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Abstract

Sanskrit Word Segmentation (SWS) is essen-
tial in making digitized texts available and in
deploying downstream tasks. It is, however,
non-trivial because of the sandhi phenomenon
that modifies the characters at the word bound-
aries, and needs special treatment. Existing
lexicon driven approaches for SWS make use
of Sanskrit Heritage Reader, a lexicon-driven
shallow parser, to generate the complete candi-
date solution space, over which various meth-
ods are applied to produce the most valid so-
lution. However, these approaches fail while
encountering out-of-vocabulary tokens. On the
other hand, purely engineering methods for
SWS have made use of recent advances in deep
learning, but cannot make use of the latent word
information on availability.

To mitigate the shortcomings of both families
of approaches, we propose Transformer based
Linguistically Informed Sanskrit Tokenizer
(TransLIST) consisting of (1) a module that
encodes the character input along with latent-
word information, which takes into account the
sandhi phenomenon specific to SWS and is
apt to work with partial or no candidate solu-
tions, (2) a novel soft-masked attention to prior-
itize potential candidate words and (3) a novel
path ranking algorithm to rectify the corrupted
predictions. Experiments on the benchmark
datasets for SWS show that TransLIST outper-
forms the current state-of-the-art system by an
average 7.2 points absolute gain in terms of
perfect match (PM) metric.1

1 Introduction

Sanskrit is considered as a cultural heritage and
knowledge preserving language of ancient India.
The momentous development in digitization efforts
has made ancient manuscripts in Sanskrit readily
available for the public domain. However, the us-
ability of these digitized manuscripts is limited

1The codebase and datasets are publicly available at:
https://github.com/rsingha108/TransLIST

due to linguistic challenges posed by the language.
SWS conventionally serves the most fundamen-
tal prerequisite for text processing step to make
these digitized manuscripts accessible and to de-
ploy many downstream tasks such as text classifi-
cation (Sandhan et al., 2019; Krishna et al., 2016b),
morphological tagging (Gupta et al., 2020; Krishna
et al., 2018), dependency parsing (Sandhan et al.,
2021; Krishna et al., 2020a), automatic speech
recognition (Kumar et al., 2022) etc. SWS is not
straightforward due to the phenomenon of sandhi,
which creates phonetic transformations at word
boundaries. This not only obscures the word bound-
aries but also modifies the characters at juncture
point by deletion, insertion and substitution opera-
tion. Figure 1 illustrates some of the syntactically
possible splits due to the language-specific sandhi
phenomenon for Sanskrit. This demonstrates the
challenges involved in identifying the location of
the split and the kind of transformation performed
at word boundaries.

śvetodhāvati

śvā ita ūdhā avati

śva ita ūdhā avati

śvetaḥ dhāvati 

śva itaḥ dhāvati

śveta ūdhā avati 

śva eta ūdhā avati

Input chunk

Set of candidate solutions

Correct segmentation

Figure 1: An example to illustrate challenges posed by
sandhi phenomenon for SWS task.

The recent surge in SWS datasets (Krishna et al.,
2017; Krishnan et al., 2020) has led to various
methodologies to handle SWS. Existing lexicon-
driven approaches rely on a lexicon driven shal-
low parser, popularly known as Sanskrit Heritage
Reader (SHR) (Goyal and Huet, 2016a).2 This line
of approaches (Krishna et al., 2016a, 2018, 2020b)

2https://sanskrit.inria.fr/DICO/reader.fr.html
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formulate the task as finding the most accurate se-
mantically and syntactically valid solution from the
candidate solutions generated by SHR. With the
help of the significantly reduced exponential search
space provided by SHR and linguistically involved
feature engineering, these lexicon driven systems
(Krishna et al., 2020b, 2018) report close to state-
of-the-art performance for the SWS task. How-
ever, these approaches rely on the completeness
assumption of SHR, which is optimistic given that
SHR does not use domain specific lexicons. These
models are handicapped by the failure of this pre-
liminary step. On the other hand, purely engineer-
ing based knowledge-lean data-centric approaches
(Hellwig and Nehrdich, 2018; Reddy et al., 2018;
Aralikatte et al., 2018) perform surprisingly well
without any explicit hand-crafted features and ex-
ternal linguistic resources. These purely engineer-
ing based approaches are known for their ease of
scalability and deployment for training/inference.
However, a drawback of these approaches is that
they are blind to latent word information available
through external resources.

There are also lattice-structured approaches
(Zhang and Yang, 2018; Gui et al., 2019; Li et al.,
2020) (originally proposed for Chinese Named En-
tity Recognition (NER), which incorporate lex-
ical information in character-level sequence la-
belling architecture). However, these approaches
cannot be directly applied for SWS; since acquir-
ing word-level information is not trivial due to
sandhi phenomenon. To overcome these shortcom-
ings, we propose Transformer-based Linguistically
Informed Tokenizer (TransLIST). TransLIST is a
perfect blend of purely engineering and lexicon
driven approaches for the SWS task and provides
the following advantages: (1) Similar to purely
engineering approaches, it facilitates ease of scal-
ability and deployment during training/inference.
(2) Similar to lexicon driven approaches, it is capa-
ble of utilizing the candidate solutions generated by
SHR, which further improves the performance. (3)
Contrary to lexicon driven approaches, TransLIST
is robust and can function even when candidate
solution space is partly available or unavailable.

Our key contributions are as follows: (a) We pro-
pose the linguistically informed tokenization mod-
ule (§ 2.1) which accommodates language-specific
sandhi phenomenon and adds inductive bias for the
SWS task. (b) We propose a novel soft-masked
attention (§ 2.2) that helps to add inductive bias for

prioritizing potential candidates keeping mutual in-
teractions between all candidates intact. (c) We
propose a novel path ranking algorithm (§ 2.3) to
rectify the corrupted predictions. (d) We report an
average 7.2 points perfect match absolute gain (§ 3)
over the current state-of-the-art system (Hellwig
and Nehrdich, 2018).

We elucidate our findings by first describing
TransLIST and its key components (§ 2), followed
by the evaluation of TransLIST against strong base-
lines on a test-bed of 2 benchmark datasets for the
SWS task (§ 3). Finally, we investigate and delve
deeper into the capabilities of the proposed compo-
nents and its corresponding modules (§ 4).

2 Methodology

In this section, we will examine the key compo-
nents of TransLIST which includes a linguisti-
cally informed tokenization module that encodes
character input with latent-word information while
accounting for SWS-specific sandhi phenomena
(§ 2.1), a novel soft-masked attention to prioritise
potential candidate words (§ 2.2) and a novel path
ranking algorithm to correct mispredictions (§ 2.3).

2.1 Linguistically Informed Sanskrit
Tokenizer (LIST)

Lexicon driven approaches for SWS are brittle in
realistic scenarios and purely engineering based
approaches do not consider the potentially use-
ful latent word information. We propose a win-
win/robust solution by formulating SWS as a
character-level sequence labelling integrated with
latent word information from the SHR as and when
available. TransLIST is illustrated with an example
s̀vetodhāvati in Figure 2. SHR employs a Finite
State Transducer (FST) in the form of a lexical
juncture system to obtain a compact representation
of candidate solution space aligned with the input
sequence. As shown in Figure 2(a), we receive
the candidate solution space from the SHR engine.
Here, s̀vetah dhāvati and s̀veta ūdhā avati are two
syntactically possible splits.3 It does not suggest
the final segmentation. The candidate space in-
cludes words such as s̀va, s̀vetah. and etah. whose
boundaries are modified with respect to the in-
put sequence due to sandhi phenomenon. SHR
gives us mapping (head and tail position) of all
the candidate nodes with the input sequence. In

3Only some of the solutions are shown for visualization.
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śvetaḥ
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Figure 2: Illustration of TransLIST with a toy example “śvetodhāvati”. Translation: “The white (horse) runs.” (a)
LIST module: We use the candidate solutions (two possible candidate solutions are highlighted with , colors
where the latter is the gold standard) from SHR if available; in the absence of SHR, we resort to using n-grams
(n ≤ 4). (b) TransLIST architecture: In span encoding, each node is represented by head and tail position index of
its character in the input sequence. , , denote tokens, heads and tails, respectively. The SHR helps to include
words such as śva, śvetah. and etah. whose boundaries are modified with respect to input sequence due to sandhi
phenomenon. Finally, on the top of the Transformer encoder, classification head learns to predict gold standard
output shown by for the corresponding input character nodes only.

case such mapping is incorrect for some cases, we
rectify it with the help of deterministic algorithm
by matching candidate nodes with the input sen-
tence and finding the closest match. In the absence
of SHR, we propose to use all possible n-grams
(n ≤ 4)4which helps to add inductive bias about
neighboring candidates in the window size of 4.5

We feed the candidate words/n-grams to the Trans-
former encoder and the classification head learns to
predict gold standard output for the corresponding
input character nodes only. The output vocabulary
consists of unigram characters (e.g., ś, v), bigrams
and tri-grams (e.g., ah._). The output vocabulary
contains ‘_’ to represent spacing between words.
Consequently, TransLIST is capable of using both
character-level modelling as well as latent word
information as and when available. On the other
hand, purely engineering approaches rely only on
character-level modelling and Lexicon driven ap-
proaches rely only on word-level information from
SHR to handle sandhi.

2.2 Soft Masked Attention (SMA)

Transformers (Vaswani et al., 2017) have been
proven to be effective for capturing long-distance

4We do not observe significant improvements for n > 4.
5Our probing analysis (Figure 4) suggests that char-char

attention mostly focuses on immediate neighbors. Refer to § 4
for detailed ablations on LIST variants.

dependencies in a sequence. The self-attention
property of a Transformer facilitates effective in-
teraction between character and available latent
word information. There are two preliminary pre-
requisites for effective modelling of inductive bias
for tokenization: (1) Allow interactions between
the candidate words/characters within and amongst
chunks. (2) Prioritize candidate words contain-
ing the input character for which a prediction is
being made (e.g., in Figure 2(b), s̀va and s̀vetah.
are prioritized amongst the candidate words when
predicting for the character s̀).6 The vanilla self-
attention (Vaswani et al., 2017) can address both
the requirements; however, it has to self-learn the
inductive bias associated with prioritisation. It may
not be an effective solution in low-resourced set-
tings. On the other hand, if we use hard-masked
attention to address the second prerequisite, we
lose mutual interactions between the candidates.
Hence, we propose a novel soft-masked attention
which helps to address both the requirements effec-
tively. To the best of our knowledge, there is no
existing soft-masked attention similar to ours. We
formally discuss this below.

Self-attention maps a query and a set of key-
value pairs to an output as discussed in Vaswani
et al. (2017). For an input x = (x1, ..., xn)

6We find that failing to meet any one of the prerequisites
leads to drop in performance (§ 4).
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where xi ∈ Rdx , self-attention gives an output
z = (z1, ..., zn) where zi ∈ Rdz . We presume
the standard formulation of vanilla self-attention
(Vaswani et al., 2017) where dx is the dimension
of input word representation and dz is the projec-
tion dimension. Here, WQ,WK ,W V ∈ Rdx×dz

are parameter matrices. For simplicity, we ignore
multi-head attention in equations 1, 2 and 3.

zi =
n∑

j=1

αij(xjW
V ) (1)

αij =
exp (eij)∑n
k=1 exp (eik)

(2)

eij =
(xiW

Q)(xjW
K)T√

dz
(3)

In soft-masked attention, we provide a prior
about interactions between candidate words and the
input characters using a span encoding (sij ∈ Rdz )
(Li et al., 2020). Intuitively, it helps inject inductive
bias associated with prioritisation whilst maintain-
ing mutual interactions between the candidates.

Formally, we modify Equation 2 to define soft
masked attention as:

αSM
ij =

Mij exp (eij)∑n
k=1Mik exp (eik)

(4)

where M ∈ Rn×n, Mij ∈ [0, 1]. Mij is defined
as:

Mij =
(xiW

Q)(sijW
R)T√

dz
(5)

WR ∈ Rdz×dz is a learnable parameter which
projects sij into a location-based key vector space.
Summarily, the proposed SMA module helps to pri-
oritize potential candidate words with the help of
separation, inclusion and intersection information
between nodes. Finally, we calculate the output z
with the help of the proposed SMA as follows:

zi =
n∑

j=1

αSM
ij (xjW

V ) (6)

Next, we discuss the span position encoding.
Span position encoding is one of the backbones

of the proposed soft-masked module. It is utilized
to capture the interactions between the candidate
words and the sequence of input characters. Each
span/node (which is a character/word and its cor-
responding position in the input sentence) is rep-
resented by the head and tail which denote the

position index of the initial and final characters of
the token in the input sequence, as shown in Fig-
ure 2(b). The span of character is characterized by
the same head and tail position index. For example,
head[i] and tail[i] represent the head and tail index
of span xi, respectively. The separation, inclusion
and intersection information between nodes xi and
xj can be captured by the four distance equations
7-10.

d
(hh)
ij = head[i]− head[j] (7)

d
(ht)
ij = head[i]− tail[j] (8)

d
(th)
ij = tail[i]− head[j] (9)

d
(tt)
ij = tail[i]− tail[j] (10)

The final span encoding is a non-linear transforma-
tion of these 4 distances:

sij = ReLU(ws(pd(hh)ij

⊕ p
d
(ht)
ij

⊕ p
d
(th)
ij

⊕ p
d
(tt)
ij

))

(11)

where ws ∈ R is a learnable parameter, ⊕ is a con-
catenation operation and pd ∈ R

dz
4 is a sinusoidal

position encoding similar to Vaswani et al. (2017).

2.3 Path Ranking for Corrupted Predictions
(PRCP)

Our error analysis (§ 4) suggests that sometimes the
proposed system predicts words that are not part
of the candidate solution space. These mistakes
can be rectified with the help of SHR’s candidate
solutions by appropriately substituting suitable can-
didates. We refer to the prediction corresponding
to a chunk that does not fall in the candidate solu-
tion space, as a corrupted prediction and define a
path as the sequence of characters in a candidate
solution for a given input. We enumerate all the
possible directed paths (In Figure 2(a), two possi-
ble candidate solutions are highlighted with ,
colors) corresponding to the input (with a corrupted
prediction) and formulate the task as a path ranking
problem. While designing the path scoring func-
tion (S), we consider the following criteria: (1)
Select a path consisting of semantically coherent
candidate words. We use an integrated judgment
from two sources. First, we prefer a path having
a high log-likelihood (LL) score as per TransLIST
to choose a semantically coherent path in line with
the contextual information of TransLIST. Second,
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we reinforce the scoring function (S) by consid-
ering the perplexity score (ρ) for the path from
the character-level language model. (2) To avoid
paths consisting of over-generated segmentation
provided by SHR, we use a penalty proportional to
the number of words (|W |) present in the path to
prefer paths with less number of words. This gives
us the following path scoring function (S):

S =
LLTransLIST

ρCharLM × |W |

where

LLTransLIST = log-likelihood by TransLIST

ρCharLM = Perplexity score by CharLM

|W | = Number of words present in path

3 Experiments

Data and Metrics: Currently, Digital Corpus
of Sanskrit (Hellwig, 2010, DCS) has more than
600,000 morphologically tagged text lines. It con-
sists of digitized constructions composed in prose
or poetry over a wide span of 3000 years. Sum-
marily, DCS is a perfect representation of var-
ious writing styles depending on time and do-
mains. We use two available benchmark datasets
(Krishna et al., 2017, SIGHUM)7 and (Krishnan
et al., 2020, Hackathon) for SWS. Both datasets
are subset of DCS (Hellwig, 2010). These datasets
also come with candidate solution space generated
by SHR for SWS. We prefer Krishna et al. (2017,
SIGHUM) over a relatively larger dataset (Hell-
wig and Nehrdich, 2018) to obviate the time and
efforts required for obtaining candidate solution
space. We obtain the ground truth segmentation so-
lutions from DCS. We could not use DCS10k (Kr-
ishna et al., 2020b) due to partly missing gold
standard segmentation (inflections) for almost 50%
data points. SIGHUM consists of 97,000, 3,000
and 4,200 sentences as train, dev, test set, respec-
tively. Similarly, Hackathon consists of 90,000,
10,332 and 9,963 sentences as train, dev and test
set, respectively. We use the following word-level
evaluation metrics: macro-averaged Precision (P),
Recall (R), F1-score (F) and the percentage of sen-
tences with perfect matching (PM).

7https://zenodo.org/record/803508#
.YRdZ43UzaXJ

Hyper-parameter settings: For the implemen-
tation of TransLIST, we build on top of codebase
by Li et al. (2020). We use the following hyper-
parameters for the best configuration of TransLIST:
number of epochs as 50 and a dropout rate of 0.3
with a learning rate of 0.001. We release our code-
base and datasets publicly under the Apache license
2.0. All the artifacts used in this work are publicly
available for the research purpose. For all the sys-
tems, we do not use any pretraining. All the input
representations are randomly initialized. We use
GeForce RTX 2080, 11 GB GPU memory comput-
ing infrastructure for our experiments.

Baselines: We consider two lexicon-driven ap-
proaches where Krishna et al. (2016a, SupPCRW)
formulate SWS as an iterative query expansion
problem and Krishna et al. (2018, Cliq-EBM) de-
ploy a structured prediction framework. Next, we
evaluate four purely-engineering based approaches,
namely, Encoder-Decoder framework (Reddy et al.,
2018, Seq2Seq), character-level sequence labelling
system with combination of recurrent and convolu-
tion element (Hellwig and Nehrdich, 2018, rcNN-
SS), vanilla Transformer (Vaswani et al., 2017)
and character-level Transformer with relative po-
sition encoding (Yan et al., 2019, TENER). Fi-
nally, we consider lattice-structured approaches
originally proposed for Chinese NER which in-
corporate lexical information in character-level se-
quence labelling architecture. These approaches
consist of lattice-structured LSTM (Zhang and
Yang, 2018, Lattice-LSTM), graph neural network
(GNN) based architecture (Gui et al., 2019, Lattice-
GNN) and Transformer based architecture (Li et al.,
2020, FLAT-Lattice). TransLIST: As per § 2.1,
we report two variants: (a) TransLISTngrams which
makes use of only n-grams, and (b) TransLIST
which makes use of SHR candidate space.

Results: Table 1 reports the results for the best
performing configurations of all the baselines on
the test set of benchmark datasets for the SWS
task.8 Except purely engineering based systems
(Seq2seq, TENER, Transformer and rcNN-SS),
all systems leverage linguistically refined candi-
date solution space generated by SHR. Among the
lattice-structured systems, FLAT-Lattice demon-
strates competing performance against rcNN-SS.

8We do not compare with recently proposed variant of
Clique-EBM (Krishna et al., 2020b) and seq2seq baseline
(Aralikatte et al., 2018) due to unavailability of codebase.
Also, they do not report performance on these two datasets.

6906

https://zenodo.org/record/803508#.YRdZ43UzaXJ
https://zenodo.org/record/803508#.YRdZ43UzaXJ


SIGHUM Hackathon
Model P R F PM P R F PM

Seq2seq 73.44 73.04 73.24 29.20 72.31 72.15 72.23 20.21
SupPCRW 76.30 79.47 77.85 38.64 - - - -

TENER 90.03 89.20 89.61 61.24 89.38 87.33 88.35 49.92
Lattice-LSTM 94.36 93.83 94.09 76.99 91.47 89.19 90.31 65.76
Lattice-GNN 95.76 95.24 95.50 81.58 92.89 94.31 93.59 70.31
Transformer 96.52 96.21 96.36 83.88 95.79 95.23 95.51 77.70
FLAT-Lattice 96.75 96.70 96.72 85.65 96.44 95.43 95.93 77.94

Cliq-EBM 96.18 97.67 96.92 78.83 - - - -
rcNN-SS 96.86 96.83 96.84 87.08 96.40 95.15 95.77 77.62

TransLISTngrams 96.97 96.77 96.87 86.52 96.68 95.74 96.21 79.28
TransLIST 98.80 98.93 98.86 93.97 97.78 97.44 97.61 85.47

Table 1: Performance evaluation between baselines in terms of P, R, F and PM metrics. The significance test
between the best baselines, rcNN-ss, FLAT-lattice and TransLIST in terms of recall/perfect-match metrics: p < 0.05
(as per t-test, for both the datasets). We do not report the performance of SupPCRW and Cliq-EBM on Hackathon
dataset due to unavailability of codebase. On SIGHUM, we report numbers from their papers. The best baseline’s
results for the corresponding datasets are underlined. The overall best results per column are highlighted in bold.

We find that rcNN-SS and FLAT-Lattice perform
the best among all the baselines on SIGHUM and
Hackathon datasets, respectively.

Both the TransLIST variants outperforms all the
baselines in terms of all the evaluation metrics with
TransLIST providing an average 1.8 points (F) and
7.2 points (PM) absolute gain with respect to the
best baseline systems, rcNN-SS (on SIGHUM) and
FLAT-Lattice (on Hackathon). Even when the SHR
candidate space is not available, the proposed sys-
tem can use TransLISTngrams, which provides an av-
erage 0.11 points (F) and 0.39 points (PM) absolute
gain over the best baselines. TransLISTngrams gives
comparable performance to rcNN-SS on SIGHUM
dataset, while on the Hackathon dataset, it performs
significantly better than FLAT-Lattice (p < 0.05
as per t-test). The wide performance gap between
TransLIST and TransLISTngrams demonstrates the
effectiveness of using SHR candidate space, when
available. Summarily, we establish a new state-
of-the-art results with the help of meticulously
stitched LIST, SMA and PRCP modules. The
knowledge of the candidate space by SHR gives an
extra advantage to TransLIST. Otherwise, natural
choice is the proposed purely engineering variant
TransLISTngrams when that is not available.

4 Analysis

In this section, we investigate various questions
to dive deeper into the proposed components and
investigate the capabilities of various modules. We

TransLIST

- PRCP

- SMA

- LIST

84 86 88 90 92 94

(a)

TransLIST

- |W|

-  ρ

- LL

91 92 93 94

(b)

Figure 3: Ablations on (a) TransLIST (b) PRCP module
in terms of PM (SIGHUM-test). Each ablation in (a)
removes a single module from TransLIST. For exam-
ple, “-SMA” removes SMA from TransLIST. For (b),
ablations are shown by removing a particular term from
path scoring function (S).

use SIGHUM dataset for the analysis.

(1) Ablation analysis: Here, we study the contri-
bution of different modules towards the final per-
formance of TransLIST. Figure 3(a) illustrates ab-
lations in terms of PM when a specific module is
removed from TransLIST. For instance, ‘-LIST’
corresponds to character-level transformer encoder
with SMA and PRCP. Removal of any of the mod-
ules degrades the performance. Figure 3(a) shows
that LIST module is the most crucial for providing
inductive bias of tokenization. Also, removal of
‘PRCP’ module has a large impact on the perfor-
mance. We observe that the PRCP module gets ac-
tivated for 276 data points out of 4,200 data points
in the test set. We then deep dive into the PRCP
path scoring function in Figure 3(b), which con-
sists of 3 terms, namely, penalty (|W |), perplexity
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(b) word-word(a) char-char (c) char-word

Figure 4: SMA probing: Illustration of char-char, char-word and word-word interactions. The strength of the SMA
decreases in the following order: red, orange, green and blue. Char-char attention mostly focuses on characters
present in the vicinity of window size 1. Word-word interactions are able to capture whether a word is subword
of another word or not. Finally, we find that quality of attention goes down for char-word as we move as per the
following order: in vocabulary gold words (pink), in vocabulary non-golds (black) and out-of-vocabulary words
(red). Some of the attentions are invisible due to very low attention score.

score by CharLM (|ρ|) and log-likelihood (LL) by
TransLIST, respectively. We remove a single term
at a time from the path scoring function, and ob-
serve each of the terms used in the scoring function
plays a major role in the final performance.

(2) Comparative analysis of potential LIST mod-
ule variants to add inductive bias for tokeniza-
tion: We evaluate possible LIST variants which
can help inject inductive bias for tokenization via
auxiliary (word) nodes illustrated in Figure 2(b):
(a) sandhi rules: We use sandhi rules as a proxy to
indicate potential modifications at specific position
in the input sequence. For example, if input chunk
contains the character ‘o’ (Figure 1) then it can be
substituted with two possibilities ō → a-ū/ah. . We
provide this proxy information through auxiliary
nodes. (b) Sanskrit vocab: We obtain a list of vo-
cabulary words from DCS corpus (Hellwig, 2010)
and add the words which can be mapped to the
input character sequence using a string matching
algorithm. (c) n-grams: This is TransLISTngrams
(d) SHR: We follow the exact settings as described
in § 2.1 except that we do not use the PRCP compo-
nent. In Table 2, we compare these with the purely
engineering variant of TransLIST (Base system:
only character-level Transformer) where no induc-

tive bias for tokenization is injected. Clearly, due
to availability of enriched candidate space, SHR
variant outperforms all its peers. However, com-
peting performance of n-gram variant is appealing
because it completely obliviates the dependency
on SHR and remains unaffected in the absence of
SHR’s candidate space.

System P R F PM
Base system 92.75 92.62 92.69 72.33
+sandhi rules 93.53 93.70 93.62 75.71

+Sanskrit Vocab 96.75 96.70 96.72 85.65
+n-grams 96.97 96.77 96.87 86.52

+SHR 97.79 97.45 97.62 88.47

Table 2: The comparison (on SIGHUM-test set) in be-
tween LIST variants. ‘+’ indicates system where the
corresponding variant is augmented with the base sys-
tem. We do not activate PRCP for any of these systems.

(3) Probing analysis on SMA: Here we analyze
whether SMA upholds the prerequisite for effective
modelling of inductive bias, i.e., prioritize candi-
date words which contain the input character for
which the prediction is being made. Figure 4 il-
lustrates three types of interactions, namely, char-
char, char-word and word-word. We use color
coding scheme to indicate the strength of atten-
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tion weight. The attention weight decreases in the
following order: Red, Orange, Green and Blue.
Char-char attention mostly focuses on characters
present in the vicinity of window size 1. This local
information is relevant to make decisions regard-
ing possible sandhi split. Word-word interactions
are able to capture whether a word is subword of
another word or not. Finally, for char-word atten-
tion, we find that quality of attention goes down
as we move as per the following order: in vocab-
ulary gold words (pink), in vocabulary non-golds
(black) and out-of-vocabulary (unseen in training
but recognized by SHR) gold words (red). While
the drop in attention from in-vocabulary gold to-
kens to out-of-vocabulary gold tokens is expected,
the drop in attention from gold tokens to non-gold
tokens is desired. Thus, this probing analysis sug-
gests that SMA module helps to improve intra/inter
interactions between character/words and this sub-
stantiates the need of SMA module in TransLIST.

(4) How does TransLIST perform in a non-
trivial situation where multiple sandhi rules are
applicable? In Table 3, we report the compar-
ison with rcNN-SS for a critical scenario of a
sandhi phenomenon. Table 3 represents the possi-
ble sandhi rules that generate the surface character
ā. Following Goyal and Huet (2016b), the sandhi
rewrite rules are formalized as u|v → f/x−−
(Kaplan and Kay, 1994) where x, v, f ∈ Σ , and
u ∈ Σ+. Σ is the collection of phonemes, Σ∗: a
set of all possible strings over Σ, and Σ+ = Σ∗ − ϵ.
For example, the potential outputs for the input ā
can be ā, ā-ā, ā-a, a-a and ah. . The correct rule can
be decided based on the context. These multiple
rules pose a non-trivial challenge for a system to
identify the applicability of specific rule. There-
fore, it is interesting to compare the TransLIST
with current state-of-the-art system to verify its
ability for semantic generalization. We observe
that TransLIST consistently outperforms rcNN-SS
in terms of all metrics.9 Table 3 describes rules in
decreasing order of their frequency. Interestingly,
we notice large improvements over the current state-
of-the-art system, especially for rare sandhi rules.
This observation confirms superior performance of
TransLIST over the current state-of-the-art system.

9Follwing Hellwig and Nehrdich (2018), we report
character-level F-score metric. P =

|Sg∩Sp|
|Sp| ; R =

|Sg∩Sp|
|Sg| ,

F1 = 2PR
P+R

, (Sg) : Set of locations where the rule occurs in
gold output, (Sp) : Set of locations where the rule is predicted.

rcNN-SS TransLIST
Rules P R F P R F

ā 99.3 99.3 99.3 99.7 99.6 99.6
a-a 95.4 96.6 96.0 96.6 97.8 97.2
ā-a 88.4 83.1 86.5 90.5 83.8 87.0
āh. 76.7 70.1 73.7 77.2 80.1 78.0
ā-ā 50.1 42.1 45.7 80.0 40.9 53.3

Table 3: The comparison (on SIGHUM-test set) in
terms of P, R and F metrics between rcNN-SS and the
TransLIST for ambiguous sandhi rules leading to the
same surface character ā. The proposed model consis-
tently outperforms rcNN-SS in all the metrics.

30 40 50 60 70 80 90 100 110
Sentence Length
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85.0

87.5

90.0

92.5
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97.5
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-S

co
re

TransLIST
FLAT-Lattice
rcNN-SS
Lattice-GNN
Lattice-LSTM
TENER

Figure 5: F1-score against sentence length (no. of char-
acters) over the SIGHUM dataset

(5) How robust is the system when sentence
length is varied? In Figure 5, we analyze the per-
formance of the baselines with different sentence
lengths. We plot the F1-score against sentence
length. Clearly, while all the systems show supe-
rior performance for shorter sentences, TransLIST
is much more robust for longer sentences compared
to other baselines. The lattice-structured baselines
give competing F1-scores over short sentences but
relatively sub-par performance over long sentences.

(6) Illustration of PRCP with an example: Ta-
ble 4 illustrates an example that probes the ef-
fectiveness of PRCP in TransLIST. We com-
pare TransLIST with rcNN-SS and observe that
TransLIST also predicts words out of candidate
solution space when PRCP module is not acti-
vated. However, the degree of such mistakes in
TransLIST is comparatively less due to effective
modelling of inductive bias for tokenization using
LIST and SMA modules. In Table 4, rcNN-SS
predicts three words which are not part of candi-
date space, namely, vāmbike, yaks. avapuh. and caka.
These are mistakes that can be rectified with the
help of available candidate space. Interestingly,
TransLIST commits only a single mistake in this
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Sentence F-score
Input sentence kimetadı̄śe bahuśobhamāne vām. bike yaks.avapuścakāsti -

Translation: What is this body resembling a Yaksha that glows,
oh Ambika! You who lord over! You who shine!

Correct segmentation kim etat ı̄śe bahu śobhamāne vā ambike yaks.a vapuh. cakāsti -
SHR candidate space kim, etat, ı̄śe, bahu, śobhamāne, śobham, āne, śobha, māne, -

mā, vā, ambike, yaks.a, vapuh. , cakāsti, ca, kā, asti
Word-word meaning: what, this, the one who lord, very much,
the one who shine, bright, mouth, I respect, never, or, Parvati,

a kind of celestial being, body, glows, and, who (female), is there (be).

rcNN-SS kim etat ı̄śe bahu śobhamāne vāmbike yaks.avapuh. caka asti 52.60
TransLIST-PRCP kim etat ı̄śe bahu śobhamāne vā aambike yaks.a vapuh. cakāsti 90.00

TransLIST kim etat ı̄śe bahu śobhamāne vā ambike yaks.a vapuh. cakāsti 100.00

Table 4: An example to illustrate the effectiveness of PRCP module of TransLIST. Bold represents incorrect
segmentation for the input sequence.

category by predicting out of solution space word
aambike. PRCP aids in mitigating such mistake by
appropriately substituting suitable candidates.

5 Related Work

Earlier approaches on SWS focused on rule-based
Finite State Transducer systems (Gérard, 2003;
Mittal, 2010). Natarajan and Charniak (2011) at-
tempted to solve the SWS task for sentences with
one or two splits using the Bayesian approach. Re-
cently, Goyal and Huet (2016a, SHR) proposed a
lexicon driven shallow parser. This, along with the
recent upsurge in segmentation datasets (Krishna
et al., 2017; Hellwig and Nehrdich, 2018; Krishnan
et al., 2020) led to two categories of approaches,
namely, lexicon driven (Krishna et al., 2016a, 2018,
2020b) and purely engineering (Hellwig, 2015;
Hellwig and Nehrdich, 2018; Aralikatte et al., 2018;
Reddy et al., 2018). These existing approaches for
SWS are either brittle in realistic scenarios or do
not consider the potentially useful/available infor-
mation. Thus, TransLIST bridges the shortcomings
exhibited by each family and gives a win-win solu-
tion that marks a new state-of-the-art results.

6 Conclusion and Discussion

In this work, we focused on Sanskrit word segmen-
tation task. To address the shortcomings of existing
purely engineering and lexicon driven approaches,
we demonstrate the efficacy of TransLIST as a win-
win solution over drawbacks of the individual lines
of approaches. TransLIST induces inductive bias
for tokenization in a character input sequence using
the LIST module, and prioritizes the relevant candi-
date words with the help of soft-masked attention

(SMA module). Further, we propose a novel path
ranking algorithm to rectify corrupted predictions
using linguistic resources on availability (PRCP
module). Our experiments showed that TransLIST
provides a significant boost with an average 7.2
points (PM) absolute gain compared to the best
baselines, rcNN-SS (SIGHUM) and FLAT-Lattice
(Hackathon). We have also showcased fine-grained
analysis on TransLIST’s inner working. We plan to
extend this work for morphological tagging in stan-
dalone mode (Gupta et al., 2020) and multi-task
setting (Krishna et al., 2018) with the SWS task.

Limitations

The preliminary requirement to extend TransLIST
for the languages which also exhibit sandhi phe-
nomenon is lexicon-driven shallow parser similar
to Sanskrit Heritage Reader (SHR). Otherwise, the
natural choice is the proposed purely engineering
variant TransLISTngram. It would be interesting
to check if TransLIST and TransLISTngram can be
used together.
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A Appendix

Average run times: Table 5 shows the average
training time in hours and inference time in mil-
liseconds for all competing baselines. We find
that pure engineering-based techniques (TENER,
rcNN-SS) outperform lattice-structured architec-
tures (Lattice-LSTM, Lattice-GNN, FLAT-Lattice)
in terms of run time. When the inference times
of TransLIST and TransLISTngrams are compared,
TransLIST takes longer owing to the PRCP mod-
ule. It would be interesting to explore approaches
to optimise the inference time of the PRCP module.

System Train (Hours) Test (ms)
TENER 4 H 7 ms

Lattice-LSTM 16 H 110 ms

Lattice-GNN 64 H 95 ms

FLAT-Lattice 5 H 14 ms

rcNN-SS 4 H 5 ms

Cliq-EBM 10.5 H 750 ms

TransLISTngrams 8 H 14ms

TransLIST 8 H 105 ms

Table 5: Average training time (in hours) and inference
time (in milliseconds) for all the competing baselines.
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