 0.76
T15>1. T.=15,000 0.31 0.23 0.23 102 0.73
TrufLL (Ext-LM)

no temp. sch 0.34 0.18 0.04 25 0.83
T 15>1. T.=5,000 0.33 0.19 0.05 20 0.83
T:3>1. T.=5,000 0.32 0.15 0.05 35 0.82
T 15>1. T.=15,000 0.29 0.16 0.08 38 0.68

B.3 Additional discussion

TrufLL with a pre-training phase. Although TrufLL aims at providing a robust method to learn a language
model (almost) from scratch, we investigate whether such algorithm can be complementary to RL algorithms
with a pre-training phase. Therefore, when using the task-related dataset, we evaluate TrufLL from a pretrained
policy, and we refer to it as TrufLLpretrain-

In table 10, while on CLEVR, TrufLLpetrain marginally improves the results of the pretrain+RL fine-tune
baseline, the combination of TrufLLL with a pre-training phase leads to performance degradation on VQAV2.
This suggests that on a large vocabulary task, the language distribution learned by the SL pretrained policy
is significantly different from the one learned with TrufLL.

On-policy TrufLLLL versus off-policy TruflLL.. To ease off-policy learning, we propose to add a KL-
regularization term in the RL loss (Jaques et al., 2017, 2019; Wu et al., 2019), and refer to it as TrufLLe k1,-
Intuitively, it encourages the policy to stay close to the language model’s distribution, with a distribution support
attributing negligible probabilities to words outside the truncated action space.
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Figure 4: VQAV2: Training curves. Reward is a rolling average over 5000 timesteps.

Table 10: TrufLLpretrain results on the 2 tasks. Additionally, we report the results for the pretrain+RL fine-tune baseline as a
comparison. Best values are in bold.

Algo | Score | BLEU CIDEr ppl-e | sBLEU
CLEVR

pretrain+RL 0.44 0.17 070 35 0.46
TrufLLpretrain 0.61 0.18 077 22 0.84
VQAV2

pretrain+RL 041 0.31 098 50 0.78
TrquJLpretrain 0.33 0.27 0.42 35 1 0

Table 11 displays the full results of on-policy versus off-policy scores for TrufLLL. (Task-LM) and TrufLLLL
(Ext-LM) on the two tasks. The full results emphasize the challenges of the approach for the large vocabulary
of VQAV2. Indeed, on the off-policy setting for such a task, the exploding values for e-ppl suggest that the
optimized language agent samples incoherent words taken outside the truncated action space, as corroborated
by the low values of the sumVA ratio.

Interestingly, while on CLEVR, TrufLL k7, trades off task performance for language quality when
compared to TruflLL.g, on VQAV2, it mainly provides a better learning signal for the complete (large)
vocabulary. In such a setting, it hence improves the global scores of the off-policy version of TrufLLL, and
enables a much better generalization at test time of the global policy over the full vocabulary. Yet, keeping
truncation at test time remains crucial with large vocabulary. Note that for VQAv2, the poor performances
of TrufL.Lg k1, on the external LM is mainly due to numerical instability challenges when using GPT-2 as
the target policy of the KL regularization term.

Additionally, on-policy versus off-policy scores split per sampling procedure are displayed in table 12:
unsurprisingly, greedy decoding for TrufLLL.¢ outperforms the two sampling-based methods, that are more
penalized by the imperfect generalization of the optimized policy over the full vocabulary.
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Table 11: On-policy vs. off-policy scores for different variants of TrufLL: when training with an off-policy loss, we remove the
truncation at test time. TrufLLog k1, is evaluated with Ax 7, =0.05. Best values are in bold.

Algo | Score | BLEU CIDEr ppl-e | sBLEU sumVA
CLEVR

TrufLL (Task-LM)

TrufLL 0.56 0.17 006 10° 0.78 N.A
TrufLLog 0.50 0.14 043 10* 0.88 0.96
TrufLLogs k1. 0.39 0.17 071 69 0.48 0.95
TrufLL (Ext-LM)

TrufLL 0.48 0.08 034 3.03 0.95 N.A
TrufLLogs 0.41 0.10 035 10° 0.88 0.95
TrufLLog k1. 0.35 0.15 0.60 20 0.55 0.96
VQAV2

TrufLL (Task-LM)

TrufLL 0.35 021 0.11 10* 0.36 N.A
TrufLLog 0.07 0.03 001 10* 0.05 0.08
TrufLLogs k1. 0.12 0.24 025 108 0.26 0.71
TrufLL (Ext-LM)

TrufLL 0.34 0.18 004 24 0.83 N.A
TrufLLogs 0.09 0.04 001 10* 0.05 0.07
TrufLLog 1. 0.0 0.15 002 10° 0.19 0.47
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Table 12: On-policy vs. off-policy scores per decoding procedure: when training with an off-policy loss, we remove the truncation
at test time. TrufLLog k1. is evaluated with Axz, =0.05. Best values are in bold.

method text-gen | score | BLEU CIDEr e-ppl
CLEVR
TrufL.L, (Task-LM)
greedy [ 057 [ 0.7 065 39
TrufLLLL sampling 0.55 0.17 0.66 24

Im-ranking | 0.51 0.16 0.65 8.8

greedy 0.52 0.17 0.58 71

TrufLLog sampling | 049 | 0.16 059  10°
Im-ranking | 048 0.17 0.58 19

greedy 0.56 0.18 0.78 24

TrufLLog k1,  sampling | 0.31 | 0.16 062 10
Im-ranking | 0.31 0.18 0.74 5.8

TrufLL (Ext-LM)

greedy 0.48 0.09 0.34 3.1
TrufLL sampling 0.48 0.10 0.35 3.1
Im-ranking | 0.48 0.06 0.34 29

greedy 042 [ 010 038 44
TrufL.Log sampling | 040 | 0.10 035 106
Im-ranking | 0.40 0.10 0.34 15

greedy 048 | 016 070 21

TrufLLog k1, sampling 0.27 0.13 0.48 55
Im-ranking | 0.30 0.16 0.61 2.0

VQAw2
TrufLL (Task-LM)
greedy 0.36 0.20 0.11 366
TrufLL sampling 0.35 0.20 0.11 337
Im-ranking | 0.34 0.21 0.11 95

greedy 009 [ 004 002 10°

TrufLLog sampling | 0.05 | 0.03 0.01 10°
Im-ranking | 0.06 | 0.03 0.01 10*

greedy 0.16 0.29 0.46 38

TrufLLog k1,  sampling | 0.08 | 0.19 009  10*
Im-ranking | 012 | 024 022 107

TrufLL (Ext-LM)

greedy 0.48 0.09 0.34 3.1
TrufLL sampling 0.48 0.10 0.35 3.1
Im-ranking | 0.48 0.06 0.34 2.9

greedy 0.11 | 0.05 0.01 107

TrufLLogs sampling | 0.07 | 0.03 0.01 10°
Im-ranking | 0.08 | 0.04 0.01 10*

greedy 000 | 018 005 27

TrufLLog xr,  sampling | 0.00 | 0.13 0.01 10°
Im-ranking | 0.00 | 0.16 002 10
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C Human Evaluation details

For the Human Evaluation study, we designed one form per participant, with three sections evaluating
respectively the language quality, language grounding and diversity criteria. Given the five evaluated models,
there are ten different model pairs: each section of the form contains 10 pairwise comparison covering all the
possible model pairs for the criteria. Each pairwise comparison is sampled uniformly over the 50 first question
samples generated by the algorithms at test time. The evaluation of syntax errors was made within the diversity
section: for each questions pair, we asked participants to tick the questions if they are grammatically incorrect.
Figure 5 displays one pairwise comparison example for the three sections, and a full form example is available
at the following url: https://forms.gle/kkL38x31wF7A9YKx5.

Evaluation of question quality

Select the question that is the most syntactically and semantically correct, and is more likely to be human
language.
Pair #4 *

o Q1: What is the cat inside of?

O Q2: What color is the man's shirt?

(a) Language Quality pairwise comparison

Question Relevancy with image and answer

Select the question that is the most suitable given the image and answer.

Answer: california

Pair #2 *

O Q1: What is the girl wearing on his shirt?

O Q2: Where could it must be appropriate found?

(b) Language Grounding pairwise comparison

Figure 5: Examples of pairwise comparison for each evaluated criteria.
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Question Diversity with a reference question

Select the question that is the most different from the reference question (or the most original).

Reference question: What color spot does the horse have? *

O Q1: What color is the animal?

O Q2: Which color is his socks?

Tick the question if it is grammatically incorrect.

CI Q1: What color is the animal?

CI Q2: Which color is his socks?

(c) Diversity/Originality with reference question. Pairwise comparison and evaluation of syntax errors.

Figure 5: Examples of pairwise comparison for each evaluated criteria. (cont.)

D Additional VQG Samples

Figure 6 and Figure 7 display the 10 first dialog samples produced at test time on CLEVR, while figures 8,
9, and 10 display the 15 first dialog samples produced at test time on VQAv2.
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Human the big yellow object is what shape ?  A:sphere

pretrain there is a small thing that is the same color as the small rubber cylinder ; what is its shape?
pretrain + RL ‘What is on the person’s head?

scratch yellow on or an material ?

scratch+KL-task what number of other things are the same shape as the small gray thing ?

scratch+KL-ext

does that tiny object have objects to its left ?

TrufLL (Task-LM)  what shape is the big thing that is to the right of the big matte thing ?
TrufLL (Ext-LM) what is the shape of the big object that is behind the big yellow thing and is the same color?
Human what number of other objects are the same size as the red rubber thing ?  A:3
pretrain how many other things are there of the same size as the purple rubber thing ?
pretrain + RL what number of objects are either large green metallic objects or tiny objects
that are behind the tiny purple metallic thing?
scratch many tiny cubes things things things things things both things as things that

scratch+KL-task
scratch+KL-ext

what number of other objects are there of the same material as the tiny cyan thing ?
are there any blue objects ?

TrufLL (Task-LM)  what number of objects are either big objects in front of the small yellow object or big matte objects?
TrufLL (Ext-LM) how many objects in front of the big object ?

Human what number of other things are there of the same material as the large green object? ~ A:3

pretrain how many other things are there of the same size as the purple rubber cylinder ?

pretrain + RL what number of objects are either tiny cyan things or big cyan things ?

scratch many tiny cubes things things things things things both things as things that

scratch+KL-task what number of other objects are the same shape as the small yellow object ?

scratch+KL-ext

how many things does that large thing have to its behind ?

TrufLL (Task-LM)  what number of other things are there of the same size as the green cylinder ?

TrufLL (Ext-LM) how many objects in front of the in the cylinder ?

Human what number of other things are there of the same shape as the small purple metallic thing ?  A:1
pretrain what number of other objects are the same color as the tiny rubber cylinder ?

pretrain + RL what number of purple objects are either small matte objects or big matte blocks ?

scratch many gray in big purple purple purple many or many gray matte matte

scratch+KL-task what number of other things are the same color as the large rubber cylinder ?

scratch+KL-ext how many other things in the are of same color as the large cylinder ?

TrufLL (Task-LM) ~ how many tiny things have the same color as the large rubber thing ?

TrufLL (Ext-LM) how many other things in the are of the same color as that large thing ?

Human what shape is the big matte object that is on the right side ofthe big cyan matte object ?  A:cylinder
pretrain the cyan matte thing that is the same size as the brown object is what shape ?

pretrain + RL what shape is the cyan matte object that is behind the cylinder ?

scratch many yellow big either either that that that more that metal ?

scratch+KL-task what number of other things are the same shape as the small gray thing ?

scratch+KL-ext what number of blocks are in the things in the ?

TrufLL (Task-LM)
TrufLL (Ext-LM)

how many tiny things have the same color as the large rubber thing ?
what is the shape of that large thing ?

Figure 6: Samples on CLEVR.
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Human what is the size of the other rubber cylinder that is the same color as the big cylinder ? ~ A:small
pretrain there is a purple object that is the same size as the purple rubber cylinder ; what is its shape?
pretrain + RL what size is the gray ball that is right of the purple sphere ?

scratch that greater tiny as shiny both are a tiny it either ball right

scratch+KL-task there is a big thing that is the same color as the big matte cylinder ; what is its shape?

scratch+KL-ext

how material is the yellow ?

TrufLL (Task-LM)  how big is the thing that is to the right of the big matte thing ?

TrufLL (Ext-LM) what size is the object that is behind the large red thing ?

Human There is a shiny thing that is both right of the small matte thing and behind the large yellow cube;
what size isit ?  A:small

pretrain there is a big thing that is the same color as the small rubber cylinder ; what is its shape

pretrain + RL there is a brown matte object to the right of the cyan object ; what shape is it ?

scratch many yellow big either either that that that more that metal ?

scratch+KL-task
scratch+KL-ext

what number of other things are the same shape as the small gray thing ?
what is the material of that block ?

TrufLL (Task-LM)  what shape is the big thing that is to the right of the big cyan thing ?

TrufLL (Ext-LM) what is the shape of that large thing ?

Human there is a object that is the same color as the rubber cylinder ;what is its shape ?  A:sphere

pretrain there is a small thing that is the same color as the small rubber cylinder ; what is its shape?

pretrain + RL what shape is the thing that is the same color as the cylinder ?

scratch many yellow yellow and cube shape behind cubes shape less small equal shape small equal large large ?
scratch+KL-task how many other things in the color are of same material as the green shiny object ?

scratch+KL-ext

how many spheres anything ?

TrufLL (Task-LM)  what is the shape of the small cyan thing ?

TrufLL (Ext-LM) And shape ?

Human what is the color of the small thing that is the same shape asthe large gray object ?  A:green
pretrain there is another rubber object that is the same shape as the small brown object ; what color is it?
pretrain + RL what is the color of the tiny rubber thing ?

scratch many sphere less how an

scratch+KL-task what number of other objects are the same shape as the tiny blue object ?

scratch+KL-ext what size is that cylinder ?

TrufLL (Task-LM) what is the color of the tiny matte thing ?

TrufLL (Ext-LM) what color is the small thing ?

Human what number of shiny objects are cyan spheres or tiny balls ?  A:4

pretrain how many other things are there of the same size as the brown rubber thing ?

pretrain + RL how many other things are there of the same size as the cyan rubber thing ?

scratch many yellow do do do either do either do balls

scratch+KL-task what number of other things are there of the same shape as the small gray thing ?
scratch+KL-ext how many other things are of same color as ball ?

TrufLL (Task-LM)
TrufLL (Ext-LM)

how many other things are the same material as the small cyan cylinder ?
how many other things in the material of the small thing that is the same material as green thing ?

Figure 7: Samples on Clevr.
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Human

How many trains? ~ A:1

pretrain How many trains are in the picture?
pretrain + RL How many trains are shown?
scratch AmazingAmazingAmazingAmazingAmazingAmazing

scratch+KL-task
scratch+KL-ext

How many people are in the picture?
The the same way of the same way of the

TrufLL (Task-LM) How many windows are here?

TrufLL (Ext-LM) How many different ways would we take them to reach
Human ‘What is the man wearing over his shirt?  A:nothing
pretrain ‘What is in front of the person?

pretrain + RL What is written on the person’s right?

scratch AmazingAmazingAmazingAmazingAmazing

scratch+KL-task
scratch+KL-ext

Is this child old or unloaded?
The the first thing of the world’s a few

TrufLL (Task-LM)  How many different shapes have been used and used by
TrufLL (Ext-LM) How many planes can be seen on top?

Human Is the fence in the background metal or wood? ~ A:metal
pretrain ‘What kind of dog is on the dog?

pretrain + RL What kind of dog is this?

scratch AmazingAmazingAmazingAmazingAmazing

scratch+KL-task
scratch+KL-ext

What is 150 seated over theware?
The the same way of the same way to be

TrufLL (Task-LM)  Which item has more aggressive up their legs?

TrufLL (Ext-LM) How many different species have been captured and tagged here
Human ‘What is the title of the red book?  A:harry potter

pretrain ‘What is the cat inside of?

pretrain + RL Is the cat inside or outside?

scratch AmazingAmazingAmazingAmazingAmazing

scratch+KL-task
scratch+KL-ext

What color is the man’s shirt?
The way of the world’s a lot of the

TrufLL (Task-LM)  Which item appears higher into one and lower?
TrufLL (Ext-LM) ‘What was that?

Human What color is the fire hydrant? ~ A:red
pretrain What color is the hydrant?

pretrain + RL ‘What color is the hydrant?

scratch AmazingAmazingAmazingAmazingAmazing
scratch+KL-task ‘What color is the man’s bat?

scratch+KL-ext The the first thing is a good thing that the
TrufLL (Task-LM) ‘Which color is this fire?

TrufLL (Ext-LM) What color will your feet color look?

Human How many wheels does the truck have? ~ A:3
pretrain How many people are in front of the bus?

pretrain + RL

How many slices ofists are on the plate?

scratch
scratch+KL-task
scratch+KL-ext

AmazingAmazingAmazingAmazingAmazing
Is summer out or cloudy next to Winchester?
The the most recent of the most recent years of

TrufLL (Task-LM)
TrufLL (Ext-LM)

How many pieces are here?
How many different objects have been used?

Figure 8: Samples on VQA.
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Human ‘What is on top of the round dome?  A:flag
pretrain ‘What is on the top right mean?

pretrain + RL ‘What is on the front of this event?

scratch AmazingAmazingAmazingAmazingAmazing

scratch+KL-task
scratch+KL-ext

‘What zombie is on the mouse?
The the first thing is a bit of the first

TrufLL (Task-LM) Where could one travel park located?

TrufLL (Ext-LM) ‘What color will your shoes look?

Human Where is the chain link fence? ~ A:background
pretrain ‘What is he holding?

pretrain + RL What is he fire hydrant?

scratch mazingAmazingAmazingAmazingAmazing
scratch+KL-task ‘Who is closest to the paint?

scratch+KL-ext The the first thing is a great deal with the

TrufLL (Task-LM) ~ Which item represents than both ends and lower?
TrufLL (Ext-LM) How much food has it given him?

Human ‘What activity are these people doing?  A:surfing
pretrain ‘What is the person doing?

pretrain + RL

‘What is the person doing?

scratch noodles noodles noodles noodles noodles noodles
scratch+KL-task How many umbrellas are visible?
scratch+KL-ext The the first thing is the same way of the

TrufLL (Task-LM)  Which game does he play?

TrufLL (Ext-LM) What was that for?

Human ‘What color is the umbrella? ~ A:black

pretrain ‘What color is the cat?

pretrain + RL What color is the cat?

scratch AmazingAmazingAmazingAmazingAmazing

scratch+KL-task
scratch+KL-ext

‘What color is the man’s shirt?
The the other way of the past time, and

TrufLL (Task-LM)

‘Which item doesn’t both turn?

TrufLL (Ext-LM) ‘What color of clothing did he get?

Human How many planes are shown?  A:1

pretrain How many jets are there?

pretrain + RL How many jets are there?

scratch AmazingAmazingAmazingAmazingAmazingAmazing

scratch+KL-task
scratch+KL-ext

How many skater does Green cents have?
The the first thing is the first time, and

TrufLL (Task-LM)  How many surf worthy are here?
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