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Abstract

Modal verbs (e.g., can, should or must) occur
highly frequently in scientific articles. Decod-
ing their function is not straightforward: they
are often used for hedging, but they may also
denote abilities and restrictions. Understand-
ing their meaning is important for various NLP
tasks such as writing assistance or accurate in-
formation extraction from scientific text.

To foster research on the usage of modals in
this genre, we introduce the MIST (Modals In
Scientific Text) dataset, which contains 3737
modal instances in five scientific domains an-
notated for their semantic, pragmatic, or rhetor-
ical function. We systematically evaluate a set
of competitive neural architectures on MIST.
Transfer experiments reveal that leveraging
non-scientific data is of limited benefit for mod-
eling the distinctions in MIST. Our corpus anal-
ysis provides evidence that scientific commu-
nities differ in their usage of modal verbs, yet,
classifiers trained on scientific data generalize
to some extent to unseen scientific domains.

1 Introduction

Each year, an estimate of 1.5 million scientific ar-
ticles are published (Knoth et al., 2020); hence,
the construction of knowledge graphs (KGs) from
scholarly texts for aggregating and navigating re-
search findings is an active research area (Chan-
drasekaran et al., 2020; Knoth et al., 2020; Nas-
tase et al., 2019; Demner-Fushman et al., 2019,
2020). Professional academic writing makes ample
use of hedges, linguistic devices indicating uncer-
tainty, because scientific propositions are usually
considered as valid only until they are overwritten
by newer findings (Hyland, 1998). Distinguishing
valid solutions to problems from unverified and/or
potential solutions is a crucial step in information
extraction (IE) from scientific text (Heffernan and
Teufel, 2018) as KGs should at least mark untested
hypotheses as such (see Figure 1). Yet, with the no-
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Figure 1: Modal verbs perform various functions in
scientific text affecting KG representations.

table exception of BioScope (Szarvas et al., 2008),
prior work in this area is limited.

In this paper, we focus on modal verbs, a
frequently used device for signaling hedging in
academic discourse (Hanania and Akhtar, 1985;
Getkham, 2011). Other functions of modals in-
clude indicating abilities or restrictions. Their
meaning depends on the sociopragmatic con-
text (Yamazaki, 2001), i.e., here on the conven-
tions of the community of a particular academic
field. Successful academic writing requires cor-
rect community-specific use. As shown in Fig-
ure 1, understanding the different notions has rel-
evance to KG population (e.g., Luan et al., 2018;
Friedrich et al., 2020). Computational modeling
of the functions of modal verbs also has applica-
tions in language learning and writing assistance
software (Römer, 2004).

Prior work in computational linguistics targeting
modal verbs (Ruppenhofer and Rehbein, 2012; Ru-
binstein et al., 2013; Pyatkin et al., 2021; Maraso-
vić et al., 2016) has primarily worked with data
from the news domain. The annotation schemes
of these datasets largely follow distinctions estab-
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lished in the linguistic literature (see, e.g., Kratzer,
1981; Palmer, 2001; Von Fintel, 2006; Portner,
2009), differentiating between the following coarse-
grained modal senses: (a) epistemic expresses judg-
ments about the factual status of a proposition, (b)
deontic relates to permission, obligation, and re-
quirements, and (c) dynamic refers to internal abil-
ities or conditions. Our work differs from all of
these approaches (a) in that we are the first to ad-
dress the domain of scientific writing, and (b) in
that we do not primarily study modal senses, but
instead focus on the pragmatic function of modal
verbs, i.e., our aim is to capture an author’s reason
for using a particular modal verb in a context.

With this paper, we release MIST (Modals In
Scientific Text), a manually annotated corpus for
investigating the usage of modal verbs in scientific
text. Our multi-label annotation scheme for modal
functions covers semantic, pragmatic, and rhetori-
cal reasons for an author’s use of a modal, with a
focus on sub-distinctions that are crucial from an
IE viewpoint. MIST consists of 3737 annotated
modal verb instances selected from texts of five sci-
entific disciplines (henceforth domains), which is
larger than all existing comparable datasets (see Ta-
ble 1). Our corpus analysis reveals differences in
modal use between scientific domains, and between
academic and non-academic use. We perform an
inter-annotator agreement study and ensure high
data quality via adjudication.

Based on MIST, as well as related corpora, we
conduct an extensive computational study on au-
tomatically classifying functions of modals, com-
paring CNN-based (Marasović and Frank, 2016)
and BERT-based models (similar to Pyatkin et al.,
2021). In contrast to prior modeling work, we
circumvent modifying the transformer’s input by
selecting the modal’s contextualized output embed-
ding and/or the CLS embedding as input to the
classifier. We find that in most cases, a model using
both embeddings works best.

To sum up, our paper lays the groundwork for
both corpus-linguistic and computational work on
modeling functions of modal verbs in scientific text.
Our contributions are as follows.

• Our new large-scale dataset annotated with func-
tions of modals in scientific text is publicly avail-
able.1

• We conduct an in-depth corpus study detailing
the corpus construction process, agreement, and
1github.com/boschresearch/mist_emnlp_findings2022

corpus statistics, as well as a comparison with
existing schemes (Sec. 3).

• Our computational experiments provide a sys-
tematic comparison of neural models for modal
classification on scientific text (Sec. 4 and 5).
We find that a combination of the CLS embed-
ding and the embedding of the modal verb itself
works best.

• We show that models trained on out-of-genre
data do not work well on scientific text, while
classifiers trained on annotated scientific text
perform well on unseen scientific domains. In
sum, these experimental findings underline the
value of our new dataset.

2 Related work

Our work relates to several areas, which we survey
in this section.
Annotated corpora. Prior annotation studies on
modal verb senses carried out by expert annotators
are of limited scale (see Table 1). Ruppenhofer and
Rehbein (2012, henceforth RR12, Modalia dataset)
annotate senses of modal verbs in the MPQA Opin-
ion corpus, which consists of news texts. Their
linguistically motivated label set includes dynamic,
epistemic, and deontic (see Sec. 1), as well as op-
tative for wishes, concessive if a state of affairs is
taken as a given, and conditional for if -clauses and
inversion constructions. On the same texts, Rubin-
stein et al. (2013, henceforth Rubin13) annotate
modal expressions including nouns (e.g., “hope”),
adjectives, adverbs, and verbs of propositional at-
titude (e.g., “believe”). Their annotation scheme
is similar to RR12 with minor modifications. Py-
atkin et al. (2021, henceforth Pyatkin21) use this
dataset with six renamed categories and refer to it
as the Georgetown Gradable Modal Expressions
(GME) corpus. Marasović et al. (2016) annotate a
3-way distinction of modal senses (dynamic, epis-
temic, and deontic) on MASC (Ide et al., 2008),
covering several domains. They also introduce
the Modalia version ModaliaM using this 3-way
scheme, mapping conditional and concessive to
epistemic and optative to deontic. Finally, their
EPOS dataset consists of 7693 sentences for which
the same 3-way annotation has been derived via
cross-linguistic projection from Europarl (Koehn,
2005) and OpenSubtitles (Tiedemann, 2012). King
and Morante (2020) annotate modal verbs in the
vaccination debate domain (VCM).
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Dataset # inst. # cat. genre lang.

Modalia 1158 6 news EN
Rubin13/GME* 1912 6 news EN
MASC 1962 3 multi-genre EN
VCM 450 6 vaccination debate EN
EP 888 13 multi-genre PT
CuiChi13 263 6 news CN

MIST (ours) 3737 7 scientific papers EN

Table 1: Datasets manually annotated with modal
verb categories. *Rubin13: 6 base categories + 3 su-
pertypes + 1 multi-label combination; GME is the same
dataset as Rubin13 using the 6 base categories (renamed)
and 2 supertypes. For Rubin13/GME, EP, and CuiChi13,
we count only modal verb instances.

Several annotated datasets target modal expres-
sions in a variety of domains, e.g., focusing on
could (Moon et al., 2016) in English GigaWord
(Parker et al., 2009), or negotiation dialogues (Lap-
ina and Petukhova, 2017). We are also aware
of a cluster of works on annotating and tagging
Portuguese data (EP) using multi-genre data and
RR12-style annotation schemes (e.g., Mendes et al.,
2016; Avila and Mello, 2013; Quaresma et al.,
2014b). Cui and Chi (2013) conduct a small anno-
tation study on Chinese modals with Rubin13-style
labels (CuiChi13). Yamazaki (2001) performs
a corpus study on how American English native
speakers interpret modal verbs in the chemistry
domain.
Modeling. Early approaches to modal sense clas-
sification leverage a lexicon (Baker et al., 2010),
or make use of “traditional” features (such as n-
grams or part-of-speech tags) and maximum en-
tropy classifiers (Ruppenhofer and Rehbein, 2012;
Zhou et al., 2015) or SVMs (Quaresma et al.,
2014a,b). Li et al. (2019) create context vectors
for modals by computing weighted sums of the
non-contextualized word embeddings of selected
context words. Marasović and Frank (2016, hence-
forth MF16) generate a sentence embedding us-
ing a CNN, hence classifying sentences instead
of modal instances. Our models are most simi-
lar to those of Pyatkin21, who encode input sen-
tences using RoBERTa (Liu et al., 2019), with
the CLS embedding as input for a linear classi-
fier. Their model variants differ in the input: the
Context model marks the modal trigger with spe-
cial tags (Sue <target>can</target> swim); the
Trigger+Head model encodes only the trigger and
its dependency head without further context.
Further related work. Other related work in-

cludes research on speculation in biomedical data
(Szarvas et al., 2008; Kim et al., 2011) and on
event factuality (e.g., Saurí and Pustejovsky, 2009;
Stanovsky et al., 2017; Rudinger et al., 2018;
Pouran Ben Veyseh et al., 2019). Bijl de Vroe
et al. (2021) integrate a lexicon-based method for
modality detection in event extraction; using this
tagger, Guillou et al. (2021) find that entailment
graph construction does not profit from tagging for
modality. Vigus et al. (2019) propose to annotate
modal structures as dependencies. Rhetorical anal-
ysis of scientific text is often based on Argumen-
tative Zoning (Teufel et al., 1999). Lauscher et al.
(2018a,b) provide a dataset and neural methods for
extracting and classifying claims from scientific
text. Luan et al. (2018), Jiang et al. (2019), and
Friedrich et al. (2020) present data-driven work on
scientific IE. Heffernan (2021) uses modality as a
feature to recognize problem-solving utterances in
scientific text.

3 MIST Corpus

In this section, we describe our new dataset, in-
cluding its annotation scheme and detailed corpus
and inter-annotator agreement statistics. We anno-
tate instances of can, could, may, might, must, and
should in research papers from five scientific fields:
computational linguistics (CL), materials science
(MS), agriculture (AGR), earth science (ES), and
computer science (CS). Modal usage is influenced
by sociopragmatic context (Yamazaki, 2001) and,
as a form of hedging, needs to be understood in
its social, cultural and institutional context (Hy-
land, 1998), here the global scientific community.
Hence, we do not restrict document selection to
native English authors.

3.1 Document and Sentence Selection

We select modal verb occurrences as follows. In
our full-text subset of 73 documents, the CL pa-
pers are taken from the ACL Anthology,2 spanning
the years 2013-2015. Data from the other domains
stems from the OA-STM corpus,3 with the excep-
tion of five open-access documents for MS.

Because some modal-domain combinations are
rare, we additionally sample sentences from 348
documents with Creative Commons licenses such
that we have at least 100 instances for each modal-
domain pair. For CS, we sample papers tagged

2aclanthology.org
3elsevierlabs.github.io/OA-STM-Corpus
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CL MS AGR CS ES Total

Complete corpus
sent with modals 925 718 497 746 584 3470
annotated modals 1011 757 543 806 620 3737

Full-text subset
documents 30 16 10 7 10 73
sents. with modals 693 462 195 445 258 2053
- in % of sents.* 9.3 11.6 9.0 14.2 11.0 10.8
sents. with ≥ 2 modals 61 29 24 48 19 181
avg. #tokens/sent. 27.7 26.4 32.1 27.4 31.9 28.4
annotated modals 760 492 223 497 279 2251

Table 2: MIST corpus statistics. *in % of total sen-
tences of the documents. In the full-text subset, all
modals within the documents have been annotated. The
complete corpus contains the full-text subset and addi-
tionally sampled individual sentences with annotations.

with cs:CV and published in 2018 from ArXiv.4

Additional MS papers published between 2015 and
2021 were retrieved via PubMedCentral.5 For ES
and AGR, we use the DOAJ API6 to retrieve doc-
uments matching the topics of the full-text subset.
For AGR, we add articles from the Journal of Agri-
cultural Science published 2017-2021.7 In total,
we obtain a large-scale dataset of 3737 annotated
instances (see Table 2, complete corpus).

3.2 Annotation Scheme
Our annotation scheme comprises seven labels for
functions of modals (see Table 3). Table 4 shows
which labels apply for each modal, for more details
see Appendix C. The labels apply if the author uses
the modal verb:
feasibility: to indicate that it is possible for an ex-

ternal actor, e.g., a human, to do or achieve some-
thing;

capability: to convey that something has a certain
intrinsic property, ability, or capacity;

inference: to state that they inferred something
based on some given information;

speculation: to indicate speculations;
options: to indicate potential options;
deontic: to express a desire, or a requirement, or

an obligation;
rhetorical: for conventionalized, fixed expres-

sions.
Our inventory intends to capture the most fre-

quent and relevant functions of modal verbs in
4kaggle.com/Cornell-University/arxiv
5ncbi.nlm.nih.gov/pmc
6doaj.org/api/v2/docs
7cambridge.org/core/journals/journal-of-agricultural-

science

CL CS AGR ES MS0.0

0.2

0.4

0.6 can
could
might
may
must
should

Figure 2: MIST: Distribution of modals by domain,
computed over full-text annotation subset.

scientific discourse. Table 3 classifies a set of ut-
terances according to our, RR12’s and Rubin13’s
schemes.8 A detailed description of the common-
alities and differences is provided in Appendix A.
During annotation scheme design, we started out
with their categories, but then tailored our scheme
to the scientific domain, adding some pragmatic
distinctions that are relevant in scientific writing.
Annotators have access to the full documents. For
labels involving inference, uncertainty or specula-
tion, annotators are instructed to only refer to the
text and not to make use of their own knowledge
of whether something is the case.

3.3 Annotation Process

Our annotation scheme takes a multi-label ap-
proach in which all applicable features may be
selected. For each instance of the full-text sub-
set, we collect the annotations of three annotators
(two for MS) using the web-based annotation sys-
tems Swan (Gühring et al., 2016) and INCEpTION
(Klie et al., 2018). We ensure consistency across
sub-corpora by means of an adjudication step (for
all instances) performed by one author of this pa-
per, who then also labeled the additionally sampled
instances. Our total group of annotators consists
of one undergraduate as well as three graduate stu-
dents of CL, one undergraduate student of CS, one
graduate student of MS and one physicist holding
a PhD degree. While not all annotators are native
speakers of English, they are either domain experts
or have a strong linguistic background.

3.4 Corpus Analysis

Modal distributions. We first analyze the usage of
the different modals per domain. As shown in Ta-
ble 2, in the full-text subset, the ratio of sentences
including modal verbs ranges from 9.0% (AGR)
to 14.2% (CS). In Figure 2, we plot the distribu-

8According to our interpretation of their guidelines. To
facilitate comparison with Pyatkin21, we also added their
mapping to the Rubin13 scheme to the table.
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Example Ours RR12 Rubin13 / Pyatkin21

Several supercapacitors can be integrated and connected in series. feasibility dynamic Circum. / State of the World
The device can light up a red light-emitting diode and works well. capability dynamic Ability / State of the Agent
The overlap in the ranges [...] indicates that the sample must be inference epistemic Epistemic / State of Knowledge

older than 50.70 Ma.
The real shielding can of course be different. options deontic Circum. / State of the World
DA3 may therefore indicate a continuation of high nutrient surface speculation epistemic Epistemic / State of Knowledge

water with an elevated freshwater input.
Energy storage devices should be able to endure high-level strains. deontic deontic Bouletic / Desires and Wishes
A GCR proton [...] must have at least 150 MeV to reach the station. deontic deontic Teleological / Plans and Goals
You must leave the lab tidy. deontic deontic Deontic / Rules and Norms
It can be seen in Figure 1 that... rhetorical dynamic Ability / State of the Agent

For instance, despite graphene, the band gaps of silicone can be
opened and tuned when exposed to an external electric field. feas., cap. dynamic Circum. / State of the World

These results suggest that epeiric seas [...] may have played an
important role in the driving mechanism for OAE 2. inf., spec. epistemic Epistemic / State of Knowledge

Long may she live! deontic optative Bouletic / Desires and Wishes

Table 3: MIST annotation scheme in comparison to those of RR12 and Rubin13/Pyatkin21.
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Figure 3: MIST: Label distributions by modal verb and scientific domain (adjudicated complete corpus).

tions of modals by domain. Except in the case of
ES, can is the most frequently used modal by a
large margin. In AGR and ES, may is also used
frequently. Overall, the distributions of CL, CS
and MS are somewhat similar, while AGR and ES
exhibit different modal usage patterns. The distri-
butions differ from modal usage in other genres
(details for MASC and Modalia see Appendix B.2),
e.g., the percentage of can is much higher in MIST.

Label distributions. Next, we drill down on the
functions of the modals by domain. If an instance
has more than one label, both labels are counted.
The label distributions differ strongly by modal (see
Figure 3 and Table 4), but at times also visibly be-
tween domains. Previous corpus-linguistic studies
(Takimoto, 2015; Hardjanto, 2016) observe more
hedging in humanities and social sciences text com-
pared to the natural sciences. ES, which deals with
earth’s present features and its past evolution, has
notably more inference usages of must and should.
In MS, many cases of could are classified as fea-
sibility, as it is common to report experiments in
the past tense in this domain. Also, in MS may
is sometimes used interchangeably with can as in
“stress–strain data may be obtained for ductile mate-

rials.” The larger amount of rhetorical instances in
MS is due to cases such as “We should note that.”

Comparing the label distributions of MIST and
those of MASC and ModaliaM, we also find notable
differences (details in Appendix B.2). For exam-
ple, may is used mostly in epistemic senses. Our
annotations reveal that in AGR and ES, these are
mostly speculation; CL and CS texts use this modal
to indicate (mostly algorithmic) options. Finally,
the use of should seems most community-specific:
while it is used predominantly in a deontic way in
MASC and ModaliaM, usage in MIST varies by
domain. Overall, these observations support the
hypothesis that modal usage depends on the socio-
pragmatic context, and demonstrate the value of
genre-specific data such as MIST.

Label co-occurrence. In the full-text subset and in
the complete corpus 24.5% and 22.3% of instances
carry more than one label, respectively. Figure 4
shows the total number of label co-occurrences in
the adjudicated gold standard. Overall, speculation
co-occurs most with other labels, indicating that the
author likely had two reasons for using the modal,
for example indicating a capability, but marking at
the same time that it is unclear whether it actually
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can could may might must should

feasibility 823 161 62 52 0 0
capability 476 188 91 102 0 0
inference 0 0 *8 0 63 127

speculation 0 206 257 398 0 0
options 183 64 205 70 0 0
deontic *13 0 25 0 444 330

rhetorical 157 0 *4 *8 24 41

Table 4: MIST: Label counts, all domains, adjudicated
complete corpus. *Omitted from experiments.

cap. 153
inf. 0 1

spec. 73 208 8
opt. 67 117 0 1

deon. 2 2 15 0 15
rhet. 128 3 2 5 6 50

feas. cap. inf. spec. opt. deon.

Figure 4: MIST: Label co-occurrence counts, all do-
mains, adjudicated complete corpus.

holds (“The urban ecosystems could account for a
significant portion of terrestrial carbon (C) storage
(...).”). Often, both a feasibility and a capability
reading are possible (see lower part of Table 3), as
in “The above construction can be further simpli-
fied.”, where simplifiability is an intrinsic property
of the construction, but the simplification needs an
external actor.

3.5 Inter-Annotator Agreement

Computing agreement for our dataset is not straight-
forward for two reasons. First, we are dealing with
a multi-label scenario, for which standard agree-
ment coefficients cannot easily be applied. Second,
for some modal-domain combinations, we only
have limited data. Averaging across modal verbs is
not meaningful: due to the notably different label
distributions, good agreement could only mean that
annotators distinguish modal verbs well (Artstein
et al., 2009; Artstein, 2017).

Following the idea of Krippendorff’s diagnos-
tics (Krippendorff, 1980), we evaluate (on the full-
text subset) for each modal-label combination how
often annotators agree on whether the label ap-
plies or not. For each pair of annotators, we com-
pute κ (Cohen, 1960) for this binary decision for
each label, mapping all respective other labels to
OTHER. In Figure 5, we report the average of these
κ-scores over the pairs of annotators for each valid
modal-label combination. For some combinations,
high agreement is reached. For infrequent labels
or modals, agreement is less satisfying. Many “dis-
agreements” occur in cases where in fact several
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Figure 5: MIST: Inter-annotator agreement in terms
of avg. κ for labels that have been assigned to at least
6 instances of respective modal (by any annotator), on
full-text subset.

readings are possible.
Qualitative analysis revealed that some annota-

tors over- or under-used some labels, especially
uncertainty, which in the initial round of annota-
tion described here was defined to include both op-
tions and speculation. We hence decided to ensure
high quality of our corpus through an adjudica-
tion step. In 62.2% of instances, the adjudicator’s
labels exactly match the majority vote across an-
notators; in 90.5%, they overlap with the majority
vote labels. We further introduced the label options,
and two adjudicators re-labeled all instances ini-
tially labeled with speculation. Out of these, both
labeled 166 instances, reaching F1-agreements of
72.7/81.3/83.5/86.9 for capability, feasibility, op-
tions and speculation, respectively. In the remain-
der of this paper, we perform experiments based on
the adjudicators’ labels.

4 Computational Modeling

We now describe our neural models for classifying
functions of modal verbs. We assume that targets
have been pre-defined, e.g., using a part-of-speech
tagger. Our models are based on a pre-trained trans-
former that provides embeddings for sentences and
contextualized token embeddings. We fine-tune
SciBERT (SB, Beltagy et al., 2019), which has the
same architecture as BERT (Devlin et al., 2019),
but has been trained on large volumes of scientific
text. On top, we use multiple classification heads,
i.e., one per modal, as the label distributions vary
substantially by modal. The largest version of our
models is trained jointly on multiple datasets and
therefore has the aforementioned output heads for
each dataset (see Figure 6). The output dimension
of these heads varies according to the labelset size
of the respective dataset.
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<CLS> BERT can embed tokens
SciBERT
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Classification
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MASC
can

... MASC
should

capability

Figure 6: Model architecture. SBCLS,modal model.

We test the following model variants:
SBCLS. We feed the CLS embedding of an input sen-
tence into a linear layer with softmax (for single-
label classification) or sigmoid (for multi-label clas-
sification) activation. This model uses the same
decision basis for all modal verbs within a single
sentence.
SBmodal. We select the embedding of the word-piece
token corresponding to the modal to be classified
(modal embedding),9 and feed this embedding into
the linear layer as above. We expect this model
to be able to distinguish different modal verbs in
the same sentence. The model primarily reflects
local context, but to some extent also dependency
context (Tenney et al., 2019).
SBCLS,modal. We concatenate the CLS embedding
with the modal embedding before feeding it into
the linear layer. This model should distinguish
modal verbs in the same sentence, at the same time
leveraging the CLS embedding that intends to cover
the entire sentence.

5 Experiments

In this section, we report our experimental results.

5.1 Evaluation Metrics

As majority classifiers are known to provide a
strong baseline for modal sense classification (see
Rubin13, MF16), we report F1 scores in order to
evaluate how well a classifier performs across la-
bels. We compute macro-average F1 (mF1) as the
average of the per-label F1 scores for the set of
labels with which the modal is labeled at least once
in the entire corpus and which are not omitted from
the experiments due to extreme sparsity (see Ta-
ble 4). We also report accuracy; we compute it
globally across samples and labels, i.e., we sim-
ply count for each label how often the classifier

9SciBERT and BERT both tokenize all modals in MIST
into a single word piece. (Otherwise, one could use the em-
bedding of the modal’s first word-piece token.)

(in)correctly did (not) assign it. For hyperparam-
eter tuning and early stopping, we use the macro-
average of weighted F1 scores for each modal-
domain combination. These weighted F1 scores
are computed by weighting per-label F1 scores by
the label’s support in the validation set. For com-
puting all metrics, we use TorchMetrics.10

5.2 Baselines
We report results for the following baselines: Maj
always predicts the label most frequent in train-
ing. We also re-implement MF16’s CNN with 300-
dimensional GloVe embeddings (Pennington et al.,
2014) and filter region sizes of 3, 4, and 5 with 100
filters each. Replicating MF16’s Table 4 (with their
hyperparameters and training a separate model for
each modal), we find that our CNN implementation
is comparable to theirs, with 77.6 % accuracy on all
verbs compared to MF16’s 76.5%. On MIST, we
use only one model with per-modal heads. SBCLS-

mark is our re-implementation of Pyatkin21’s Con-
text model (their most accurate model), but using
SciBERT and per-modal heads. We also investigate
whether the genre-specific pre-training is beneficial,
replacing SciBERT with BERT (BERTCLS,modal),
and how the model size affects performance, com-
paring to BERT-largeCLS,modal (to date, there is no
SciBERT-large).

5.3 Experimental Settings
We randomly split MIST into a training and a test
set of complete documents, aiming at covering ap-
proximately 25% of each domain’s modal instances
in the test set, with real test set sizes ranging from
22.8% to 27%. In our CV training setting, we split
the training set into 5 folds of complete documents,
and train 5 models on 4 folds each, using the re-
spective fifth fold for model selection. We train
for at most 100 epochs, performing early stopping
with a patience of 10 epochs. We then run each
of these five models on the unseen test set, report-
ing average scores along with standard deviations.
Hyperparameters are reported in Appendix D.1.

5.4 Experimental Results on MIST
Here, we evaluate the neural architectures de-
scribed above on MIST, and investigate perfor-
mance in the absence of in-domain training data.

Comparing Model Architectures. Table 5 re-
ports the mF1 scores of the various neural models

10github.com/PyTorchLightning/metrics
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can could may might must should

#inst. train 987 343 369 366 397 342
#inst. test 340 105 141 117 105 119

Maj 18.9 15.5 12.8 23.0 30.2 28.9
±0.0 ±0.4 ±0.0 ±0.0 ±0.0 ±0.0

CNN 58.8 55.2 40.2 37.8 41.1 64.2
±5.5 ±7.1 ±5.4 ±4.4 ±4.2 ±10.0

SBCLS 74.8 71.9 50.1 64.1 78.2 82.5
±2.1 ±4.0 ±3.1 ±4.3 ±4.3 ±2.7

SBCLS-mark 76.6 63.7 49.1 61.5 73.7 85.5
±1.7 ±1.4 ±1.8 ±1.5 ±4.0 ±2.3

SBmodal 76.7 71.3 50.2 65.3 76.9 84.5
±2.5 ±1.8 ±4.3 ±4.7 ±2.7 ±1.4

SBCLS, modal 77.4 73.7 47.2 64.5 78.4 85.7
±1.0 ±3.8 ±1.1 ±2.7 ±1.1 ±0.5

BERT 74.9 73.3 47.9 64.1 73.8 85.4
CLS,modal ±2.2 ±2.0 ±1.6 ±1.4 ±3.4 ±1.0

BERT-large 77.7 68.9 46.2 61.4 76.0 84.9
CLS,modal ±1.3 ±2.5 ±3.0 ±3.2 ±2.0 ±1.1

Table 5: Macro F1 (mF1) on test set of MIST. #inst.
train refers to the entire training set.

on MIST. The magnitude of these scores differs by
modal verb. The CNN learns more than Maj., but is
always outperformed by the SciBERT-based mod-
els. SBmodal is better than SBCLS on can, might, and
should, but worse on must, where using an addi-
tional sentence-wide embedding is beneficial. For
most of the verbs, SBCLS,modal is the best SciBERT-
based model, but SBmodal is better on may and might.
In general, SBCLS, modal tends to have smaller standard
deviations across CV training configurations than
the other SciBERT-based models. On could and
must, SBCLS,modal is better than SBCLS-mark, suggesting
that directly using the modal’s embedding instead
of modifying the input is more effective.

On most verbs, SciBERT and BERT perform
comparably, but the domain specificity of SciBERT
leads to clear improvements on can and must. In-
terestingly, increasing the model size for BERT is
beneficial on the very same verbs; at the same time,
however, it hurts performance on the other verbs,
with an especially sharp loss on could.

With the exception of can, SBCLS,modal is also the
most accurate model (scores in Appendix D.3). For
this model, during development, we experimented
with using only one classifier head for all modals
(not reported in tables). Compared to per-modal
heads, we observed either no difference or slightly
worse (by around 1 point mF1 on average) per-
formance for all modals except must, where mF1
increased by around 15 points. These gains were
due to similar rhetorical instances, e.g., “We must
note that...” and “We should note that...”.

Macro F1 CL CS Agr ES MS

+ 57.0 53.2 61.7 58.7 59.7
±4.6 ±5.6 ±8.1 ±3.1 ±1.1

- 54.2 50.2 60.4 54.8 58.8
±1.7 ±7.6 ±7.0 ±1.8 ±5.1

Accuracy CL CS Agr ES MS

+ 92.3 92.7 93.5 93.5 93.4
±1.0 ±1.4 ±1.3 ±0.8 ±0.5

- 91.5 91.9 93.5 92.5 92.5
±1.3 ±0.9 ±1.6 ±0.9 ±1.4

Table 6: Results for 6-fold CV on MIST by domain
when training with (+) and without (-) in-domain
data, averaged over modals. Cross-validated averages
and standard deviations of averages of per-modal scores.

Cross-Domain Results on MIST. We conduct
a cross-domain experiment on MIST to determine
the extent to which in-domain training data is nec-
essary for classifying modal verbs in different sci-
entific communities. Since some modal-domain
combinations have rather little data, in this exper-
iment, we split MIST into six folds and use each
fold once for testing. We use four of the remaining
five folds for training and one for early stopping.

Table 6 reports the cross-validated averages and
standard deviations of averages of per-modal mF1
and accuracy to show the overall effect of in-
domain data. Models trained on other (scientific)
domains work well on unseen domains, as the per-
formance does not decrease substantially when
training without in-domain data. As one would ex-
pect, domain-specific data usually leads to improve-
ments, especially for domains in which a specific
modal has a visibly different label distribution (see
Figure 3), e.g., cross-validated mF1 for could on
CL increased by around 18 points. For other modal-
domain combinations, gains were less distinct or
sometimes non-existent, and cross-validated scores
had a high variance. On average, standard deviation
of accuracy was 2.5 and 2.7 for with and without
in-domain data, respectively. For mF1, standard de-
viation was 10.7 when training with in-domain data
and 11.3 when training without in-domain data.

In sum, we expect classifiers trained on MIST to
also generalize to new scientific domains to some
extent. For optimal performance, adding in-domain
data is beneficial in most cases.

5.5 Transfer from GME to MIST

In this experiment, we show that functions of modal
verbs in scientific text cannot be determined simply
using existing datasets. We train a model only
on an out-of-genre resource (GME in the version
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feasibility, options State of the World

capability, rhetorical State of the Agent

speculation, inference State of the Knowledge

deontic Priority (Desires+Wishes,
Plans+Goals, Rules+Norms)

Table 7: Transfer experiment: Mapping between
GME (Pyatkin21) and MIST schemes.

can could may might must should

MajGMET 33.5 19.7 15.9 30.7 30.2 28.9
±0.0 ±0.1 ±0.0 ±0.0 ±0.0 ±0.0

SBCLS, modal; 56.1 43.7 19.8 30.2 33.9 39.8
GMET ±7.7 ±6.5 ±4.4 ±4.0 ±7.7 ±6.2

SBCLS, modal; 82.9 78.1 43.7 63.4 69.2 76.9
MIST-small ±0.8 ±1.7 ±1.2 ±5.0 ±6.3 ±11.6

SBCLS, modal; 84.3 79.6 43.1 69.9 74.6 84.1
MIST ±0.8 ±1.8 ±1.1 ±1.1 ±3.8 ±2.4

Table 8: Transfer experiment: Macro F1 on mapped
test set of MIST.

published by Pyatkin21).11 We train on GMET,
i.e., all instances from GME (including the test
set) that cover MIST’s set of modal verbs using
mapped labels as shown Table 7. Resolving GME’s
State of Knowledge into inference and speculation
and State of the World into feasibility and options
would require a manual re-annotation. We map
deontic to Pyatkin21’s supertype Priority.

GMET consists of 1276 instances, of which
370/238/139/61/196/272 are instances of can,
could, may, might, must, and should, respectively.
We train and evaluate all models in this experiment
using the mapped annotation scheme, using the
SBCLS,modal architecture with sigmoid heads. For hy-
perparameter tuning and evaluation, we perform
the steps as described in Appendix D on GMET
with five randomly induced folds (SBCLS,modal; GMET).
SBCLS,modal; MIST is SBCLS,modal trained on MIST with
mapped labels. SBCLS,modal; MIST-small is trained on
a randomly downsampled version of MIST to ac-
count for the notably larger size of MIST compared
to GMET. We approximately proportionally ran-
domly downsample each MIST fold (with mapped
labels) to get MIST-small, which has exactly the
same number of instances as GMET.

Table 9 shows the results of our transfer exper-
iment. SBCLS,modal; GMET learns more than just the
majority baseline MajGMET (except for might, for
which GME contains little data), but clearly lags
behind the models trained on MIST in both mF1

11We thank the anonymous reviewers for proposing this
interesting experiment.

Macro F1 can could may might must should

MajGMET 33.5 19.7 15.9 30.7 30.2 28.9
±0.0 ±0.1 ±0.0 ±0.0 ±0.0 ±0.0

SBCLS, modal;GMET 56.1 43.7 19.8 30.2 33.9 39.8
±7.7 ±6.5 ±4.4 ±4.0 ±7.7 ±6.2

SBCLS, modal;MIST-small 82.9 78.1 43.7 63.4 69.2 76.9
±0.8 ±1.7 ±1.2 ±5.0 ±6.3 ±11.6

SBCLS, modal;MIST 84.3 79.6 43.1 69.9 74.6 84.1
±0.8 ±1.8 ±1.1 ±1.1 ±3.8 ±2.4

Accuracy

MajGMET 68.7 63.4 67.0 85.7 88.6 85.9
±0.0 ±0.2 ±0.0 ±0.0 ±0.0 ±0.0

SBCLS, modal;GMET 76.1 70.1 68.9 74.7 88.9 85.6
±2.6 ±2.7 ±2.1 ±10.5 ±1.7 ±2.9

SBCLS, modal;MIST-small 90.1 86.1 79.6 85.9 92.1 92.5
±0.3 ±1.1 ±1.0 ±1.1 ±0.7 ±1.2

SBCLS, modal;MIST 91.0 87.0 79.6 88.4 93.4 94.3
±0.5 ±1.2 ±0.9 ±0.7 ±0.7 ±0.6

Table 9: Transfer experiment: on mapped test set of
MIST.

and accuracy, with average mF1 being between
23.9 and 37.1 points lower than models trained
on MIST-small. A related experiment (reported
in Appendix D.4) using prior corpora of anno-
tated modals in multi-task objectives confirmed
the limited amount of transferability. Hence, genre-
specific data is clearly required for classifying func-
tions of modal verbs in scientific discourse, demon-
strating the value of MIST.

6 Conclusion and Outlook

In this paper, we have introduced a new large-scale
dataset of scientific text annotated for functions
of modal verbs. Our corpus and computational
studies reveal differences and similarities in modal
usage across genres and domains. We have shown
that neural classification is robust across scientific
domains, but also that annotated scientific text is
essential for good performance. To sum up, our
paper lays the groundwork for informed IE from
sentences containing modals in scientific texts, e.g.,
distinguishing speculations from capabilities at-
tributed to a method or device.

Future work. Our experiments on MIST point
to various next steps, e.g., identifying domain-
adaptation methods that more effectively lever-
age annotations across domains, genres, or even
languages, or developing data-augmentation tech-
niques targeted to scientific text. Another next step
is to integrate our methods for generating metadata
for facts into IE systems. Existing open IE sys-
tems do not handle the meaning of modal verbs
adequately. As an outlook, in Appendix E, we out-
line how this could be improved using a classifier
trained on MIST.
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Limitations

Closed class of targets. Our work is limited to a
closed class of linguistic expressions (modal verbs).
Such approaches are sometimes seen as “too nar-
row” to be of interest to the NLP community. How-
ever, we argue that examining components of lan-
guage understanding in detail will ultimately point
to relevant research directions. In addition, as we
have shown, modal verbs are a very common phe-
nomenon, occurring in about every tenth sentence
in scientific text. Nevertheless, we admit that a
limitation of our study is the focus on a closed
set of verbs in the English language. Future work
might generalize our ideas to a more open class
of targets (yet, it is a challenge to come up with a
well-defined selection).

Limited data for minority classes. For some cat-
egories, data is limited due to the difficulty of data
collection (we can only sample for modal verbs, not
for labels). We have already enriched the dataset
by a second annotation round, further data collec-
tion is unfortunately infeasible in the context of our
project.

Applications. Our study provides the first steps
(an annotated dataset, a corpus-linguistic study and
NLP models) of research into the computational
modeling of modal verbs in scientific text. Our
distinctions intuitively should be of high relevance
to processing and mining scientific text. Besides
the case study on why the distinctions matter for
open information extraction (IE) and practical sug-
gestions for incorporating them into existing Open
IE systems in Appendix E, demonstrating the use-
fulness of our work on existing scientific relation
extraction datasets (which unfortunately do not
commonly mark the “information status” of the

annotated relations) is beyond the scope of this
paper (but planned future work).
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Supplementary Material

A Comparison to Existing Annotation
Schemes for Modal Senses

Table 3 classifies a set of utterances according to
our, RR12’s and Rubin13’s schemes (according to
our interpretation of their guidelines).12 These two
works inspired ours, but with the aim of knowledge
graph construction in mind, we tailored an annota-
tion scheme making explicit the various pragmatic
and rhetorical reasons for using modals in scien-
tific writing. We thereby follow Moon et al. (2016),
who argue that “not everything about modal aux-
iliary meaning can be represented at once,” and
that “it is important to focus on the parts of modal
auxiliary meaning that most directly impact an au-
tomated learner.” While we fully agree with the lin-
guistic classification of the examples by RR12 and
Rubin13, we found certain sub-distinctions to be
essential for understanding modal usage in the sci-
entific context, and designed our annotation scheme
for functions of modals accordingly, intentionally
conflating what is traditionally treated separately as
modal sense disambiguation and veridicity (Kart-
tunen and Zaenen, 2005) from the author’s point of
view.

The definition of Rubin13’s label Circumstantial,
focusing less on dispositions rather than on abilities
in particular circumstances (Von Fintel, 2006), is
closer to our feasibility, which could be interpreted
as an ability of the actor given the circumstances
(but sometimes overlaps with internal properties
of the object under discussion). Conversely, we
do not distinguish personal wishes and goals as in
Rubin13. The label deontic for can of RR12 falls
under our label options if options are introduced,
and maps to our deontic otherwise. Within the
epistemic notion, we further distinguish whether a
statement is derived from other facts (inference)
or whether an author speculates (both labels may
apply at the same time). As some usages of modal
verbs in scientific writing are rather conventional,
we introduce the label rhetorical.

B Further Corpus Statistics

B.1 Impact of Negation
Analyzing all negated modal verb constructions,
we found only two instances where negation af-
fects the modality label. For example, “Submarine

12To facilitate comparison with Pyatkin21, we also added
their mapping to the Rubin13 scheme to the table.

volcanism alone cannot be the sole driving mech-
anism for OAEs” is labeled with capability when
ignoring the negation. Otherwise, this becomes an
inference.

B.2 Comparison of Label Distributions of
MIST, MASC, and ModaliaM

The distribution of modal functions and sense dif-
fers between corpora and genres (academic writ-
ing vs. news). Comparing Figure 3 and Figure 7,
we note several differences. The most frequent
modal in all genres is can, but it is much more
frequent in CL, CS, and MS. For can and could, dy-
namic/feasibility/capability uses are predominant,
with the exception of ModaliaM, where the majority
class of could is epistemic. Can and could are not
used in the deontic sense in MIST; their epistemic
uses are all related to speculation.

C Annotation Guidelines

In this section, we describe our annotation guide-
lines for marking up modal verbs in scientific pub-
lications with regard to whether they are used for
particular rhetorical, semantic or pragmatic reasons
as they were presented to the annotators. Depend-
ing on the context, modal verbs can modify a sen-
tence’s propositional content such that uncertainty
about the truth of the proposition is implied (e.g.,
“X is the cause for Y” vs. “X may be the cause for
Y”), but in other circumstances, they simply indi-
cate properties or capabilities (e.g., “X can float”).
Our goal is to provide information about the func-
tions of modal verbs in our corpus that then can be
used in a preprocessing step for information extrac-
tion. For example, when disregarding a modal’s
contribution to the discourse, when processing “X
can float”, the relation float(X) may be extracted,
but it should be flagged somehow as the sentence
does not state that X is currently floating or that it
always floats. In contrast, adding has_capability(X,
float) to our knowledge base is desirable.

We consider can, could, must, should, may,
might as well as their negated forms for annotation.
They are pre-marked in the corpus to ensure that no
modal verb is overlooked. Our annotation scheme
is based on the observation that it is not always pos-
sible to assign exactly one type to every instance.
We decided to follow a feature-based annotation
approach in which a modal verb is represented by
features that do or do not apply. Our feature sets
reflects the range of functions a modal verb can
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Figure 7: MASC and ModaliaM: Modal distributions and label distributions by modal verb.

have, i.e., the meaning that it adds to the sentence
(e.g., capability), or the rhetorical or pragmatic rea-
son for using it (e.g., uncertainty). To determine
which features apply, annotators are asked to think
of the sentence without the modal verb first, and
then observe how the meaning has changed when
adding the modal. Selecting the features accord-
ingly means determining the reason(s) for which
the author uses the respective modal verb. The next
section explains the set of set of functions in our
scheme.

It is important to note that we annotate the
author’s intentions and understanding, not the
reader’s (which might be based on additional con-
text or knowledge). However, for making the judg-
ment of why an author uses a modal verb in a
particular context, annotators are of course asked
to consider the broader context.

C.1 Functions of Modal Verbs

feasibility: We use this feature when it is possible
for an external actor to do or achieve something
and indicating this is the reason why the modal
verb is used. feasibility can be seen as general
possibility involving some external actor, e.g., a
human agent.
Example 1. Several supercapacitors can be
integrated and connected in series.
It is possible for somebody to integrate and con-
nect supercapacitors, it needs a human agent to
do it. The focus is not on an internal capability
of the supercapacitors here.

capability: capability is annotated if the modal
verb is used to express that something has a cer-
tain property, ability or capacity. Ruppenhofer
and Rehbein (2012) have a corresponding cat-
egory named dynamic. We mark up capability
only in cases where the modal verb is used to
convey information about an intrinsic property
of an entity.
Example 2. The device can light up a redlight-

emitting diode and works well.
The device has the ability to light, the device
is able to light up, being able to light up is an
inherent property of the device.
Example 3. They hope the government can
introduce a new law.
The government is able to introduce a new law.
Therefore capability is marked up. Note that
even if the sense of the utterance is “it is de-
sirable that the government introduces a new
law,” deontic doesn’t apply here as the desire
is expressed by “hope” and not by the clause
containing the modal verb.

inference: This feature covers cases in which an
author states that she inferred something based
on some given information. inference corre-
sponds to the category epistemic in previous
work, as it also applies if the author draws a
conclusion based on some information. infer-
ence applies especially when the author predicts
something, e.g., based on computational results,
experimental outcomes, or empirical knowledge.
In order to correctly identify this feature, usually
a broader context needs to be taken into con-
sideration and domain knowledge is sometimes
crucial.
Example 4. The maximum power density was
measured to 0.350 mW cm2. Therefore, it must
be the case that the open-circuit voltage reaches
at least 1 V.
Based on the measurement of the power density,
the author infers that the open-circuit voltage is
1 V.
Example 5. (According to these calcula-
tions...) The three lowest-energy isomers of
C60O3 should exist in equilibrium at room
temperature by using a modified and extended
Hűckel method.
The author predicts that these isomers exist in
equilibrium at room temperature, based on some
calculations.
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speculation: speculation is used when the truth
value of an utterance is not clear according to
the author. Note that we annotate this feature
only in cases where feasibility or capability are
not clearly the predominant readings, and use
both features only if a speculation reading is
really predominant.
Example 6. This problem might be mitigated
by using better semantic-based retrieval model.
Here, we label both feasibility and speculation.
Consider replacing might with can: then, the
feasibility is clear, but no speculation is involved,
which is the author’s reason for choosing might
instead.

options: options is marked up when the au-
thor uses the modal verb to enumerate some
potential options.
Example 7. The real shielding can of course
be different.
A different shielding may be used; potentially
the shielding is different, but it can also stay
the same. Note that “being different” is not a
property, hence capability or feasibility wouldn’t
fit here.
Example 8. Grounding this in our example, w1
may represent breakfast, w2 pancakes, and w4
hashbrowns.
Breakfast, pancakes and hashbrowns are options
for w1, w2 and w4.
Example 9. This process can last from several
hours to a few days depending on the applied
temperature.
The reason for using the modal verb here is
mostly to convey the uncertainty about the du-
ration, it does not describe a capability of the
process.
Example 10. We showed that combining a
model based on minimal units with phrase-based
decoding can improve both search accuracy and
translation quality.
In this case, we label both capability and options,
as the sentence both indicates a capability of the
combination method, but at the same time could
be read as a hedging term (i.e., improvements
occur only in certain circumstances).

deontic: deontic is selected if the author uses the
modal verb to express a desire, i.e., how the
world should be like, to express a requirement
for something, e.g., an experiment, or to state an
obligation.
Example 11. Our daily life requires matchable

energy storage devices, which should have the
capability to endure high-level strains.
It is desirable that energy storage devices have
the capability to endure high-level strains.
Example 12. A GCR proton at the maximum
latitude of the ISS must have at least about 150
MeV to reach the Station.
It is required that a GCR proton has at least about
150 MeV to reach the station.
Example 13. Temperature should be treated as
a concept.
The author prescribes that temperature is treated
as a concept, it is necessary that temperature is
treated as a concept.

rhetorical: In some contexts, modal verbs are used
because of conventions and there is no substan-
tial semantic need for doing so.13 We annotate
this cases with rhetorical.
Example 14. It can be seen in Figure 1 that...
Can simply be stated at ‘In Figure 1 you see ...”
If annotators feel that feasibility or capability are
also strongly present in such a case, they may
select these features in addition.
Example 15. Value: <first part of the def-
inition> The value can also be described via
<second part of the definition>.
A value is defined as (first part of the definition)
and also as (second part of the definition). (In
this example, speculation and feasibility are also
applicable.)

Other: This label is used if none of the above fea-
tures apply. Please extract those sentences and
explain why you couldn’t decide for a predefined
feature. Also think about whether you have a ten-
dency towards one or more features but there is
something that has to be captured in our scheme
in additional. This was used during annotation
scheme development.

C.2 Additional examples: feasibility vs.
capability

As stated above, features are not mutually exclu-
sive. Sometimes, multiple readings/interpretations
may be possible. Under certain circumstances an-
notators are asked to select multiple features. In
this section, we show some not-so-clear-cut exam-
ples to complement the above guidelines, which
work with mostly clear examples.

13In several cases that we observed, we also felt that they
corresponded to over-use of modal verbs by non-native En-
glish speakers (though they are not syntactically wrong, just
unnecessary to some extent).
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If we want to annotate feasibility or capability
but it is hard to decide which of both features apply,
we follow the following guidelines.

We annotate both features when there is an exter-
nal actor (e.g., a human) involved, but if it can also
be interpreted as describing a particular internal
property of the referent of the subject. The referent
has this property already before an external actor
is involved.

Example 16. This simpler distribution Q can
be viewed as an approximation to P.
feasibility: A human agent views Q as an approxi-
mation to P.
capability: Without a human agent viewing Q, Q
is still an approximation to P, P has the property
of being an approximation to P in general without
somebody actually viewing it.

Example 17. For instance, despite graphene,
the band gaps of silicone can be opened and tuned
when exposed to an external electric field.
feasibility:A human agent opens the band gaps of
silicone.
capability: some materials have the property
of having openable band gaps, it is always
possible to open band gaps of silicone under this
circumstances.

Whenever there is a human actor involved, we
mark up feasibility even if the sentence includes
a passive construction which could indicate a ca-
pability. capability and feasibility are only used
at the same time if the modal verb is used to sig-
nal an intrinsic property (band gaps of silicone
can be opened) and an external actor is involved.
We do not mark up capability if feasibility applies
but there isn’t a general property. In this case an
external actor has to do something first. As a con-
sequence, some entity has a capability.

Example 18. The resulting expression com-
bines similarity terms which can be divided into
two groups.
feasibility: An human actor is needed to divide the
terms into groups. Being dividable is not an intrin-
sic, common property of these terms. feasibility is
the strongest modal function in this utterance. The
modal verb is not used to convey an information
about a capability, as it is not an intrinsic prop-
erty of similarity terms that they can be divided
(we consider this to be an artifact of their being
grouped).

Example 19. Similar symmetry can be achieved

Hyperparameter CNN SB

Learning rate 1e− 3, 5e− 3, 5e− 4, 3e− 5,
1e− 4, 5e− 4, 5e− 5
3e− 5, 5e− 5

# warm-up epochs N/A 1, 2

Batch size 8, 16, 32 8, 16, 32

Dropout 0.1, 0.5 N/A

Table 10: Hyperparameter values searched during
hyperparameter selection for CNN and SB.

with the following factorization.
feasibility: it needs a human agent to achieve some-
thing.
The modal verb is not used to indicate an intrinsic
property of being achievable. The sense of the ut-
terance is that somebody, i.e., the author, achieves
similar symmetry with a certain formula that they
mention. Even if no human actor is explicitly men-
tioned in the text due to a passive construction, only
feasibility may apply.

Example 20. Word vectors can be trained
directly on a new corpus.
feasibility: It is possible for somebody to train
some word vectors on a new corpus.
Word vectors cannot be trained directly on a new
corpus in general, not all word vectors are trainable
on a new corpus, so we don’t annotate capability.

When it is clearly possible for an entity to have a
property but this doesn’t apply in general, we still
use capability, but possibly speculation in addition.

Example 21. graphene aerogels with ... can
present superelasticity.
capability: some of these aerogels have this prop-
erty, it is possible for aerogels to have this property.
speculation: It is uncertain whether each aerogel
has this property, only some of them may present
superelasticity, or aerogels have this property only
under particular circumstances.

D Experimental Studies

D.1 Hyperparameters

This section describes the hyperparameter tuning
for our main experiments. For CNN and SB, we
tune learning rates, batch sizes, dropout probabili-
ties (only CNN) and learning rate warm-up lengths
(only SB) using grid search on the values shown
in Table 10 as follows: Similar to cross validation
(CV), for each hyperparameter configuration, we
train five models on 4 folds each for 10 epochs and
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can could may might must should

Maj 85.0 78.1 80.7 91.5 93.5 92.0
CNN 91.3 85.8 84.5 91.2 93.6 93.3
SBCLS 93.7 90.1 86.7 92.1 96.7 96.2
SBmodal 94.2 90.2 86.6 92.6 96.6 96.7
SBCLS-mark 94.4 89.3 86.6 91.9 96.2 96.8
SBCLS, modal 94.3 90.8 87.0 92.6 96.7 96.9
BERTCLS,modal 93.7 90.7 86.5 92.1 96.0 96.9
BERT-largeCLS,modal 94.3 89.6 86.0 92.3 96.5 96.8

Table 11: Accuracy on test set of MIST. Standard
deviations are rather small, between 0 and 1.4.

use the respective remaining fold (validation fold)
for model selection. For each of the five models,
we average weighted F1 scores (see Sec. 5.1) on
the validation fold across modal verbs. We then
choose the hyperparameter setting that performs
best on average across the different models. The
tuned batch sizes and learning rates are 32 and 5−3

(CNN), and 8 and 3−5 (SB). SB is warmed up for
2 epochs. We use a dropout probability of 0.1 in
the output heads, and the Adam optimizer (Kingma
and Ba, 2014) with a weight decay of 1−3 (CNN)
respectively 0 (SB).

D.2 Training Details, Model Size, etc.

All experiments were performed on a single Nvidia
Tesla V100 GPU. Training and testing the SBCLS,modal

models in the 5-fold CV training setting used in
the model architecture comparison experiment (cf.
Table 5) took 1.2 hours (for the entire experiment).

SciBERT has the same number of parameters as
BERT-base, i.e., 110M. The linear layer we add on
top of SciBERT in the SBCLS,modal has less than 11k
parameters.

D.3 Further Experiment Results

This section provides further experimental results,
elaborating on the study described in Sec. 5.4.

Table 11 provides accuracy scores for the models
whose F1 scores are reported in Table 5.

D.4 Cross-Genre Multi-Tasking Experiment

We investigate whether we can improve classifi-
cation on MIST by using existing modal sense
classification datasets as auxiliary tasks in train-
ing. Table 12 shows the results of co-training
with ModaliaM, MASC, EPOS, and GME (see
Sec. 2), and the first three at once. On GME, we
follow Pyatkin21’s experiments and collapse De-
sires+Wishes and Plans+Goals to a Intentional.

Train can could may might must should

MIST 77.4 73.7 47.2 64.5 78.4 85.7
±1.0 ±3.8 ±1.1 ±2.7 ±1.1 ±0.5

+ EPOS 78.4 69.6 49.4 64.0 74.9 86.1
±1.5 ±3.9 ±2.2 ±2.4 ±2.4 ±2.5

+ MASC 78.4 72.2 51.5 63.2 75.8 84.4
±1.6 ±1.3 ±1.5 ±3.2 ±1.9 ±1.0

+ ModaliaM 76.6 71.5 49.4 59.9 75.6 86.4
±1.5 ±1.9 ±3.3 ±3.4 ±4.3 ±1.4

+ GME 76.7 70.5 47.0 62.3 70.8 84.1
±2.1 ±4.2 ±2.4 ±6.0 ±6.1 ±1.6

+ E/M/Mo 77.0 73.9 50.0 62.8 77.2 85.6
±1.6 ±1.7 ±2.4 ±3.3 ±1.9 ±0.6

Table 12: Multi-task setup: Macro F1 on test set of
MIST when co-training with other corpora. E/M/Mo:
EPOS, MASC and ModaliaM together.

The only verb where co-training leads to clear
improvements is may. Here, it increases per-label
F1 scores (not reported in tables) for spec., opt.,
feas. (for the latter two except for GME), and
cap. (except for ModaliaM). For the other verbs,
classification performance is similar (e.g., should)
or decreased (e.g., might, which is only covered by
GME, but just with few instances). Thus, in line
with the findings from the pure transfer experiment,
using modal sense information from out-of-genre
datasets for classifying modal verbs in scientific
text is non-trivial.

E Case Study: Treatment of Modality in
Open Information Extraction

We now discuss how handling modal verbs in Open
Information Extraction (OIE) systems may be im-
proved using our classification scheme by adding
interpretations instead of just pin-pointing modal
verbs. The same principles can be applied to rela-
tion extraction settings with predefined schemas
when relations are rooted in a verbal argument
structure.

E.1 Analysis of Existing OIE Systems
We run four popular recent OIE systems on sen-
tences from MIST and perform a qualitative anal-
ysis of the results. We find that the examined
systems either have no specific mechanism for
handling modality, or include modality informa-
tion only in rather rudimentary ways. OpenIE414

(Christensen et al., 2011; Pal and Mausam, 2016)
and OpenIE615 (Kolluru et al., 2020) extract in-
formation from sentences in the form of standard
subject–relation–object triples, simply considering
modals part of the predicate, e.g., a sentence such

14knowitall.github.io/openie/
15github.com/dair-iitd/openie6
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as “X may influence Y” yields the extraction (X;
may influence; Y). RnnOIE16 (Stanovsky et al.,
2018) generates a representation resembling Se-
mantic Role Labeling (SRL), in which spans within
the sentence are annotated to indicate the relation-
evoking verb and its respective arguments, e.g.,
[ARG0: X] [ARGM-MOD: may] [V: influence]
[ARG1: Y]. Within this representation, modal
verbs are treated as a simple modifier of the relation
verb (ARGM-MOD). In sum, modals are extracted
by all of these OIE systems, but their classification
and interpretation is left to the downstream system.

MinIE17 (Gashteovski et al., 2017) includes a
notion of modality by adding a binary modality
value (certainty/possibility) to each extracted triple.
In practice, we observe that the occurrence of vir-
tually any modal in the input sentence results in
the triple being assigned the possibility label. This
means that sentences such as “X can influence Y,”
“X should influence Y,” “X must influence Y,” or
“X may influence Y” are in effect all being treated
as paraphrases. In sum, existing state-of-the-art
OIE systems do not handle the meaning of modal
verbs in a way that could inform downstream use.

E.2 Discussion: Modality-informed Open IE

In light of the weaknesses of existing systems, we
now sketch an approach by which OIE systems
could be extended to incorporate modality infor-
mation, which could be generated by a classifier
(as described in Sec. 4). As motivated by Figure 1,
we posit that there are two main ways in which
modality information should be incorporated into
extractions. (For an overview, see also Table 13.)
First, we propose specific relation templates for
the capability and deontic modalities: hasCapa-
bilityTo_* for the former and isRequiredTo_* and
isAllowedTo_* for the latter. In a given extracted
triple, these relation templates would be instanti-
ated with the main verb of the extraction, e.g., “X
can influence Y” (capability) would yield (X, has-
CapabilityTo_influence, Y).18

Second, to cover cases modifying not only the
relation but the entire fact, we propose the meta-
property hasFactualityRating (see also Figure 1).
This property could take the values speculation (for
speculation), possible (for options and feasibility),

16demo.allennlp.org/open-information-extraction
17github.com/uma-pi1/minie
18In an OWL-like ontology, these concretely instantiated

predicates may then be considered subproperties of generic
hasCapabilityTo / isRequiredTo / isAllowedTo properties.

Modal function IE extraction(s)

capability hasCapabilityTo_*
deontic isRequiredTo_* (must, should) /

isAllowedTo_* (other modals)

feasibility hasFactualityRating(possible)
inference hasFactualityRating(inferred)
speculation hasFactualityRating(speculation)
options hasFactualityRating(possible)
rhetorical hasFactualityRating(true)

Table 13: Mapping modal functions to Open IE ex-
tractions, *=modified main verb.

inferred (for inference), and true (for rhetorical
and as the default value of the property). For exam-
ple, the sentence “X might influence Y” (specula-
tion) would yield (X, influence, Y) with hasFactual-
ityRating(speculation), whereas “These sandstones
may contain reworked material.” (options), would
lead to (sandstones, contain, reworked_material)
with hasFactualityRating(possible). Similar ap-
proaches to handling veridicality of utterances have
for instance been proposed by de Marneffe et al.
(2012).

We argue that such an approach would consti-
tute an improvement over existing ways of handling
modality in OIE. Enabling the identification across
surface representations is one aim of OIE systems.
Looking further ahead, explicitly disambiguating
modal verbs as well as other constructions express-
ing the same meaning will result in a uniform rep-
resentation. For example, X can (capability) influ-
ence Y) and X is able to influence Y would both
be retrieved by searching for hasCapability, and X
must (deontic) Y and X has to Y would be retrieved
when searching for isRequiredTo. In addition, has-
FactualityRating properties of extracted triples will
immediately clarify their factuality status, avoiding,
e.g., erroneously taking speculation as fact. Taken
together, we have outlined a way to take OIE sys-
tems to the next level with regard to the treatment
of modal verbs.
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