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Abstract

Encoded text representations often capture sen-
sitive attributes about individuals (e.g., race
or gender), which raise privacy concerns and
can make downstream models unfair to certain
groups. In this work, we propose FEDERATE,
an approach that combines ideas from differ-
ential privacy and adversarial training to learn
private text representations which also induces
fairer models. We empirically evaluate the
trade-off between the privacy of the represen-
tations and the fairness and accuracy of the
downstream model on four NLP datasets. Our
results show that FEDERATE consistently im-
proves upon previous methods, and thus sug-
gest that privacy and fairness can positively re-
inforce each other.

1 Introduction

Algorithmically-driven decision-making systems
raise fairness concerns (Raghavan et al., 2020;
van den Broek et al., 2019) as they can be discrim-
inative against specific groups of people. These
systems have also been shown to leak sensitive in-
formation about the data of individuals used for
training or inference, and thus pose privacy risks
(Shokri et al., 2017). Societal pressure as well
as recent regulations push for enforcing both pri-
vacy and fairness in real-world deployments, which
is challenging as these notions are multi-faceted
concepts that need to be tailored to the context.
Moreover, privacy and fairness can be at odds with
one another: recent studies have shown that pre-
venting a model from leaking information about
its training data negatively impacts the fairness of
the model and vice versa (Bagdasaryan et al., 2019;
Pujol et al., 2020; Cummings et al., 2019; Chang
and Shokri, 2020).

This paper studies fairness and privacy and their
interplay in the NLP context, where these two no-
tions have often been considered independently
from one another. Modern NLP heavily relies

on learning or fine-tuning encoded representations
of text. Unfortunately, such representations often
leak sensitive attributes (e.g., gender, race, or age)
present explicitly or implicitly in the input text,
even when such attributes are known to be irrele-
vant to the task (Song and Raghunathan, 2020).
Moreover, the presence of such information in
the representations may lead to unfair downstream
models, as has been shown on various NLP tasks
such as occupation prediction from text bios (De-
Arteaga et al., 2019), coreference resolution (Zhao
et al., 2018), or sentiment analysis (Kiritchenko
and Mohammad, 2018).

Privatizing encoded representations is thus an im-
portant, yet challenging problem for which existing
approaches based on subspace projection (Boluk-
basi et al., 2016; Wang et al., 2020; Karve et al.,
2019; Ravfogel et al., 2020) or adversarial learning
(Li et al., 2018; Coavoux et al., 2018; Han et al.,
2021) do not provide a satisfactory solution. In
particular, these methods lack any formal privacy
guarantee, and it has been shown that an adversary
can still recover sensitive attributes from the result-
ing representations with high accuracy (Elazar and
Goldberg, 2018; Gonen and Goldberg, 2019).

Instead of relying on adversarial learning to pre-
vent attribute leakage, Lyu et al. (2020); Plant et al.
(2021) recently propose to add random noise to text
representations so as to satisfy differential privacy
(DP), a mathematical definition which comes with
rigorous guarantees (Dwork et al., 2006). How-
ever, we uncover a critical error in their privacy
analysis which drastically weakens their privacy
claims. Moreover, their approach harms accuracy
and fairness compared to adversarial learning.

In this work, we propose a novel approach
(called FEDERATE) to learn private text represen-
tations and fair models by combining ideas from
DP with an adversarial training mechanism. More
specifically, we propose a flexible end-to-end archi-
tecture in which (i) the output of an arbitrary text
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encoder is normalized and perturbed using random
noise to make the resulting encoder differentially
private, and (ii) on top of the encoder, we com-
bine a classifier branch with an adversarial branch
to actively induce fairness, improve accuracy and
further hide specific sensitive attributes.

We empirically evaluate the privacy-fairness-
accuracy trade-offs achieved by FEDERATE over
four datasets and find that it simultaneously leads
to more private representations and fairer models
than state-of-the-art methods while maintaining
comparable accuracy. Beyond the superiority of
our approach, our results bring valuable insights on
the complementarity of DP and adversarial learn-
ing and the compatibility of privacy and fairness.
On the one hand, DP drastically reduces undesired
leakage from adversarially trained representations,
and has a stabilizing effect on the training dynamics
of adversarial learning. On the other hand, adver-
sarial learning improves the accuracy and fairness
of models trained over DP text representations.

Our main contributions are as follows:

• We propose a new approach, FEDERATE,
which combines a DP encoder with adversar-
ial learning to learn fair and accurate models
from private representations.

• We identify and fix (with a formal proof) a crit-
ical mistake in the privacy analysis of previous
work on learning DP text representations.

• We empirically show that FEDERATE leads to
more private representations and fairer models
than state-of-the-art methods while maintain-
ing comparable accuracy.

• Unlike previous studies, our empirical results
suggest that privacy and fairness are compati-
ble in our setting, and even mutually reinforce
each other.

The paper is organized as follows. Section 2 pro-
vides background on differential privacy. Section 3
presents our approach. Section 4 reviews related
work. Experimental results and conclusions are
given in Sections 5 and 7.

2 Background: Differential Privacy

Differential Privacy (DP) (Dwork et al., 2006) pro-
vides a rigorous mathematical definition of the pri-
vacy leakage associated with an algorithm. It does
not depend on assumptions about the attacker’s ca-
pabilities and comes with a powerful algorithmic

framework. For these reasons, it has become a
de-facto standard in privacy currently used by the
US Census Bureau (Abowd, 2018) and several big
tech companies (Erlingsson et al., 2014; Fanti et al.,
2016; Ding et al., 2017). This section gives a brief
overview of DP, focusing on the aspects needed
to understand our approach (see Dwork and Roth
(2014) for an in-depth review of DP).

Over the last few years, two main models for
DP have emerged: (i) Central DP (CDP) (Dwork
et al., 2006), where raw user data is collected and
processed by a trusted curator, which then releases
the result of the computation to a third party or the
public, and (ii) Local DP (LDP) (Kasiviswanathan
et al., 2011) which removes the need for a trusted
curator by having each user locally perturb their
data before sharing it. Our work aims to create
an encoder that leads to a private embedding of
an input text, which can then be shared with an
untrusted curator for learning or inference. We
thus consider LDP, defined as follows.

Definition 1 (Local Differential Privacy). A ran-
domized algorithm M : X → O is ε-differentially
private if for all pairs of inputs x, x′ ∈ X and all
possible outputs o ∈ O:

Pr[M(x) = o] ≤ eε Pr[M(x′) = o]. (1)

LDP ensures that the probability of observing a par-
ticular output o of M should not depend too much
on whether the input is x or x′. The strength of pri-
vacy is controlled by ε, which bounds the log-ratio
of these probabilities for any x, x′. Setting ε = 0
corresponds to perfect privacy, while ε→∞ does
not provide any privacy guarantees (as one may
be able to uniquely associate an observed output
to a particular input). In our approach described
in Section 3, x will be an input text and M will
be an encoding function which transforms x into
a private vector representation that can be safely
shared with untrusted parties.

Laplace mechanism. As clearly seen from Def-
inition 1, an algorithm needs to be randomized to
satisfy DP. A classical approach to achieve ε-DP for
vector data is the Laplace mechanism (Dwork et al.,
2006). Given the desired privacy guarantee ε and
an input vector x ∈ RD, this mechanism adds cen-
tered Laplace noise Lap(∆

ε ) independently to each
dimension of x. The noise scale ∆

ε is calibrated to
ε and the L1-sensitivity ∆ of inputs:

∆ = max
x,x′∈X

‖x− x′‖1. (2)
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In our work, we propose an architecture in which
the Laplace mechanism is applied on top of a train-
able encoder to get private representations of in-
put texts, and is further combined with adversarial
training to learn fair models.

3 Approach

We consider a scenario similar to Coavoux et al.
(2018), where a user locally encodes its input
data (text) x into an intermediate representation
Epriv(x) which is then shared with an untrusted cu-
rator to predict the label y associated with x using a
classifier C. Additionally, an attacker (which may
be the untrusted curator or an eavesdropper) may
observe the intermediate representation Epriv(x)
and try to infer some sensitive (discrete) attribute
z about x (e.g., gender, race etc.). Our goal is to
learn an encoder Epriv and classifier C such that
(i) the attacker performs poorly at inferring z from
Epriv(x), (ii) the classifierC(Epriv(x)) is fair with
respect to z according to some fairness metric, and
(iii) C accurately predicts the label y.

To achieve the above goals we introduce
FEDERATE (for Fair modEls with DiffERentiAlly
private Text Encoders), which combines two com-
ponents: a differentially private encoder and an
adversarial branch. Figure 1 shows an overview of
our proposed architecture.

3.1 Differentially Private Encoder
We propose a generic private encoder construction
Epriv = priv ◦ E composed of two main compo-
nents. The first component E can be any encoder
which maps the text input to some vector space
of dimension D. It can be a pre-trained language
model along with a few trainable layers, or it can
be trained from scratch. The second component
priv is a randomized mapping which transforms
the encoded input to a differentially private rep-
resentation. Given the desired privacy guarantee
ε > 0, this mapping is obtained by applying the
Laplace mechanism (see Section 2) to a normalized
version of the encoded representation E(x):

priv(E(x)) = E(x)/‖E(x)‖1 + `, (3)

where each entry of ` ∈ RD is sampled indepen-
dently from Lap(2

ε ). We will prove that Epriv =
priv ◦ E satisfies ε-DP in Section 3.4.

3.2 Adversarial Component
To improve the fairness of the downstream classi-
fier C, we model the adversary by another classi-

Encoder E

User Input

priv Classifier C

Adversarial 
A

g𝝀

Figure 1: Overview of our FEDERATE approach.
The text input x is transformed to E(x) ∈ RD by
the text encoder E. The encoded input is then made
private by the privacy layer priv, which involves
normalization and addition of Laplace noise. The
resulting private representation Epriv(x) ∈ RD is
then used by the main task classifier C. It also
serves as input to the adversarial layer A which
is connected to the main branch via a radient re-
versal layer gλ. The light red boxes represent the
Differentially Private Encoder (Sec. 3.1), and the
light blue boxes represent the Adversarial compo-
nent (Sec. 3.2).

fier A which aims to predict z from the privately
encoded input Epriv(x). The encoder Epriv is op-
timized to fool A while maximizing the accuracy
of the downstream classifier C. Specifically, given
λ > 0, we train Epriv, C and A (parameterized
by θE , θC , and θA respectively) to optimize the
following objective:

min
θE ,θC

max
θA
Lclass(θE , θC)− λLadv(θE , θA), (4)

where Lclass(θE , θC) is the cross-entropy loss for
the C ◦Epriv branch and Ladv(θE , θA) is the cross-
entropy loss for the A ◦ Epriv branch.

3.3 Training
We train the private encoder Epriv and the clas-
sifier C from a set of public tuples (x, y, z) by
optimizing (4) with backpropagation using a gradi-
ent reversal layer gλ (Ganin and Lempitsky, 2015).
The latter acts like an identity function in the for-
ward pass but scales the gradients passed through
it by −λ in the backward pass. This results in
Epriv receiving opposite gradients to A. We give
pseudo-code in Appendix A.

3.4 Privacy Analysis
We show the following privacy guarantee.

Theorem 1. Our encoder Epriv and the down-
stream predictions C ◦ Epriv satisfy ε-DP.

The proof is given in Appendix B. Theorem 1
shows that the encoded representations produced
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by Epriv have provable privacy guarantees: in par-
ticular, it bounds the risk that the sensitive attribute
z of a text x is leaked by Epriv(x).1 These pri-
vacy guarantees naturally extend to the downstream
prediction C(Epriv(x)) due to the post-processing
properties of DP (see Appendix B for details).

Error in previous work. We found a critical er-
ror in the privacy analysis of previous work on
differential private text encoders (Lyu et al., 2020;
Plant et al., 2021). In a nutshell, they incorrectly
state that normalizing each entry of the encoded
representation in [0, 1] allows to bound the sensi-
tivity of their representation by 1, while it can in
fact be as large as D (the dimension of the repre-
sentation). As a result, the privacy guarantees are
dramatically weaker than what the authors claim:
the ε values they report should be multiplied by
D. In contrast, the L1 normalization we use in (3)
ensures that the sensitivity of E is bounded by 2.
We provide more details in Appendix C.

Interestingly, Habernal (2021) recently identi-
fied an error in ADePT (Krishna et al., 2021), a
differentially private auto-encoder for text rewrit-
ing. However, the error in ADePT is different from
the one in Lyu et al. (2020); Plant et al. (2021): the
problem with ADePT is that it calibrates the noise
to L2 sensitivity, while the Laplace mechanism re-
quires L1 sensitivity. These errors call for greater
scrutiny of differential privacy-based approaches
in NLP—our work contributes to this goal.

4 Related Work

Adversarial learning. In order to improve
model fairness or to prevent leaking sensitive at-
tributes, several approaches employ adversarial-
based training. For instance, Li et al. (2018) pro-
pose to use a different adversary for each protected
attribute, while Coavoux et al. (2018) consider ad-
ditional loss components to improve the privacy-
accuracy trade-off of the learned representation.
Han et al. (2021) introduce multiple adversaries fo-
cusing on different aspects of the representation by
encouraging orthogonality between pairs of adver-
saries. Recently, Chowdhury et al. (2021) propose
an adversarial scrubbing mechanism. However,
they purely focus on information leakage, and not
on fairness. Moreover, unlike our approach, these
methods do not offer formal privacy guarantees.
In fact, it has been observed that one can recover

1More generally, the DP guarantee bounds the risk that
any attribute of x is leaked through Epriv(x).

the sensitive attributes from the representations by
training a post-hoc non linear classifier (Elazar and
Goldberg, 2018). This is confirmed by our empir-
ical results in Section 5. Several works have also
explored the use of adversarial learning in inducing
fairness. For instance, Beutel et al. (2017) explore
the effect of data distribution during fair adversarial
training, while Madras et al. (2018) propose vari-
ous adversarial objective and connects them with
different group fairness measure. However, unlike
our work, they do not consider fairness and privacy
at the same time.

Sub-space projection. A related line of work fo-
cuses on debiasing text representations using pro-
jection methods (Bolukbasi et al., 2016; Wang et al.,
2020; Karve et al., 2019). The general approach
involves identifying and removing a sub-space asso-
ciated with sensitive attributes. However, they rely
on a manual selection of words in the vocabulary
which is difficult to generalize to new attributes.
Furthermore, Gonen and Goldberg (2019) showed
that sensitive attributes still remain present even
after applying these approaches.

Recently, Ravfogel et al. (2020) propose Itera-
tive Null space Projection (INLP). It involves itera-
tively training a linear classifier to predict sensitive
attributes followed by projecting the representa-
tion on the classifier’s null space. On the same
lines, Ravfogel et al. (2022) proposed a linear min-
max game based mechanism to remove information
which they showcase to be a better formulation than
null space projection. However, these methods can
only remove linear information from the represen-
tation. By leveraging DP, our approach provides
robust guarantees that do not depend on the ex-
pressiveness of the adversary, thereby providing
protection against a wider range of attacks.

DP and fairness. Recent work has studied the in-
terplay between DP and (group) fairness in the set-
ting where one seeks to prevent a model from leak-
ing information about individual training points.
Empirically, this is evaluated through membership
inference attacks, where an attacker uses the model
to determine whether a given data point was in the
training set (Shokri et al., 2017). While Kulynych
et al. (2022) observed that DP reduces disparate
vulnerability to such attacks, it has also been shown
that DP can exacerbate unfairness (Bagdasaryan
et al., 2019; Pujol et al., 2020). Conversely, Chang
and Shokri (2020) showed that enforcing a fair
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model leads to more privacy leakage for the unpriv-
ileged group. This tension between DP and fairness
is further confirmed by a formal incompatibility
result between ε-DP and fairness proved by Cum-
mings et al. (2019), albeit in a restrictive setting.
Some recent work attempts to train models under
both DP and fairness constraints (Cummings et al.,
2019; Xu et al., 2020; Liu et al., 2020), but this
typically comes at the cost of enforcing weaker pri-
vacy guarantees for some groups. Finally, Jagielski
et al. (2019) train a fair model under DP constraints
only for the sensitive attribute.

A fundamental difference between this line of
work and our approach lies in the kind of privacy
we provide. While the above approaches study
(central) DP as a way to design algorithms which
protect training points from membership inference
attacks on the model, we construct a private en-
coder such that the encoded representation does not
leak sensitive attributes of the input. Thus, unlike
previous work, we provide privacy guarantees with
respect to the model’s intermediate representation
for data unseen at training time, and empirically
observe that in this case privacy and fairness are
compatible and even mutually reinforce each other.

DP representations for NLP. In a setting simi-
lar to ours, Lyu et al. (2020) propose to use DP to
privatize model’s intermediate representation. Un-
like their method, we actively promote fairness by
using an adversarial training mechanism, which
leads to more private representations and fairer
models in practice. Importantly, we also uncover a
critical error in their privacy analysis (see Sec. 3.1).

Concurrent to and independently from our work,
Plant et al. (2021) propose an adversarial-driven
DP training mechanism. However, they do not
consider fairness, whereas we focus on enforcing
both fairness and privacy. Moreover, their method
has the same incorrect analysis as Lyu et al. (2020).

5 Experiments

Recall that we are interested in approaches that
are not only accurate but also fair and private at
the same time. However, these three dimensions
are not independent and are not straightforwardly
amenable to a single evaluation metric. Thus, we
present experiments aiming at (i) showcasing the
privacy-fairness-accuracy tradeoffs of different ap-
proaches and then (ii) analyzing privacy-accuracy
and fairness-accuracy tradeoffs separately. We be-
gin by describing the datasets and the metrics.

Datasets. We consider 4 different datasets: (i)
Twitter Sentiment (Blodgett et al., 2016) consists
of 200k tweets annotated with a binary sentiment
label and a binary “race” attribute corresponding to
African American English (AAE) vs. Standard
American English (SAE) speakers; (ii) Bias in
Bios (De-Arteaga et al., 2019) consists of 393,423
textual biographies annotated with an occupation
label (28 classes) and a binary gender attribute;
(iii) CelebA (Liu et al., 2015) is a binary classi-
fication dataset with a binary sensitive attribute
(gender); (iv) Adult Income (Kohavi, 1996) con-
sists of 48,842 instances with binary sensitive at-
tribute (gender). Our setup for the first two dataset
is similar to Ravfogel et al. (2020) and Han et al.
(2021). Appendix D.2 provides detailed description
of these datasets, including sizes, pre-processing,
and the challenges they pose to privacy and fairness
tasks. Due to lack of space, results and analyses
for Adult Income and CelebA dataset are given in
Appendix D.5, but note that they exhibit similar
trends. The preprocessed versions of the datasets
can be downloaded from this anonymized URL.2

Fairness metrics. For Twitter Sentiment we re-
port the True Positive Rate Gap (TPR-gap), which
measures the true positive rate difference between
the two sensitive groups (gender/race) and is
closely related to the notion of equal opportunity.
Formally, denoting by y ∈ {0, 1} the ground truth
binary label, ŷ the predicted label and z ∈ {g,¬g}
the sensitive attribute, TPR-gap is defined as:

TPR-gap = Pg(ŷ = 1|y = 1)−P¬g(ŷ = 1|y = 1).

For Bias in Bios, which has 28 classes, we fol-
low Romanov et al. (2019) and report the root mean
square of TPR-gaps (GRMS) over all occupations
y ∈ O to obtain a single number:

GRMS =
√

(1/|O|)∑y∈O(TPR-gapy)
2. (5)

Note that for GRMS essentially boils down to
TPR-gap in binary setting.

Privacy metrics. We report two metrics for pri-
vacy: (i) Leakage: the accuracy of a two-layer
classifier which predicts the sensitive attribute from
the encoded representation, and (ii) Minimum De-
scription Length (MDL) (Voita and Titov, 2020),
which quantifies the amount of “effort” required

2https://drive.google.com/uc?id=
1ZmUE-g6FmzPPbZyw3EOki7z4bpzbKGWk
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Figure 2: Validation accuracy, fairness and privacy of various approaches for different relaxation threshold (RT)
(see Section 5.1) on Twitter Sentiment. When RT is increased, we select models with potentially lower accuracy
on the validation set but are more fair (lower TPR-gap). Our approach FEDERATE consistently achieves better
accuracy-fairness-privacy trade-offs than its competitors across all RTs.

by such a classifier to achieve a certain accuracy.
A higher MDL means that it is more difficult to
retrieve the sensitive attribute from the represen-
tation. The metric depends on the dataset and the
representation dimension, and thus cannot be com-
pared across different datasets. We provide more
details about these metrics in Sec. D.1.

Methods and model architectures. We com-
pare FEDERATE to the following methods: (i)
Adversarial implements standard adversar-
ial learning (Li et al., 2018), which is equiv-
alent to our approach without the priv layer,
(ii) Adversarial + Multiple (Han et al.,
2021) implements multiple adversaries, (iii)
INLP (Ravfogel et al., 2020) is a subspace pro-
jection approach, and (iv) Noise learns DP text
representations as proposed by Lyu et al. (2020) but
with corrected privacy analysis: this corresponds
to our approach without the adversarial compo-
nent. These methods have been described in de-
tails in Section 4 and their hyperparametrs in Ap-
pendix D.4. We also report the performance of two
simple baselines: Random simply predicts a ran-
dom label, and Unconstrained optimizes the
classification performance without special consid-
eration for privacy or fairness.

To provide a fair comparison, all methods use the
same architecture for the encoder, the classifier and
(when applicable) the adversarial branches. In or-
der to evaluate across varying model complexities,
we employ different architectures for the different
datasets. For Twitter Sentiment, we follow the ar-
chitecture employed by Han et al. (2021), while
for Bias in Bios we use a deeper architecture. The
exact architecture, hyperparameters, and their tun-
ing details are provided in Appendix D.3-D.4. We
implement FEDERATE in PyTorch (Paszke et al.,
2019). Our implementation, training, and evalua-

tion scripts are available here.3

5.1 Accuracy-Fairness-Privacy Trade-off
In this first set of experiments, we explore the
tridimensional trade-off between accuracy, fairness,
and privacy and the inherent tension between them.
These metrics are potentially all equally important
and represent different information about the sys-
tem on different scales. Thus, they cannot be triv-
ially combined into a single metric. Moreover, this
trade-off is influenced by the choice of method but
also some of its hyperparameters (e.g., the value
of ε and λ in our approach). Previous studies (Han
et al., 2021; Lyu et al., 2020) essentially selected
hyperparameter values that maximize validation
accuracy, which may lead to undesirable or subop-
timal trade-offs. For instance, we found that this
strategy does not always induce a fairer model than
the Unconstrained baseline, and that it is often
possible to obtain significantly more fair models at
a negligible cost in accuracy. Based on these obser-
vations, we propose to use a Relaxation Threshold
(RT): instead of selecting the hyperparameters with
highest validation accuracy α∗, we consider all
models with accuracy in the range [α∗ − RT, α∗].
We then select the hyperparameters with best fair-
ness score within that range.4

Figure 2 presents the (validation) accuracy, fair-
ness and privacy scores related to different RT for
each method on Twitter Sentiment. The first thing
to note is that FEDERATE achieves the best fair-
ness and privacy results with accuracy higher or
comparable to competing approaches. We also
observe that setting RT= 0.0 (i.e., choosing the

3The work-in-progress version of the codebase is cur-
rently available at https://github.com/saist1993/
DPNLP.

4We can also incorporate privacy into our hyperparam-
eter selection strategy but, for the datasets and methods in
our study, we found no significant change in Leakage across
different hyperparameters.
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Method Accuracy ↑ TPR-gap ↓ Leakage ↓ MDL ↑
Random 50.00 ± 0.00 0.00 ± 0.00 - 31.3 ± 0.10
Unconstrained 72.09 ± 0.73 26.26 ± 0.87 86.56 ± 0.83 15.21 ± 0.88

INLP 67.62 ± 0.57 9.19 ± 1.08 80.27 ± 2.50 24.82 ± 3.28
Noise 71.52 ± 0.51 21.23 ± 2.50 66.29 ± 3.55 21.10 ± 1.81
Adversarial 75.16 ± 0.65 5.03 ± 2.94 88.06 ± 0.20 16.16 ± 1.05
Adversarial + Multiple 75.32 ± 0.60 2.09 ± 1.18 88.03 ± 0.47 15.85 ± 1.46

FEDERATE 75.15 ± 0.59 1.75 ± 1.41 61.74 ± 5.05 22.94 ± 1.25

(a) Results on Twitter Sentiment dataset.

Method Accuracy ↑ GRMS ↓ Leakage ↓ MDL ↑
Random 3.53 ± 0.01 0.00 ± 0.00 – 265.44 ± 0.13
Unconstrained 79.29 ± 0.32 15.88 ± 0.80 75.92 ± 2.73 173.99 ± 7.08

INLP 75.96 ± 0.47 12.81 ± 0.09 59.91 ± 0.08 253.36 ± 1.05
Noise 77.88 ± 0.32 13.89 ± 0.31 62.23 ± 0.99 241.22 ± 2.97
Adversarial 79.02 ± 0.20 13.06 ± 0.39 69.47 ± 1.64 206.78 ± 13.02
Adversarial + Multiple 79.30 ± 0.20 13.38 ± 0.63 68.24 ± 1.12 222.35 ± 10.04

FEDERATE 77.79 ± 0.11 11.02 ± 0.55 56.92 ± 0.98 257.94 ± 1.93

(b) Results on Bias in Bios dataset.

Table 1: Test results on (a) Twitter Sentiment, and (b) Bias in Bios with fixed Relaxation Threshold of 1.0. Fairness
is measured with TPR-Gap or GRMS (lower is better), while privacy is measured by Leakage (lower is better) and
MDL (higher is better). The MDL achieved by Random gives an upper bound for that particular dataset. Results
have been averaged over 5 different seeds. Our proposed FEDERATE approach is the only method which achieves
high levels of both fairness and privacy while maintaining competitive accuracy.

model with highest validation accuracy) leads to a
significantly more unfair model in all approaches,
while fairness generally improves with increasing
RT. This improvement comes at a negligible or
small cost in accuracy. In terms of privacy, we find
no significant differences across RTs.

We now showcase detailed results with RT
fixed to 1.0 which is found to provide good
trade-offs for all approaches in Figure 2, see Ta-
ble 1a for Twitter Sentiment and Table 1b for
Bias in Bios (and Appendix D.6 for additional re-
sults). For both datasets, we observe that all ad-
versarial approaches induce a fairer model than
Unconstrained or Noise, with FEDERATE
performing best. In terms of accuracy, all adver-
sarial approaches perform similarly on Twitter Sen-
timent. Interestingly, they achieve higher accu-
racy than Unconstrained. We attribute this to
a significant mismatch in the train and test distri-
bution due to class imbalance. On Bias in Bios,
we observe a small drop in accuracy of our pro-
posed approach in comparison to Adversarial,

albeit with a corresponding gain in fairness. We
hypothesize that this is due to the choice of possi-
ble hyperparameters for FEDERATE (we did not
consider very large values of ε which would re-
cover Adversarial), meaning that FEDERATE
pushes for more fairness (and privacy) at a poten-
tial cost of some accuracy. We explore the pairwise
trade-offs (fairness-accuracy and privacy-accuracy)
in more details in Section 5.2.

In terms of both privacy metrics, FEDERATE
significantly outperforms all adversarial methods
on both datasets. In fact, in line with previous
studies (Han et al., 2021), the leakage and MDL
of purely adversarial methods are similar to that
of Unconstrained. On both datasets, Noise
achieves slightly weaker privacy than FEDERATE
with much worse accuracy and fairness.
FEDERATE also consistently outperforms

INLP in all dimensions.
In summary, the results show that FEDERATE

stands out as the only approach that can simulta-
neously induce a fairer model and make its repre-
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Figure 3: Fairness-accuracy trade-off on Twitter Senti-
ment (top) and Bias in Bios (bottom). A missing point
means that the accuracy interval was not found within
our hyperparameter search. FEDERATE provides bet-
ter fairness across most accuracy intervals in compari-
son to Adversarial over both datasets.

sentation private while maintaining high accuracy.
Furthermore, these results empirically demonstrate
that our measures of privacy and fairness are in-
deed compatible with one another and can even
reinforce each other.

5.2 Pairwise Trade-offs
In the previous experiments, we explored the tridi-
mensional trade-off and found FEDERATE to at-
tain better trade-offs than all other methods. Here,
we take a closer look at the pairwise fairness-
accuracy and privacy-accuracy trade-offs sepa-
rately. We find that FEDERATE outperforms the
Adversarial and Noise approach in their cor-
responding dimension, suggesting that FEDERATE
is a better choice even for bidimensional trade-offs.
This experiment also validates the superiority of
combining adversarial learning and DP over using
either approach alone.

Fairness-accuracy trade-off. We plot best vali-
dation fairness scores over different accuracy inter-
vals for the two datasets in Figure 3. The interval is
denoted by its mean accuracy (i.e., [71.5, 72.5] is
represented by 72). We then find the corresponding
best fairness score for the interval. We observe:

• Better fairness-accuracy trade-off:
FEDERATE provides better fairness than
the Adversarial approach for almost all
accuracy intervals. In the case of Bias in Bios,
Adversarial is able to achieve higher
accuracy (albeit with a loss in fairness). We
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Figure 4: Privacy-accuracy trade-off on Twitter Senti-
ment (top) and Bias in Bios (bottom), with associated
values of ε. FEDERATE gives lower leakage and better
or comparable accuracy to Noise over both datasets.

note that this high accuracy regime can be
matched by FEDERATE with a larger ε.

• Smoother fairness-accuracy trade-off: Inter-
estingly, FEDERATE enables a smoother ex-
ploration of the accuracy-fairness trade-off
space than Adversarial. As adversarial
models are notoriously difficult to train, this
suggests that the introduction of DP noise has
a stabilizing effect on the training dynamics
of the adversarial component.

Privacy-accuracy trade-off. We plot privacy
and accuracy with respect to ε, the parameter con-
trolling the theoretical privacy level in Figure 4.
In general, the value of ε correlates well with the
empirical leakage. On Bias in Bios, FEDERATE
and Noise are comparable in both accuracy and
privacy. However, for Twitter Sentiment, our ap-
proach outperforms Noise in both accuracy and
privacy for every ε. We hypothesize this differ-
ence in the accuracy to be a case of mismatch be-
tween train-test split, suggesting FEDERATE to be
more robust to these distributional shifts. These
observations suggest that FEDERATE either im-
proves upon Noise in privacy-accuracy tradeoff
or remains comparable. For completeness, we also
present the same results as a table in Appendix D.6.

6 Limitations

A current limitation of this work in the context of
fairness is that it is not designed to work with a
specific definition of fairness, such as equal odds.
Instead, it enforces fairness by removing certain
protected information, which can correlate with
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specific fairness notions. Similarly, we do not pro-
vide formal fairness guarantees for our method as
we do for privacy. We also do not provide privacy
of training data, i.e., protection against reconstruc-
tion attacks. It is also necessary for the practitioner
to monitor the fairness levels of the model over
time, as due to data drift and other changes, the
model’s fairness level might change.

7 Conclusion and Perspectives

We proposed a DP-driven adversarial learning ap-
proach for NLP. Through our experiments, we
showed that our method simultaneously induces
private representations and fair models, with a mu-
tually reinforcing effect between privacy and fair-
ness. We also find that our approach improves upon
competitors on each dimension separately. While
we focused on privatizing sensitive attributes like
race or gender, our approach can be used to remove
other types of unwanted information from text rep-
resentations, such as tenses or POS tag information,
which might not be relevant for certain NLP tasks.
In the future, we aim to investigate fairness meth-
ods that explicitly optimize for a specific fairness
definition and explore other privacy threats (e.g.,
reconstruction attacks).
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APPENDIX

A Training Algorithm

We provide the pseudo-code of the training proce-
dure of FEDERATE in Algorithm 1. Note that the
combination of Steps 2-3-4 corresponds to Epriv
in Sec. 3.

B Proof of Theorem 1

Proof. We start by proving that our noisy encoder
Epriv : X → RD satisfies ε-DP. Recall that for any
input text x ∈ X

Epriv(x) = priv ◦ E(x) = E(x)/‖E(x)‖1 + `,

where each entry of ` ∈ RD is sampled indepen-
dently from Lap(2

ε ), the centered Laplace distribu-
tion with scale 2/ε. Let Ẽ(x) = E(x)/‖E(x)‖1.
The L1 sensitivity of Ẽ is

∆Ẽ = max
x,x′∈X

‖Ẽ(x)− Ẽ(x)′‖1.

Since for any x ∈ X we have ‖Ẽ(x)‖1 = 1, the tri-
angle inequality gives ∆Ẽ ≤ 2. The ε-DP guaran-
tee then follows from the application of the Laplace
mechanism (Dwork et al., 2006). Formally, let

p(y) =
ε

4
e−

|y|ε
2

denote the p.d.f. of Lap(2/ε). Consider two arbi-
trary input texts x, x′ ∈ X and let x̃ = Ẽ(x) ∈ RD
and x̃′ = Ẽ(x′) ∈ RD be their normalized encoded
representations. Then, for any possible encoded
output e = (e1, . . . , eD) ∈ RD, we have:

Pr[Epriv(x) = e]

Pr[Epriv(x′) = e]
=

D∏

d=1

p(ed − x̃d)
p(ed − x̃d′)

(6)

=
D∏

d=1

e−
ε
2
|ed−x̃d|

e−
ε
2
|ed−x̃′d|

= e
ε
2

∑D
d=1 |ed−x̃′d|−|ed−x̃d|

≤ e ε2
∑D
d=1 |x̃d−x̃′d| (7)

= e
ε
2
‖x̃−x̃′‖1

≤ e ε2∆Ẽ = eε, (8)

where (6) follows from the independence of the
noise across dimensions, (7) uses the triangle in-
equality, and (8) from the definition of ∆Ẽ and the
fact that ∆Ẽ ≤ 2 as shown above.

The above inequality shows that Epriv satisfies
ε-DP as per Definition 1. The fact that C ◦ Epriv

also satisfies ε-DP follows from the post-processing
property of DP, which ensures that the composition
of any function with an ε-DP algorithm also satis-
fies ε-DP (Dwork and Roth, 2014).

C Error in Privacy Analysis of Previous
Work

As briefly mentioned in Section 4, we found a criti-
cal error in the differential privacy analysis made
in previous work by Lyu et al. (2020). This error is
then reproduced in subsequent work by Plant et al.
(2021). In this section, we explain this error and its
consequences for the formal privacy guarantees of
these methods, and provide a correction.

Recall from Section 2 that to achieve ε-DP with
the Laplace mechanism, one must calibrate the
scale of the Laplace noise needed to the L1 sen-
sitivity of the encoded representation (see Eq. 2).
This sensitivity bounds the worst-case change in
L1 norm for any two arbitrary encoded user inputs
x and x′ of dimension D.

In order to bound the L1 sensitivity, Lyu et al.
(2020) and Plant et al. (2021) propose to bound
each entry of the encoded input x ∈ RD in the [0, 1]
range. Specifically, they normalize as follows:

x← x−min(x)/(max(x)−min(x)), (9)

where min(x) and max(x) are respectively the min-
imum and maximum values in the vector x. Lyu
et al. (2020) and Plant et al. (2021) incorrectly
claim that this allows to bound the L1 sensitivity
by 1 and thus add Laplace noise of scale 1

ε . In fact,
the sensitivity can be as large as D, as can be seen
by considering the two inputs x = [0, 1, . . . , 1]D
and x′ = [1, 0, . . . , 0] for which ‖x − x′‖1 = D.
Therefore, to achieve ε-DP, the scale of the Laplace
noise should be D

ε (i.e., D times larger than what
the authors use). As a consequence, the differen-
tial privacy provided by their method are D times
worse than claimed by Lyu et al. (2020) and Plant
et al. (2021): the ε values they report should be
multiplied by D, which leads to essentially void
privacy guarantees.

While Lyu et al. (2020) claim to follow the
approach of Shokri and Shmatikov (2015), they
missed the fact that Shokri and Shmatikov (2015)
do account for multiple dimensions by scaling the
noise to the number of entries (denoted by c in
their paper) that are submitted to the server, see
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Algorithm 1: Training procedure of FEDERATE (one epoch).
Input: Model architecture composed of encoder E (parameterized by θE), classifier C

(parameterized by θC), adversary A (parameterized by θA), loss function L
Output: Trained model
Data: Samples S={xi, yi, zi}mi=1 where xi is the input text, yi is the task label, and zi is the

sensitive attribute.
1 for i← 0 to m do

// For each sample in the dataset. This can be batch too.

2 Encode: xi ← E(xi)

3 Normalize: xi ← xi
‖xi‖1

4 Privatize: xipriv ← xi + `, where each entry of the vector ` ∈ RD is sampled independently
from a centered Laplace distribution with scale 2

ε
5 Adversarial prediction: ẑi ← A(xipriv)
6 Update θA by backpropagating the loss L(zi, ẑi)
7 Task classification: ŷi ← C(xipriv)
8 Update θE and θC by backpropagating the loss L(yi, ŷi)− λ · L(zi, ẑi)

pseudo-code in Figure 12 of Shokri and Shmatikov
(2015).

In contrast to Lyu et al. (2020) and Plant et al.
(2021), our normalization in Eq. 3 guarantees by
design that the L1 sensitivity is bounded by 2. We
provide a complete and self-contained proof of our
privacy guarantees in Section B.

D Experiments

This section gives more information on the experi-
mental setup and also provides additional results.

D.1 Privacy metric
Leakage: We compute the leakage using a
sklearn’s MLPClassifier. We use the validation
set of the original dataset as the train and the test
set of the original dataset as the test.

Minimum Description Length (MDL) is a
information-theoretic probing measure which cap-
tures the strength of regularity in the data. In this
work, we employ the online coding approach (Voita
and Titov, 2020) to calculate MDL. Online cod-
ing captures the regularity by characterizing the
effort required to achieve a certain level of accu-
racy. Here, a portion of data is transmitted to the
receiver at each step, which then uses all the data
in the previous steps to understand the regularity
in the current step. The regularity is obtained by
training the model on the previously received data
and then evaluating it on the current portion of the
data.

Borrowing, the terminology from Voita and
Titov (2020), consider a dataset D consisting of
{(x1, y1), · · · , (xn, yn)} pairs, where the xi’s are
the data representation, and the yi’s are the task
label. In our case, xi is the output of the encoder,
and yi is the sensitive attribute associated with the
underlying text. Following the standard informa-
tion theory setting, consider a sender Alice who
wants to transmit labels y1:n = {y1 · · · , yn} to a
receiver Bob, and both of them have access to the
data representation x1:n = {x1 · · · , xn}. In order
to transmit labels y1:n efficiently (as few bits possi-
ble), Alice encodes y1:n using a model p(y|x). Ac-
cording to Shannon-Huffman code, the minimum
bits required to transmit these labels losslessly is:

Lp(y1:n|x1:n) = −
n∑

i=1

log2 p(yi|xi).

In the online coding setting of MDL, the la-
bels are transmitted in blocks of n timesteps t0 <
t1 < · · · tn. Alice starts by encoding y1:t1 with
a uniform code, then both Alice and Bob learn
a model pθ1(y|x) that predicts y from x using
data {(xi, yi)}t1i=1. Alice then uses this model to
communicate the next data block yt1:t2 , and both
learns a new model using larger chunk of data
{(xi, yi)}t2i=1. This continues till the whole set of
labels y1:n is transmitted. The total code length
required for transmission using this setting is given

6926



as:

Lonline(y1:n|x1:n) = t1 log2C−
n−1∑

i=1

log2 pθi(yti+1:ti |xti+1:ti).

(10)

where yi ∈ {1, 2, · · · , C}. In our case, the on-
line code length Lonline(y1:n|x1:n) is shorter, if it
is easier for probing model to perform well with
fewer training instances. This implies that the sen-
sitive information is more easily available in the
encoder’s representation.

We compute MDL using sklearn’s MLPClas-
sifier at timesteps corresponding to 0.1%, 0.2%,
0.4%, 0.8%, 1.6%, 3.2%, 6.25%, 12.5%, 25%,
50% and 100% of each dataset as suggested
by Voita and Titov (2020).

D.2 Datasets
Twitter Sentiment (Blodgett et al., 2016) con-
sists of 200k tweets annotated with a binary senti-
ment label and a binary “race” attribute correspond-
ing to African American English (AAE) vs. Stan-
dard American English (SAE) speakers. The initial
representation of tweets are obtained from a Deep-
moji encoder (Felbo et al., 2017). The dataset is
evenly balanced with respect to the four sentiment-
race subgroup combinations. To create bias in
the training data, we follow Elazar and Goldberg
(2018) and change the race proportion in each sen-
timent class to have 40% AAE-happy, 10% AAE-
sad, 10% SAE-happy, and 40% SAE-sad. Test
data remains balanced. This setup is particularly
challenging regarding privacy and fairness, as the
model may exploit the correlation between the pro-
tected attribute and the main class label, which is
reinforced due to skewing. The mismatch between
the train-test distribution is also relevant for our
setup, where the system may be trained on pub-
licly available datasets or collected via an opt-in
policy and may therefore not closely resemble the
test distribution. This dataset is made available for
research purposes only.5

Bias in Bios (De-Arteaga et al., 2019) consists
of 393,423 textual biographies annotated with an
occupation label (28 classes) and a binary gender
attribute. Similar to Ravfogel et al. (2020), we
encode each biography with BERT (Devlin et al.,

5http://slanglab.cs.umass.edu/
TwitterAAE/

2019), using the last hidden state over the CLS
token. We use the same train-valid-test split as De-
Arteaga et al. (2019). As the dataset was collected
by scrapping the web, it tends to reflect common
gender stereotypes and contains explicit gender
indicators (e.g., pronouns), making it more chal-
lenging to prevent models from relying on these
gendered words. It is also more complex than Twit-
ter Sentiment in terms of the number of classes.
Dataset is released under MIT License.6

CelebA (Liu et al., 2015) consists of over
200,000 images of the human face, alongside with
40 binary attributes labels describing the content
of the images. Following the standard setting as
described in (Lohaus et al., 2020), we use 38 of
these attributes as features, "Smiling" as the class
label, and "Sex" as the sensitive attribute. We use
60% of the data as train, 20% as validation, and the
remaining as the test split. The CelebA dataset is
available for non-commercial research purposes.7

Adult Income (Kohavi, 1996) consists of a U.S.
1994 Census database segment and has 48842 in-
stances with 14 features each. We apply the pre-
processing as proposed by (Wu et al., 2019) result-
ing in a total of 9 features for each instance. The
objective is to predict whether a given data point
earns more than fifty thousand U.S. dollars or less.
We consider sex (binary) as the sensitive attribute.
Like CelebA, We use 60% of the data as train, 20%
as validation, and the remaining as the test split.
The license of the dataset is unknown, however it
is commonly used in several fairness papers and is
avaialbe at (Dua and Graff, 2017).

D.3 Model Architecture
Twitter Sentiment. The encoder consists of two
layers with ReLU activation and a fixed dropout
of 0.1. The classifier is linear, and the adversar-
ial branch consists of three layers. We use a fixed
dropout of 0.1 in all the layers with ReLU activa-
tion, apart from the last layer.

Bias in Bios. The encoder consists of three lay-
ers and a fixed dropout of 0.1. The classifier also
consists of three layers, and the adversarial branch
consists of two layers. We use a fixed dropout of
0.1 in all the layers with ReLU activation, apart
from the last layer.

6https://github.com/Microsoft/biosbias
7https://mmlab.ie.cuhk.edu.hk/

projects/CelebA.html
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In case of Adult Income and CelebA dataset we
use the same model as for Twitter Sentiment.

D.4 Hyperparameters
For all our experiments, we use Adam optimizer
with a learning rate of 0.001 and batch size of 2000.
We give additional tuning details of the different
methods below. A single experiment takes about
30 minutes to run on Intel Xenon CPU. We will
also provide the PyTorch model description in the
README of the source code for easier reproduc-
tion.

• Adversarial: We perform a grid search
over λ varying it between 0.1 to 3.0 with an
interval of 0.2. Moreover, following previous
work (Lample et al., 2017; Adi et al., 2019),
instead of a constant λ, we increase it over the
epochs using the update scheme λi = 2/(1 +
e−pi) − 1, where pi is the scaled version of
the epoch number. We also experimented with
increasing the λ linearly, as well as keeping it
constant, but found the above update scheme
to perform the best in various settings. We
also use this scheme in all other adversarial
approaches.

• Adversarial + Multiple: Similar to
Adversarial, we vary λ between 0.1 to
3.0 with an interval of 0.2. Apart from λ,
Adversarial + Multiple has an ad-
ditional hyperparameter λort which corrre-
sponds to the weight given to the orthogo-
nality loss component. We vary λort between
0.1 and 1.0. Here, we do a simultaneous grid
search over λ and λort resulting in 150 runs
for each seed. We fix the number of the adver-
sary to three which is the same as the original
implementation by (Han et al., 2021).

• FEDERATE: In order to have
comparable number of runs to
Adversarial + Multiple, we
experiments with following ε values:
8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0,
20.0. Similar to above approach, we do
a simultaneous grid search over λ and ε
resulting in 150 runs for each seed.

• INLP: In the case of INLP, we always debias
the representation after the penultimate clas-
sifier layer and before the final layer, which
is consistent with the setting considered by

the authors (Ravfogel et al., 2020). We also
observe that this choice empirically led to the
best results. We vary the number of iterations
as a part of hyperparameter tuning. For Bias in
Bios we vary the iterations between 15 and 45,
while for Twitter Sentiment we vary between
2 to 7. We found that in case of Bias in Bios,
performing less than 15 iterations resulted
in the same behaviour as Unconstrained
model over validation set while more than 45
iterations resulted in a random classifier. We
observed the same in the Twitter Sentiment
before 2 and after 7 iterations, respectively.

D.5 Extended Evaluation
Tables 2–3 present detailed results on CelebA
and Adult Income dataset respectively. In terms
of fairness over both the datasets, we observe
that adversarial-based approaches induce a more
fair model than Unconstrained or Noise, with
FEDERATE outperforming all other methods. In-
terestingly, unlike Twitter Sentiment and Bias in
Bios, all approaches have comparable accuracy,
including Noise and INLP. We believe this to
be the case due to these datasets being relatively
more challenging than CelebA and Adult Income.
As observed previously, purely adversarial-based
approaches leak significantly more information
than the DP-based approaches in terms of pri-
vacy. We observe that Noise and INLP performs
marginally better in privacy than FEDERATE; how-
ever, they suffer significantly in the fairness metric.
In fact, they induce fairness levels which are similar
to Unconstrained.

Overall, the results show FEDERATE as the only
viable choice to induce a fairer model and make its
representation private while maintaining compara-
ble accuracy. These observations are in line with
previous experiments described in Sec. 5.1

D.6 Additional Results
Tables 4–6 present detailed results on Twitter Sen-
timent with different relaxation thresholds, which
were summarized in Figure 2.

Table 7 provides the detailed privacy-fairness
results which were summarized in Figure 4.
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Method Accuracy ↑ TPR-gap ↓ Leakage ↓ MDL ↑
Random 50.00 ± 0.00 0.00 ± 0.00 – 104.64 ± 0.11
Unconstrained 85.70 ± 0.21 12.25 ± 2.07 81.3 ± 0.89 67.82 ± 1.46

INLP 84.81 ± 0.47 12.69 ± 4.66 66.00 ± 1.32 100.17 ± 1.65
Noise 85.12 ± 0.47 12.49 ± 0.58 59.01 ± 0.65 103.93 ± 0.24
Adversarial 85.34 ± 0.22 7.83 ± 0.97 87.00 ± 2.22 46.61 ± 5.52
Adversarial + Multiple 84.92 ± 0.12 5.79 ± 1.44 84.38 ± 2.07 51.11 ± 4.06

FEDERATE 84.81 ± 0.34 2.68 ± 0.60 65.49 ± 3.48 98.53 ± 4.51

Table 2: Test results on CelebA dataset with fixed Relaxation Threshold of 1.0. Fairness is measured by TPR-Gap
(lower is better), while privacy is measured by Leakage (lower is better) and MDL (higher is better). The MDL
achieved by Random gives an upper bound for that particular dataset. The results have been averaged over 5
different seeds.

Method Accuracy ↑ TPR-gap ↓ Leakage ↓ MDL ↑
Random 50.00 ± 0.00 0.00 ± 0.00 - 20.15 ± 0.083
Unconstrained 83.41 ± 0.32 12.73 ± 7.17 78.19 ± 1.0 16.38 ± 0.46

INLP 83.11 ± 0.51 3.91 ± 2.43 74.54 ± 0.67 19.93 ± 0.35
Noise 82.87 ± 0.37 8.01 ± 1.18 68.12 ± 0.94 19.38 ± 0.33
Adversarial 83.14 ± 0.53 7.02 ± 3.31 78.2 ± 0.18 16.1 ± 0.36
Adversarial + Multiple 83.14 ± 0.25 3.55 ± 2.16 81.37 ± 0.98 13.5 ± 1.09

FEDERATE 82.29 ± 0.9 2.73 ± 2.18 70.25 ± 4.81 18.1 ± 2.79

Table 3: Test results on Adult Income dataset with fixed Relaxation Threshold of 1.0. Fairness is measured by
TPR-Gap (lower is better), while privacy is measured by Leakage (lower is better) and MDL (higher is better). The
MDL achieved by Random gives an upper bound for that particular dataset. The results have been averaged over
5 different seeds.

Method Accuracy ↑ TPR-gap ↓ Leakage ↓
Unconstrained 72.54 ± 0.57 27.17 ± 1.76 87.18 ± 0.32

Noise 71.87 ± 0.56 25.14 ± 3.47 71.75 ± 2.99
Adversarial 75.49 ± 0.71 8.47 ± 3.5 88.03 ± 0.24
Adversarial + Multiple 75.6 ± 0.53 7.74 ± 4.17 88.01 ± 0.28

FEDERATE 75.34 ± 0.56 5.46 ± 3.59 62.31 ± 5.69

Table 4: Test set results on Twitter Sentiment dataset (scores averaged over 5 different seeds, RT=0.0).

Method Accuracy ↑ TPR-gap ↓ Leakage ↓
Unconstrained 70.57 ± 0.98 20.68 ± 0.99 82.91 ± 1.65

Noise 70.47 ± 0.43 19.84 ± 0.91 66.83 ± 3.32
Adversarial 74.09 ± 1.56 3.03 ± 2.65 88.14 ± 0.18
Adversarial + Multiple 74.44 ± 0.62 1.07 ± 0.74 87.98 ± 0.36

FEDERATE 74.24 ± 1.25 0.89 ± 0.46 61.92 ± 5.04

Table 5: Test set results on Twitter Sentiment dataset (scores averaged over 5 different seeds, RT=3.0).
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Method Accuracy ↑ TPR-gap ↓ Leakage ↓
Unconstrained 70.57 ± 0.98 20.68 ± 0.99 82.91 ± 1.65

Noise 70.47 ± 0.43 19.84 ± 0.91 66.83 ± 3.32
Adversarial 70.8 ± 2.77 1.72 ± 1.5 88.2 ± 0.24
Adversarial + Multiple 67.39 ± 1.16 1.0 ± 0.8 88.01 ± 0.12

FEDERATE 73.97 ± 1.6 1.4 ± 1.22 60.38 ± 5.46

Table 6: Test set results on Twitter Sentiment dataset (scores averaged over 5 different seeds, RT=10.0).

Method ε
Twitter Sentiment Bias in Bios

Accuracy ↑ Leakage ↓ Accuracy ↑ Leakage ↓

Noise 8.0 71.3 60.59 64.75 56
FEDERATE 8.0 74.89 56.91 64.78 54.4

Noise 10.0 71.63 65.57 70.86 57.7
FEDERATE 10.0 75.25 60.55 70.97 56.5

Noise 12.0 71.76 66.04 75.01 58.4
FEDERATE 12.0 75.31 53.31 75.01 57

Noise 14.0 71.7 67.98 76.74 59
FEDERATE 14.0 75.3 57.29 76.83 56.3

Noise 16.0 71.7 67.69 77.77 60.3
FEDERATE 16.0 75.56 61.98 77.89 57.9

Table 7: Accuracy-privacy trade-off for different noise level (as captured by ε).
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