
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 981–992
December 7-11, 2022 ©2022 Association for Computational Linguistics

Subword-Delimited Downsampling for Better Character-Level Translation

Lukas Edman Antonio Toral Gertjan van Noord

Center for Language and Cognition
University of Groningen

{j.l.edman, a.toral.ruiz, g.j.m.van.noord}@rug.nl

Abstract

Subword-level models have been the dominant
paradigm in NLP. However, character-level
models have the benefit of seeing each charac-
ter individually, providing the model with more
detailed information that ultimately could lead
to better models. Recent works have shown
character-level models to be competitive with
subword models, but costly in terms of time
and computation. Character-level models with
a downsampling component alleviate this, but
at the cost of quality, particularly for machine
translation. This work analyzes the problems
of previous downsampling methods and intro-
duces a novel downsampling method which is
informed by subwords. This new downsam-
pling method not only outperforms existing
downsampling methods, showing that down-
sampling characters can be done without sac-
rificing quality, but also leads to promising
performance compared to subword models for
translation.

1 Introduction

Character-level models (henceforth character mod-
els) have recently sparked interest in their potential
applicability across a wide range of NLP tasks.
They promise a tokenization-free approach, while
also potentially allowing the model to quickly rec-
ognize similarities between words based on their
spelling. However, as of yet, character models have
not stood up to the level of subword models, mainly
due to their similar performance while being sig-
nificantly slower and more expensive to train due
to their longer input sequences (Xue et al., 2022).

To alleviate the problem of training time, several
methods have been proposed to initially downsam-
ple characters into shorter sequences, which are
then fed into the encoder or decoder. For discrimi-
native tasks, these can be applied without any loss
in performance (Tay et al., 2021), however for gen-
erative tasks like NMT, the performance is either
untested or lacking when compared to character

models without downsampling (Libovickỳ et al.,
2021).

Seeing as subword tokenization is essentially a
form of downsampling and performs quite well,
the idea of downsampling is not inherently flawed.
However, attempts to downsample within the neu-
ral network have not achieved similar performance
for translation. This begs the question, why are
current neural downsampling methods underper-
forming for translation?

In this work, we make three main contributions:

1. We analyze the existing downsampling meth-
ods based on their position, length, and mor-
pheme consistency.

2. We introduce a novel neural downsampling
method based on subwords that outperforms
existing downsampling methods.

3. We make the necessary modifications to allow
for variable-length downsampling and upsam-
pling in an encoder-decoder architecture.

We start by providing an overview of the prior
work in character-level NLP in Section 2. We then
compare the various downsampling methods, not-
ing the 3 main advantages of downsampling based
on subwords in Section 3. Next, we cover the modi-
fications necessary to do variable-length downsam-
pling for translation in Section 4. We follow this
with experimental details (Section 5), results (Sec-
tion 6), analysis (Section 7), discussion (Section 8),
conclusion (Section 9), and finally the limitations
(Section 10).

2 Related Work

Character-level models have been of interest for
several years, notably used for character-level trans-
lation prior to the advent of Transformer mod-
els with some success (Costa-Jussa and Fonollosa,
2016; Lee et al., 2017).

Lee et al. (2017) raises the issue that the length
of the sequences require the models to potentially

981



Downsampling Method Architecture

Work Encoder Decoder Downsampler Encoder Decoder Upsampler

Lee et al. (2017) Fixed — CNN LSTM LSTM LSTM
Boukkouri et al. (2020) Word — CNN Transformer — —
Tay et al. (2021) Fixed — GBST Transformer Transformer —
Libovickỳ et al. (2021) Fixed Fixed CNN Transformer Transformer LSTM
Xue et al. (2022) — — — Transformer Transformer —
Edman et al. (2022) Fixed Fixed GBST Transformer Transformer LSTM
Ours Subword Subword CNN Transformer Transformer LSTM

Table 1: Summary of previous work on character-level models compared to ours. Note that many of the works have
tested multiple models, so we only include their main additions which are unique in research.

capture much longer range dependencies, and as
such introduces a downsampling method. This
method consists of convolutional layers followed
by a sequence-length-wise max pooling. The con-
volutional layers serve to learn local patterns in
the characters and the max pooling is intended to
reduce the length of the input, alleviating the long-
range dependency issue. Reducing the length with
a downsampling method such as max pooling can
be thought of as a transformation from character
tokens to pseudo-word tokens.

More recently, character-level NLP has been in-
vestigated with the use of the Transformer. The
Transformer, while better able to handle longer
sequences than RNNs, can similarly suffer when
on the character-level due to the O(n2) complex-
ity of self-attention. Nevertheless, ByT5 (Xue
et al., 2022), a multilingual unsupervised pretrained
character-level model, has shown comparable re-
sults to its subword-level counterpart mT5, while
demonstrating some beneficial properties such as
robustness to character-level noise. It is however
slower than subword models both in training and
test time.

The Charformer (Tay et al., 2021) reintro-
duces downsampling using a novel downsampling
method, GBST, which uses a learned, weighted-
average of character n-grams for each downsam-
pled token. This shows similar performance to
ByT5 while also being faster, however its perfor-
mance on generative tasks such as NMT appears
less promising. Edman et al. (2022) investigate
the usefulness of Charformer’s GBST method for
NMT, finding that using GBST decoder-side does
not work out-of-the-box due to an information leak,
and that even with a fix to the leak, it does not
perform up to the level of the aforementioned con-
volutional downsampling method.

Similar to the Charformer, CharacterBERT
(Boukkouri et al., 2020) shows that incorporating
character information can be useful on encoder-

only tasks. They use a CNN similar to Lee et al.
(2017)’s, but downsample based on the length of
the whole word, rather than at a fixed size. Their
results show better generalization than subword
models on classification of medical data, despite it
not seeing any medical data in pretraining. They
attribute this to its more generalized internal vocab-
ulary as a result of receiving characters as input.

In the context of NMT, Libovickỳ et al. (2021)
attempt to answer why the current state-of-the-art
models are not character models, to which the an-
swer appears that their performance is not superior
to subword models, and that downsampling meth-
ods sacrifice quality for efficiency.

In doing so, Libovickỳ et al. convert existing
character models such as Lee et al. (2017)’s to
the Transformer architecture. With this, they pro-
pose a two-step decoding method, which adds an
LSTM layer that takes as input the hidden repre-
sentation of the Transformer decoder, concatenated
with separately-learned character embeddings. The
light-weight nature of the two-step decoder means
little computation time is added.

We show a tabular summary of the relevant pre-
vious work in Table 1.

3 Exploring Downsampling Methods

We first compare our novel subword-based down-
sampling method over other possible forms of
downsampling. Our choice of downsampling based
on subwords is motivated by 3 factors:

1. Positional consistency
2. Length consistency
3. Morpheme consistency

We compare our subword-delimited downsampling
(“SDD”) to the existing 2 methods, fixed-size
downsampling (“Fixed”, used in Lee et al. (2017)
among others) and word-delimited downsampling
(“WDD”, used in Boukkouri et al. (2020)), as well

982



Consistency

Downsampling Method Example Position Length Morpheme

Fixed ✗ ✓ ✗

Buffered Fixed ✓ ✓ ✗

WDD ✓ ✗ ✓

SDD ✓ ✓ ✓

Table 2: The different downsampling methods tested. Alternating colors indicate the different downsampling blocks.
In summary, Fixed and Buffered Fixed always downsample the same number of characters (in this case 4), with
Buffered Fixed adding extra spaces between words so that each word begins at the beginning of a downsampling
block. WDD downsamples based on words (defined by spaces), and SDD downsamples based on subwords, defined
by a subword tokenizer.

as a third method, buffered fixed-size downsam-
pling (“Buffered Fixed”), which we introduce to
better understand the importance of position and
morpheme consistency. Table 2 shows an example
of these downsampling methods.

Positional Consistency The first factor we con-
sider is the importance of positional consistency,
that is, where a word begins within a downsam-
pling block. For example, consider the follow-
ing two sentences, with alternating colors denoting
the chunking of character sequences when using a
fixed-size downsampling factor of 4:

Words such as “is” or “the” end up in 2 tokens for
some sentences, while only in 1 for others. Mean-
while, longer words such as “going” and “store”
can be split several different ways, leading to sev-
eral different potential representations depending
on the sentence. This positional inconsistency in-
troduces an extra level of difficulty to the model,
which we expect results in worse performance. Of
the 4 methods tested, Fixed is the only one that
suffers from this positional inconsistency.

Length Consistency The consistency of the
lengths of downsampling blocks is also important,
particularly in the case of longer words. In the CNN
downsampler, the max pooling acts as a bottleneck,
making it more difficult for the model to learn a
complete representation for words with many char-
acters. For example, in Table 2, we see that the
WDD method downsamples “Characters” into a
single block, which means the max pooling down-
samples that word by a factor of 10. Furthermore,
the LSTM in the upsampling module may have
difficulty decoding a long sequence of characters
from a single hidden representation.

This consistency mainly affects the WDD
method. There is also a small amount of incon-
sistency in the SDD method, but this can be greatly
minimized by setting a maximum subword token
length (see details in Section 4.2).

Morpheme Consistency The third and final ben-
efit of SDD is its creation of more morphologically
consistent tokens. When splitting words into mul-
tiple subword tokens, it may be better for a model
to split along the morpheme boundaries rather than
every 4 characters, as the importance of characters
can vary. Observe the effect of fixed-size splitting
on various verbs:

The “ing” ending can suffer a sort of positional
inconsistency within the word itself. Additionally,
these fixed-size splits can be detrimental due to the
imbalance of information in the resulting down-
sampled tokens. Referring back to our example in
Table 2, even if tokens are corrected positionally,
the word “great” is split into two tokens, with the
last character getting its own dedicated token while
carrying minimal information.

The Buffered Fixed method offers positional con-
sistency and length consistency, but not morpheme
consistency, so comparing this to SDD should tell
us the importance of this third factor.

4 Architecture

We now explain the architecture used in our ex-
periments. We build off of the previous work
by using the CNN downsampling architecture fol-
lowed by the Transformer and using Libovickỳ et al.
(2021)’s two-step decoding with an LSTM for up-
sampling. This previous work was only applied to

983



Figure 1: Fixed-size downsampling (left) versus variable-length downsampling (right). Beginning-of-sentence,
end-of-sentence, and end-of-word tokens are denoted by ^, $, and #, respectively.

fixed-length downsampling and upsampling, how-
ever the aforementioned WDD and SDD methods
require variable-length downsampling and upsam-
pling. Thus, we explain how this is accomplished
in the next two subsections. Figure 1 shows the
architectures used in our translation experiments.1

4.1 Variable-length Downsampling

The downsampling module for WDD and SDD is
identical to that of the fixed-size model, with the
exception that the max pooling is computed over
all characters in a word or subword. On the de-
coder side, we additionally require the lengths of
each word or subword token in order to create a
causal mask which allows the association of char-
acters within the same block, while preventing the
association of characters from future blocks.

4.2 Variable-length Upsampling

While the downsampling module ensures that the
Transformer receives word or subword-level tokens,
we still require a method for upsampling back to
characters. Libovickỳ et al. (2021) introduced an
effective two-step decoder, consisting of the Trans-
former followed by an LSTM which takes as in-
put the hidden representation of the Transformer
decoder, the character embedding of the previous
character, and the previous LSTM hidden state.
This has previously only been applied to methods
with a fixed-size downsampling, and as such we

1Our encoder-only experiments use the same encoder ar-
chitecture (including the downsampler) with a linear output
layer added.

need to make some modifications to allow it to
work with variable-length sequences.

The top blocks of figure 1 show the original and
modified versions of the two-step decoder. The
input to the LSTM is first modified. In the original
case, with a downsampling factor of 4, the hidden
representation is repeated 4 times, and each is con-
catenated with individually learned character em-
beddings for the block of 4 characters. The LSTM
then must predict the next block, which effectively
means each character generated is conditioned on
the character 4 steps back.

With the modified version, the hidden represen-
tation is repeated the same number of times as the
length of the next block plus one, as we add in an
end-of-word token for each block to the character
embeddings and labels.2 Each hidden representa-
tion is concatenated with the character embeddings,
shifted over by 1. Although the character embed-
dings fed to the LSTM are no longer associated
with the respective hidden block, since the embed-
dings are individually learned, no information from
future blocks is accessible (thus avoiding the leak-
ing issue described in Edman et al. (2022)).

Since LSTMs are known to struggle as the
lengths of sequences get longer, we also limit
the lengths of each subword,3 which prevents the
joining of subwords beyond a specified character
length. This minimizes the length inconsistency
previously mentioned in Section 3.

2The end-of-word token is added to stop the LSTM’s gen-
eration of a word at generation time.

3We use the argument from SentencePiece
max_sentencepiece_length to achieve this.

984



BLEU COMET

Method de-en en-de ar-en en-ar tr-en en-tr avg de-en en-de ar-en en-ar tr-en en-tr avg

Fixed 24.32 21.06 22.63 9.24 12.78 9.32 16.56 0.019 −0.237 −0.073 −0.044 −0.218 −0.003 −0.093
Buf. Fixed 28.71 24.72 27.48 10.69 14.79 10.40 19.46 0.234 0.047 0.185 0.132 −0.061 0.137 0.112
WDD 27.51 23.72 26.71 11.32 13.27 8.92 18.58 0.175 −0.066 0.151 0.061 −0.164 −0.004 0.025
SDD 27.78 25.12 27.74 11.95 15.99 11.31 19.98 0.237 0.023 0.213 0.146 −0.006 0.175 0.131

Position +4.39 +3.66 +4.84 +1.45 +2.01 +1.08 +2.90 +0.214 +0.284 +0.258 +0.176 +0.157 +0.139 +0.205
Length +0.27 +1.40 +1.03 +0.63 +2.72 +2.39 +1.41 +0.061 +0.090 +0.062 +0.086 +0.158 +0.179 +0.106
Morpheme −0.93 +0.41 +0.27 +1.25 +1.20 +0.91 +0.52 +0.003 −0.024 +0.028 +0.014 +0.055 +0.038 +0.019

Table 3: Comparison of the 4 different downsampling methods, with an ablation of positional consistency (Buf.
Fixed - Fixed), length consistency (SDD - WDD), and morpheme consistency (SDD - Buf. Fixed) using two
evaluation metrics (BLEU and COMET)

.

5 Experimental Setup

Our code is made available on GitHub.4 We exper-
iment with translation, using the encoder-decoder,
as well as two encoder-only tasks: NLI and review
classification.5 While we focus mainly on improv-
ing translation, we also include these encoder-only
tasks to test the importance of the choice of down-
sampling method for non-generative tasks.

We compare several models, including the 4
downsampling methods (Fixed, Buffered Fixed,
WDD, and SDD) , as well as a subword-level model
and a character-level model,6 both of which use
the standard Transformer architecture, requiring no
downsampling or upsampling module.

For translation, we experiment with 3 lan-
guage pairs: English–Arabic, English–German,
and English–Turkish. We chose these language
pairs as they exhibit different levels of linguistic
similarity and morphological richness. We evaluate
our models with BLEU (Papineni et al., 2002) and
COMET (Rei et al., 2020).

The full details of the datasets used for all tasks
can be found in Appendix A. To keep our research
eco-friendly and to allow for faster iteration on our
models, we train our models on smaller transla-
tion datasets, consisting of roughly 200 thousand
sentence pairs per language pair, and roughly 500
thousand and 5 million sentences for NLI and re-
view classification, respectively. We discuss the
potential for these models in the high-resource set-
ting in Section 8.

For SDD, we change the value of the
max_sentencepiece_length argument in
SentencePiece to achieve an effective downsam-

4https://github.com/Leukas/SDD
5Review classification is classifying product reviews from

1 to 5 stars based on the review title and content.
6By character-level we in fact mean byte-level, aligning

with previous work. This applies to our downsampling models
as well.

pling factor as close to our fixed-size downsam-
pling counterparts as possible.7 To maintain
a comparability to a strict downsampling of 4,
we set the max_sentencepiece_length and
the vocabulary size such that the average down-
sampling factor is around 4. We achieve this by
first setting the vocabulary size to the size recom-
mended by VOLT (Xu et al., 2020), then lower-
ing the max_sentencepiece_length until
the average downsampling factor is close to 4.8

We chose 4 as it is roughly equivalent to the ratio
of the number of bytes per subword token when
comparing the ByT5 and mT5 models across all
the languages in the mC4 corpus (Xue et al., 2022).

Our parameter setup for models, vocabulary, and
training are noted in Appendix B.

6 Results

We start by comparing the 4 downsampling meth-
ods, discerning the importance of the positional,
length, and morpheme consistency. We then com-
pare our best-performing downsampling method
to our two standard baselines: the subword-level
and character-level models. Third, we compare
these models in their ability to generalize to out-
of-domain datasets. Lastly, we look at the encoder-
only tasks, comparing all methods thus far.

6.1 Comparing Downsampling Methods
First comparing the various downsampling meth-
ods Table 3, we see that as expected from Section 3
our novel SDD method performs best overall.

Of the three factors, positional consistency ap-
pears most important, making up the greatest por-
tion of the performance increase. Given that

7By default, it is set to 16, which inhibits the performance
of the LSTM in the decoder.

8The average downsampling factor is calculated by aver-
aging the number of bytes per subword token in the training
data.

985

https://github.com/Leukas/SDD


BLEU COMET

Method de-en en-de ar-en en-ar tr-en en-tr avg de-en en-de ar-en en-ar tr-en en-tr avg

Subword 27.23 24.08 25.59 11.22 14.73 11.30 19.02 0.203 0.073 0.063 0.120 −0.097 0.176 0.090
Char 27.37 24.32 26.34 8.73† 15.52∗ 11.87∗ 19.03 0.222 0.040 0.142∗ −0.008† −0.026∗ 0.190 0.093
SDD 27.78 25.12∗ 27.74∗ 11.95∗ 15.99∗ 11.31 19.98 0.237∗ 0.023∗ 0.213∗ 0.146 −0.006∗ 0.175 0.131

Table 4: Translation results of traditional subword models and character models without downsampling compared to
character models with subword-delimited downsampling (SDD). Green (*) and red (†) denote a significant positive
or negative difference (p < 0.05) with respect to the Subword model.

positional inconsistency means there is often no
subword-like structure to the downsampled tokens,
it is understandable that the model has the most
difficulty translating in this scenario.

Length consistency contributes some improve-
ment as well, showing that there is indeed a bottle-
neck effect when downsampling longer words, and
that there is merit in the model splitting such words
into multiple tokens prior to the Transformer.

Morpheme consistency is least important; how-
ever it seems to have a larger impact on the more
morphological languages of Arabic and Turkish.
This gives evidence towards the idea that the sub-
word splitting of SentencePiece is likely more con-
ducive to translating morphemes than translating
4-character chunks. Although we use Sentence-
Piece due to its ubiquity, there are arguably better
subword tokenizers with respect to adherence to
morphology, such as LMVR (Ataman et al., 2017).
These tokenizers are fully compatible with SDD,
and they may further increase the disparity we see
in morpheme consistency.

6.2 Comparing to Subword and Character
Models

We now compare the performance of SDD to sub-
word and character models in Table 4.

Overall, SDD outperforms both subword and
character models on both BLEU and COMET.
It performs significantly better than the subword
model in 4 and 3 cases according to BLEU and
COMET, respectively. Only in 1 case in terms
of COMET does SDD lead to significantly worse
performance.

The Arabic–English language pair shows the
largest improvement over the baselines. The reason
for this is unclear, though it is the only language
pair with an entirely different character set between
the source and target (save for numbers, symbols,
and some proper nouns).

As SDD was originally intended to shore up the
weaknesses of the previous downsampling meth-

ods, the aim was to perform on par with the sub-
word and character models. The slight increase
in performance shows that there is some benefit
in using a combination of the two, namely using
character-level input while operating on a subword-
level within the Transformer encoder-decoder.

6.3 Out-of-domain Generalization

Boukkouri et al. (2020) found that with Charac-
terBERT, the models generalized better to out-of-
domain encoder-only tasks such as classification
of medical data. They argue that because Charac-
terBERT does not have a strict vocabulary, and it
learns more general properties of language which
can be useful for unseen words. As we see evi-
dence of the same in our embedding analysis (see
Section 7), we similarly test our models on two out-
of-domain translation datasets. For all languages,
we test on FLoRes (Goyal et al., 2022), which con-
sists of Wikipedia data. For English–German, we
additionally test on the WMT21 Biomedical Shared
Task test set.

The FLoRes and biomedical results are shown in
Tables 5 and 6, respectively. Here we see the SDD
model and character model both outperforming the
subword model, as expected. The results on FLo-
Res favor the SDD model, while the biomedical
results favor the character model. The biomedical
data is arguably “more out-of-domain” than FLo-
Res, since it contains a large amount of medical
terminology unlikely to appear in the training data.
This may indicate that the character downsampling
is somewhat sensitive to the vocabulary it is trained
on, and as such it generalises better than the sub-
word model but not as well as the character model.

Since the SDD model only uses a subword vo-
cabulary to determine the lengths for downsam-
pling, it is perhaps possible to use a different vo-
cabulary when switching domains, namely one that
offers better downsampling for the out-of-domain
words. We leave this for future research.

986



BLEU COMET

Method de-en en-de ar-en en-ar tr-en en-tr avg de-en en-de ar-en en-ar tr-en en-tr avg

Subword 19.88 16.79 13.90 9.07 16.25 11.02 14.49 −0.158 −0.385 −0.344 −0.292 −0.053 −0.031 −0.210
Char 21.97 17.46 15.86 8.95 17.59 12.03 15.64 0.003 −0.297 −0.132 −0.340 0.065 0.049 −0.109
SDD 21.45 17.46 16.75 10.73 17.85 12.01 16.04 −0.065 −0.330 −0.094 −0.154 0.074 0.035 −0.089

Table 5: Results on FLoRes evaluation set.

BLEU COMET

Method de-en en-de de-en en-de

Subword 9.37 4.36 −0.729 −1.119
Char 11.71 4.74 −0.499 −0.947
SDD 9.41 4.05 −0.659 −1.036

Table 6: Results on Biomedical evaluation set.

6.4 Encoder-only Tasks

The accuracies achieved in the encoder-only tasks
are shown in Table 7. The character-level model
has surprisingly low accuracies. Given that the
main difference between the character model and
the other models is the longer sequence length fed
into the Transformer, we expect the complexity of
the self-attention patterns necessary for these tasks
is more difficult to learn when data is limited.

Method NLI (%) RC (%)

Subword 80.14 73.90
Char 60.75 68.86
Fixed 81.01 73.28
Buf. Fixed 81.81 73.05
WDD 81.89 73.69
SDD 81.30 74.22

Table 7: Results of NLI and review classification (RC).

Our SDD method outperforms both subword and
character baselines on both tasks. Unlike with trans-
lation, the downsampling models show little differ-
ence in performance. As SDD is intended to help
by providing a consistent tokenization, it seems that
this consistency is less important for sequence clas-
sification tasks. This is probably because there is
no need for character or word recovery: the model
does not need to reconstruct any of its input, so
it can potentially lose some character information
while still learning to correctly classify.

A token classification task such as part-of-speech
tagging may be more difficult for the fixed-size
downsampling model, although it is not clear how
to apply such a model to a token classification task,
given the mismatch in downsampling blocks and
token labels. The SDD model can however be
applied to token classification in the same manner
a subword model would be applied.

Another reason for there being more of a gap in
the performance for translation might be that the
cross-attention is what benefits most from the three
token consistency factors. Inconsistent tokens on
both the source and target side likely make learning
what to attend to quite difficult.

7 Embedding Analysis

The sole difference in the architecture of the
encoder-only models is their embeddings, or the
hidden representations prior to being fed into the
Transformer. As such, we extract these embeddings
for words to analyze their differences. We compare
the models in their word embedding similarity (i.e.
cosine similarity) for pairs of words. We generate
4 test sets:

1. Grammatical pairs - Pairs which share a com-
mon lemma.

2. Close pairs - Pairs with a Levenshtein distance
of 1.

3. Far pairs - Pairs with a max Levenshtein dis-
tance.

4. Far Synonyms - Synonyms with a max Leven-
shtein distance.

The first two sets are meant to distinguish bene-
ficial character-level similarity (e.g. “take” and
“takes”) from detrimental similarity (e.g. “pour”
and “tour”). The latter two sets are meant to dis-
tinguish the opposite, when a lack of similarity
may be appropriate (e.g. “bulb” and “faster”) or
inappropriate (e.g. “camp” and “tent”). We limit
the vocabulary used in the test sets to words in
the subword vocabulary that only require a single
token. We also filter out tokens which have no syn-
onyms, effectively also removing non-words and
non-English words. Lemmas and synonyms are
gathered using WordNet (Miller, 1995).

We split the test sets additionally into 3 sub-
categories: “seen”, where both words in the pair
have been seen during training, “half-seen”, where
only one word is seen in training, and “unseen”,

987



Grammatical Close Spell Far Spell Far Synonym

Subword Seen 1.03 ± 0.08 0.17 ± 0.06 0.05 ± 0.05 0.18 ± 0.05
µ : 0.01 Half-seen -0.09 ± 0.07 -0.09 ± 0.02 -0.12 ± 0.02 -0.12 ± 0.02
σ : 0.08 Unseen -0.12 ± 0.12 -0.10 ± 0.05 -0.10 ± 0.02 -0.06 ± 0.09

SDD Seen 5.75 ± 0.05 4.68 ± 0.06 -0.52 ± 0.04 -0.49 ± 0.04
µ : 0.31 Half-seen 6.09 ± 0.09 5.17 ± 0.06 -0.43 ± 0.04 -0.40 ± 0.04
σ : 0.09 Unseen 6.06 ± 0.14 5.62 ± 0.11 -0.27 ± 0.04 -0.21 ± 0.13

Table 8: Model average z-scores for the respective test sets, with a 95% confidence interval.

where neither is seen in training.9 The sizes of each
split are shown in Table 12 in Appendix A. The
results are shown in Table 8.

As expected, the subword model has near 0 simi-
larity for half-seen and unseen words since it has no
mechanism for developing their embeddings during
training. It does recognize grammatical seen words
as similar, but it has a more muted response to seen
words with similar spelling. In contrast, SDD has a
strong response to both seen and unseen words, as
the character models can develop embeddings for
unseen words according to character-level patterns.
We see that both models appear capable of distin-
guishing between grammatical pairs and pairs with
similar spelling but not necessarily similar mean-
ing, though only in the case where both words are
seen for the subword model.

There is a stark difference between the z-scores
of the Close Spell and Far Spell sets for the SDD
model. As for the Far Synonyms, there is a small
difference for the subword model, and none for
the SDD model. It is possible that these words are
distinguished in later layers of the model.

8 Practicality Discussion

While this paper takes a more theoretical approach,
using smaller, domain-specific datasets for train-
ing NMT, the practical usage is worth considering.
Given the prior work of ByT5, Charformer, and
CharacterBERT, the consensus appears that with
large, pretrained models using character informa-
tion, the performance on standard metrics is similar,
and the outperformance is on out-of-domain data
(Boukkouri et al., 2020) or data with character-
level corrupted input (Xue et al., 2022). As such,
we expect the same is true for SDD, however the
upsampling module used (based on Libovickỳ et al.
(2021)) appears to be a limiting factor. We explain

9For these experiments, we used separate models trained
using the same initial vocabulary as T5-Small, in order to get
a larger number of single-token words to evaluate on. This
is why there exist words in the vocabulary that are not seen
during training. The performance of these models is similar
to those reported in Table 7.

this in further detail in Appendix C, where we train
and test the models on the larger WMT14 German–
English dataset, finding that the performance of the
subword model deteriorates when the same two-
step decoding method is added.

Conversely, we expect such models to be useful
in lower-resource settings. In such an scenarios, we
show that the inclusion of character-level informa-
tion improves performance beyond that of subword
models (Appendix D).

Translation Encoder Tasks

Iter Epochs Total Iter Epochs Total

Char ×3.58 ×1.31 ×4.69 ×2.23 ×2.04 ×4.55
SDD ×2.61 ×1.28 ×3.34 ×1.34 ×1.36 ×1.82

Table 9: Training time ratios with respect to the subword
model. “Iter” refers to the iteration speed (e.g. Char is
3.58 times slower than the subword model per iteration
for translation), “Epochs” refers to the total number of
epochs needed, and “Total” is the product of the first
two.

In terms of training time, we report the training
time ratios with respect to the subword model in
Table 9.10 While the SDD model is considerably
slower than the subword model in terms of train-
ing time, it still performs better than the character
model, particularly for encoder-only tasks, suggest-
ing that decoding is the main source of the slower
training times.

One potential use of the SDD model that is yet
unexplored comes in the form of adapting existing
subword models to take character input. Since pre-
training is a costly endeavor, and since there are
beneficial characteristics of character-level mod-
els such as out-of-domain generalization, it may be
possible to improve a subword model by adapting it
to use the SDD downsampling module rather than
its own subword embeddings. Previous work in
adaptation has shown success in adapting models
to different tasks (Üstün et al., 2020; Pfeiffer et al.,
2020) and languages (Bapna et al., 2019; Artetxe

10All experiments were conducted on a single Nvidia V100
GPU.

988



et al., 2019; Üstün et al., 2021), so a similar ap-
proach may be useful here.

9 Conclusion

Previous work has casted doubt on the usefulness
of character-level NMT models, due to their lack
of improvement over subword models despite us-
ing more fine-grained information while being also
slower. Downsampling modules added to the char-
acter models have previously been proposed but
have always come at the cost of accuracy.

We show that it is possible to downsample with-
out sacrificing accuracy, by downsampling based
on the lengths of subwords. This novel down-
sampling outperforms the previous downsampling
methods, as well as character and subword models
on the majority of language pairs tested.

There are several avenues for future research.
While much work has been done on optimizing a
vocabulary for a subword model, finding the opti-
mal lengths for subword-delimited downsampling
is still an open problem. The most promising may
in fact be adapting any of the numerous pretrained
subword models to use characters as input. Overall,
character-level models show promise that has yet
to be fully realized.

10 Limitations

As we mention in Sections 5 and 8, our largest lim-
itation is that the majority of our testing is done on
smaller datasets, consisting of roughly 200 thou-
sand sentence pairs per language pair. While we
do test on a larger dataset for German→English, it
is limited to only a single language pair, and single
direction, so it is still an open question whether our
method works well in general in higher-resource
settings.

Additionally, we only test on 3 language pairs in
our main results, all of which have English on the
source or target side. It is possible that our method
only works well in circumstances where English
is present in the language pair, or it only works
well where the other language is either German,
Arabic, or Turkish. Notably, languages such as
Chinese can have characters that hold the same
meaning as a word in English, and as such subword
tokenizers like SentencePiece may be less useful.
Subsequently, SDD may be less useful for these
types of languages.

In terms of the tasks tested, we mainly focus on
translation, so we can make no claims about the

performance on other generative tasks. We test on
two discriminative tasks, NLI, and review classifi-
cation, however both are tested without following
the popular pretrain-then-finetune paradigm, mak-
ing the results difficult to compare to existing work.
The scope of these tests is also limited to English
only.

In terms of parameters tested, we mainly follow
previous work, so it is possible that our method
does not perform as well (or possibly performs bet-
ter) under different parameter settings. To keep our
carbon impact minimal, we opted for using VOLT
to determine an optimal vocabulary size (which
requires no training of NMT models), rather than
the standard grid search approach. VOLT does
not guarantee an optimal vocabulary size however,
and this may have an impact on our results, be it
favorably or unfavorably.

Finally, as we note in Appendix B.3, our method
is considerably slower than the subword model.
However, it is also considerably faster than the
character model while also performing better on
the majority of the tasks tested. As this work is
exploring new territory, it is very likely that our
implementation is not as efficient as it could be.

11 Acknowledgements

We thank the Center for Information Technology of
the University of Groningen for their support and
for providing access to the Peregrine high perfor-
mance computing cluster.

References
Mikel Artetxe, Sebastian Ruder, and Dani Yo-

gatama. 2019. On the cross-lingual transferabil-
ity of monolingual representations. arXiv preprint
arXiv:1910.11856.

Duygu Ataman, Matteo Negri, Marco Turchi, and Mar-
cello Federico. 2017. Linguistically motivated vocab-
ulary reduction for neural machine translation from
turkish to english.

Ankur Bapna, Naveen Arivazhagan, and Orhan Firat.
2019. Simple, scalable adaptation for neural machine
translation. arXiv preprint arXiv:1909.08478.

Hicham El Boukkouri, Olivier Ferret, Thomas Lavergne,
Hiroshi Noji, Pierre Zweigenbaum, and Junichi Tsu-
jii. 2020. Characterbert: Reconciling elmo and bert
for word-level open-vocabulary representations from
characters. arXiv preprint arXiv:2010.10392.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large annotated

989



corpus for learning natural language inference. arXiv
preprint arXiv:1508.05326.

Marta R Costa-Jussa and José AR Fonollosa. 2016.
Character-based neural machine translation. arXiv
preprint arXiv:1603.00810.

Lukas Edman, Antonio Toral, and Gertjan van No-
ord. 2022. Patching leaks in the charformer for
efficient character-level generation. arXiv preprint
arXiv:2205.14086.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’Aurelio Ranzato, Francisco Guzman,
and Angela Fan. 2022. The flores-101 evaluation
benchmark for low-resource and multilingual ma-
chine translation. Transactions of the Association for
Computational Linguistics, 10:522–538.

Jason Lee, Kyunghyun Cho, and Thomas Hofmann.
2017. Fully character-level neural machine transla-
tion without explicit segmentation. Transactions of
the Association for Computational Linguistics, 5:365–
378.

Jindřich Libovickỳ, Helmut Schmid, and Alexander
Fraser. 2021. Why don’t people use character-
level machine translation? arXiv preprint
arXiv:2110.08191.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Myle Ott, Sergey Edunov, David Grangier, and Michael
Auli. 2018. Scaling neural machine translation.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebas-
tian Ruder. 2020. Mad-x: An adapter-based frame-
work for multi-task cross-lingual transfer. arXiv
preprint arXiv:2005.00052.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Yi Tay, Vinh Q Tran, Sebastian Ruder, Jai Gupta,
Hyung Won Chung, Dara Bahri, Zhen Qin, Si-
mon Baumgartner, Cong Yu, and Donald Metzler.
2021. Charformer: Fast character transformers via
gradient-based subword tokenization. arXiv preprint
arXiv:2106.12672.

Ahmet Üstün, Alexandre Berard, Laurent Besacier, and
Matthias Gallé. 2021. Multilingual unsupervised
neural machine translation with denoising adapters.
arXiv preprint arXiv:2110.10472.

Ahmet Üstün, Arianna Bisazza, Gosse Bouma, and Gert-
jan van Noord. 2020. Udapter: Language adapta-
tion for truly universal dependency parsing. arXiv
preprint arXiv:2004.14327.

Daimeng Wei, Zongyao Li, Zhanglin Wu, Zhengzhe Yu,
Xiaoyu Chen, Hengchao Shang, Jiaxin Guo, Ming-
han Wang, Lizhi Lei, Min Zhang, et al. 2021. Hw-
tsc’s participation in the wmt 2021 news translation
shared task. In Proceedings of the Sixth Conference
on Machine Translation, pages 225–231.

Jingjing Xu, Hao Zhou, Chun Gan, Zaixiang Zheng, and
Lei Li. 2020. Vocabulary learning via optimal trans-
port for neural machine translation. arXiv preprint
arXiv:2012.15671.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2022. Byt5: Towards a token-free
future with pre-trained byte-to-byte models. Transac-
tions of the Association for Computational Linguis-
tics, 10:291–306.

A Datasets

The datasets used for translation are shown in Ta-
ble 10. In summary, we use IWSLT2017,11 SE-
TIMES,12 and datasets provided by WMT shared
tasks.13

The datasets used for NLI and review classi-
fication (RC) are shown in Table 11. For NLI,
we use the SNLI corpus (Bowman et al., 2015),
and for RC we use the Amazon Customer Re-
views Dataset.14 For SNLI we use the predefined
train/dev/test splits, and for RC we take a 99/1
split of the Books_v1_00 subset for training and
validation, and use 1% of the Books_v1_02 sub-
set for testing (amounting to roughly 22k test sen-
tences).

Concerning the evaluation sets we generated for
Section 7, we show the sizes of the generated sets
in Table 12. We limited the size of the test sets to
2000 word pairs, randomly selecting from those
generated.

11https://sites.google.com/site/
iwsltevaluation2017/TED-tasks

12https://opus.nlpl.eu/SETIMES.php
13https://statmt.org/wmt21/

translation-task.html
14https://s3.amazonaws.com/

amazon-reviews-pds/readme.html

990

https://doi.org/10.48550/ARXIV.1806.00187
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://sites.google.com/site/iwsltevaluation2017/TED-tasks
https://sites.google.com/site/iwsltevaluation2017/TED-tasks
https://opus.nlpl.eu/SETIMES.php
https://statmt.org/wmt21/translation-task.html
https://statmt.org/wmt21/translation-task.html
https://s3.amazonaws.com/amazon-reviews-pds/readme.html
https://s3.amazonaws.com/amazon-reviews-pds/readme.html


Main Low-Resource High-Resource

Lang pair en↔de en↔ar en↔tr xh↔zu de→en

Train IWSLT2017 IWSLT2017 SETIMES CC-Aligned WMT14
Size (k) 199 224 197 85 4509
Eval IWSLT2017 IWSLT2017 WMT17/18 dev WMT21 dev WMT13/14 dev
Domain TED Talks TED Talks News Crawl News / Crawl / Govt

Table 10: Datasets used for translation, showing the names of the training and evaluation sets, the size of the training
data (in sentence pairs), and the domain.

Task NLI RC

Train SNLI train Books_v1_00
Size (k) 547 5711
Eval SNLI dev/test Books_v1_00 / 02
Domain Image captions Book reviews

Table 11: Datasets used for encoder-only tasks, show-
ing the names of the training and evaluation sets, the
size of the training data (in premise/hypothesis pairs or
reviews), and the domain.

Grammatical Close spell Far spell Far Synonym

Seen 1873 2000 2000 2000
Half-seen 273 2000 2000 2000
Unseen 92 525 2000 164

Table 12: Size of generated datasets for evaluating the
embeddings of word pairs.

B Parameters

B.1 Architecture

For the CNN downsampling module, we use the
same parameters as Libovickỳ et al. (2021).

We use Transformer Base for our Encoder-
Decoder, only modifying the maximum position
embeddings to 2048 to account for the increased
length of our character models.

For the upsampling module, we use the same
parameters as used in Libovickỳ et al. (2021), with
the exception of the linear layer which projects the
hidden representations of the Transformer decoder
to the LSTM. The output size used in Libovickỳ
et al. (2021) is 64 times the downsampling factor.
For variable-length downsampling, this needs to be
set to the maximum word length in bytes plus one
(accounting for the end-of-word token).

de↔en ar↔en tr↔en xh↔zu

Subword 62M 55M 51M 50M
Char 46M 46M 46M 46M
SDD 56M 56M 56M 56M

Table 13: Number of parameters (in millions) for each
model trained.

The total number of parameters in each model is

shown in Table 13. We opted to keep the number
of parameters in the Transformer fixed, meaning
the variation in parameter count comes only from
the embeddings as well as the downsampling and
upsampling modules, if they are present. The num-
ber of parameters varies across language for the
subword model due to the varying size of the vo-
cabulary.

B.2 Vocabulary

Main LR HR

Lang pair en↔de en↔ar en↔tr xh↔zu de→en

Vocab size (k) 16 9 5 4 16
Max token len 6 4 6 5 6

Table 14: Vocabulary sizes and max token lengths for
the languages tested.

As noted in Section 5, we use VOLT to deter-
mine the optimal vocabulary sizes. We specify
these, along with the max token length that most
closely matches an average downsampling factor of
4 in Table 14. It should be noted that the max token
length argument in SentencePiece is determined
by the maximum character length, however SDD
operates on the byte level. So for English–Arabic,
although the max token length is set to 4, the aver-
age downsampling factor is in fact above 4, due to
the length of the Arabic characters in UTF-8 being
typically 2-3 bytes.

B.3 Training
We use an effective batch size of 128, accumulated
over 4 iterations. We use the AdamW optimizer
(Loshchilov and Hutter, 2017), with betas 0.9 and
0.999, a learning rate of 2e-4, and a linear scheduler
with a warmup of 10000 steps. We apply an early
stopping with a patience of 10, using the BLEU
score on the validation set as the stopping criterion.

C Higher-Resource Translation

We also run experiments in the higher resource
setting of the WMT14 German→English data. Fol-

991



lowing the principles of Ott et al. (2018), we use
larger batch sizes of 50k and 240k tokens for the
subword and character models, respectively, both
of which average to about 2000 sentences per batch.
We also increase the learning rate to 5e-4 and use
mixed-precision for the training. We include an
additional model, which is the subword model with
the two-step decoding as used in the models with
downsampling. In other words, the subword model
is given the same LSTM upsampling head, but the
upsampling is simply 1-to-1. We test this to ablate
any effect of the upsampler on the results.15

BLEU COMET

Subword 28.62 0.431
Two-step subword 27.49 0.360
SDD 27.27 0.364

Table 15: Translation results on the WMT14 DE→EN
dataset.

Our results are shown in Table 15. We can see
that the standard subword model performs best,
however the addition of the two-step decoder hurts
performance significantly. The subword model
with the two-step decoder still performs on par
with our SDD model, confirming our expectations.
We conclude that SDD is competitive in higher-
resource settings, since it achieves similar scores
to the subword variant that also has a two-step
decoder. This two-step decoder, while effective
on lower-resource settings, does not scale well to
higher-resource settings without any modification.
This raises the question as to whether an upsam-
pling method exists that has better scaling ability.
We leave this for future research to explore.

D Lower-Resource Translation

To analyze our models on lower-resource transla-
tion, we chose to train and evaluate on Xhosa–Zulu,
specifically the data provided by the WMT2021
Shared Task. Typically, in lower-resource scenar-
ios, other techniques such as multilingual transfer
learning and back-translation are applied to im-
prove the models. We chose this language pair as
the performance gain from employing these tech-
niques is less substantial (Wei et al., 2021).

The results show that the character-level model
without downsampling performs best, with SDD as
a close second. Xhosa and Zulu, being closely re-
lated languages, likely would benefit greatly from

15We do not include this in our main results because we did
not see a noticeable difference in the performances there.

BLEU COMET

Method xh-zu zu-xh xh-zu zu-xh

Subword 4.59 5.89 -0.3222 -0.1149
Char 6.51 6.42 -0.0071 0.0286
SDD 6.35 6.32 -0.1282 -0.0285

Table 16: Translation Results for Xhosa–Zulu.

character-level translation regardless of the amount
of data, given that many of the differences between
the two are on the character level. Of course, more
thoroughly evaluating SDD on low-resource set-
tings would require a pretrain-then-finetune ap-
proach, which we reserve for future research.

992


