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Abstract

To promote and further develop RST-style
discourse parsing models, we need a strong
baseline that can be regarded as a refer-
ence for reporting reliable experimental re-
sults. This paper explores a strong baseline
by integrating existing simple parsing strate-
gies, top-down and bottom-up, with various
transformer-based pre-trained language mod-
els. The experimental results obtained from
two benchmark datasets demonstrate that the
parsing performance strongly relies on the pre-
trained language models rather than the pars-
ing strategies. In particular, the bottom-up
parser achieves large performance gains com-
pared to the current best parser when employ-
ing DeBERTa. We further reveal that language
models with a span-masking scheme espe-
cially boost the parsing performance through
our analysis within intra- and multi-sentential
parsing, and nuclearity prediction.

1 Introduction

Rhetorical Structure Theory (RST) (Mann and
Thompson, 1987) is one of the most influential
theories for representing the discourse structure
behind a document. According to the theory, a
document is represented as a recursive constituent
tree that indicates the relation between text spans
consisting of a single elementary discourse unit
(EDU) or contiguous EDUs. The label of a non-
terminal node describes the nuclearity status, either
nucleus or satellite, of the text span, and the edge
indicates the rhetorical relation between the text
spans (Figure 1).

RST-style discourse parsing (hereafter RST pars-
ing) is a fundamental task in NLP and plays an
essential role in several downstream tasks, such as
text summarization (Liu and Chen, 2019; Xu et al.,
2020), question-answering (Gao et al., 2020), and
sentiment analysis (Bhatia et al., 2015). In most
cases, the performance of an RST parsing method
has been evaluated on the largest English treebank,
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Figure 1: Example RST-style discourse tree, ob-
tained from WSJ_1100 in the RST discourse tree-
bank (Lynn Carlson, 2002), consisting of six EDUs:
e1:[Westinghouse Electric Corp. said], e2:[it will
buy Shaw-Walker Co.], e3:[Terms weren’t disclosed.],
e4:[Shaw-Walker,], e5:[based in Muskegon, Mich.,],
e6:[makes metal files and desks, and seating and office
systems furniture.].

the RST discourse treebank (RST-DT) (Lynn Carl-
son, 2002), as the benchmark dataset. The evalua-
tion measures used include the micro-averaged F1
score of unlabeled spans, that of nuclearity-labeled
spans, that of rhetorical relation-labeled spans, and
that of fully labeled spans, based on standard Par-
seval (Morey et al., 2017), when using gold EDU
segmentation.

There are two major strategies for RST parsing:
top-down and bottom-up. The former builds RST
trees by splitting a larger text span consisting of
EDUs into smaller ones recursively. The latter
builds trees by merging two adjacent text spans.
Non-neural parsers with classical handcrafted fea-
tures prefer the bottom-up strategy (duVerle and
Prendinger, 2009; Feng and Hirst, 2012; Wang
et al., 2017). On the other hand, recent neural
parsers prefer the top-down strategy (Kobayashi
et al., 2020; Koto et al., 2021; Nguyen et al., 2021;
Zhang et al., 2021), while a few parsers employ
the bottom-up strategy (Guz and Carenini, 2020;
Guz et al., 2020). With advances in neural network
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models, such neural parsers obtain significant gains
over the non-neural parsers.

Several techniques have been proposed to boost
RST parsing performance: Nguyen et al. (2021)
and Shi et al. (2020) introduced beam search
and Koto et al. (2021) exploited dynamic ora-
cles in search to improve their parsing algorithms.
Kobayashi et al. (2020) used a model ensemble
with multiple runs, Zhang et al. (2021) introduced
adversarial training, and Kobayashi et al. (2021)
and Guz et al. (2020) exploited silver data to im-
prove parameter optimization.

Furthermore, pre-trained language models are
playing an important role in improving the pars-
ing performance. Shi et al. (2020), Nguyen et al.
(2021), and Zhang et al. (2021) employed XLNet
(Yang et al., 2019) to obtain better vector represen-
tations for arbitrary text spans consisting of EDU(s).
As a result, the current best top-down parser, Zhang
et al. (2021) with XLNet, achieved the fully labeled
span F1 score of 53.8 with standard Parseval. The
method has a gain of 4-5 points compared to the
best non-neural parser (Wang et al., 2017). How-
ever, it is still unclear what contributed the most to
the improvement among the models’ various fac-
tors such as parsing strategies, pre-trained language
models, and a model ensemble. Therefore, we need
a simple but strong baseline for different parsing
strategies along with a pre-trained language model
to clarify the effects of the parsing strategies and
pre-trained models. The baseline will contribute
to building more reliable experiments for revealing
the effectiveness of newly proposed methods.1

This paper aims to build strong baselines for
RST parsing, based on two simple open-source
top-down (Kobayashi et al., 2020) and bottom-
up (Guz and Carenini, 2020) parsers, employ-
ing transformer-based pre-trained language mod-
els, without incorporating any of our own mech-
anisms.2 The experimental results on RST-DT
(Lynn Carlson, 2002) and Instructional Discourse
Treebank (Instr-DT) (Subba and Di Eugenio, 2009)
with various pre-trained language models demon-
strated that the parsing performance strongly relies
on the performance of the pre-trained language
models rather than the parsing strategies. While
the current trend is a top-down parser, a bottom-up

1Building strong baselines can be recently regarded as
an essential issue for various NLP tasks (Liang et al., 2019;
Suzuki et al., 2018; Denkowski and Neubig, 2017).

2Note that we introduced some minor modifications, as we
mention in Section 3.

parser with DeBERTa (He et al., 2021), one of the
current state-of-the-art pre-trained language mod-
els, achieved the best score, which is higher than
those of the current state-of-the-art parsers. Further,
our analysis based on intra- and multi-sentential
parsing, and nuclearity prediction revealed that
pre-trained language models with a span-masking
scheme improve parsing performance more than
those with a token-masking scheme. We will
release our code at https://github.com/
nttcslab-nlp/RSTParser_EMNLP22.

2 Related Work

Early studies on RST parsing were based on non-
neural supervised learning methods with hand-
crafted features. As parsing strategies, bottom-up
greedy algorithms (duVerle and Prendinger, 2009;
Feng and Hirst, 2012), shift-reduce (Wang et al.,
2017), CRFs (Feng and Hirst, 2014), and CKY-like
parsing algorithms (Joty et al., 2013, 2015) have
been employed. In particular, Wang et al.’s shift-
reduce parser (Wang et al., 2017), based on SVMs,
achieved the best results among the non-neural sta-
tistical models on the RST-DT. The method first
builds nuclearity-labeled RST trees and then as-
signs relation labels between two adjacent spans
consisting of a single or multiple EDUs.

Inspired by the success of neural networks in
many NLP tasks, several early neural network-
based models have been proposed for RST parsing
(Ji and Eisenstein, 2014; Li et al., 2014, 2016).
However, as reported by Morey et al. (2017), while
some neural approaches outperformed classical ap-
proaches, it was not by a large margin.

Recent end-to-end neural RST parsing models
with sophisticated language models, such as GloVe
and ELMo, achieved better performance. They
used vector representations of text spans based on
the LSTMs whose inputs are word embeddings
from the language models. Yu et al. (2018) pro-
posed a bottom-up parser, based on the shift-reduce
algorithm, that leverages the information from their
neural dependency parsing model within a sentence
for RST parsing. The method outperformed tradi-
tional non-neural methods and obtained a remark-
able relation-labeled span F1 score of 49.2. As
another approach, a top-down neural parser based
on a sequence-to-sequence (seq2seq) framework
was proposed (Lin et al., 2019) for use only at
the sentence level. The method parses a tree in
a depth-first manner with a pointer-generator net-
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Model Strategy Language Model Span Nuc. Rel. Full
Wang et al. (2017) Bottom-up − 72.0 60.5 50.4 48.2

Guz and Carenini (2020) Bottom-up SpanBERT 75.8 64.6 53.7 51.4
Guz et al. (2020) Bottom-up RoBERTa 72.9 61.9 − −
Koto et al. (2021) Top-down GloVe 73.1 62.3 51.5 50.3
Kobayashi et al. (2021) Top-down Glove+ELMo 74.1 64.7 54.1 52.7
Nguyen et al. (2021) Top-down XLNet 74.3 64.3 51.6 50.2
Zhang et al. (2021) Top-down XLNet 76.3 65.5 55.6 53.8

Table 1: Comparison between the best non-neural parser and recent end-to-end neural parsers.

work. Zhang et al. (2020) extended the method
and applied it to document-level RST parsing.
Kobayashi et al. (2020) proposed another top-down
RST parsing method, based on a minimal span-
based approach, that splits a span into smaller ones
recursively and exploits multiple granularity lev-
els in a document. Then, they demonstrated the
impact of the model ensemble. Koto et al. (2021)
extended Kobayashi et al.’s parser (2020) by intro-
ducing dynamic oracles as well as a new penalty
for segmentation loss, which is based on the cur-
rent tree depth and the number of EDUs in the
input. The latter two methods also outperformed
traditional non-neural methods.

More recently, neural RST parsing models with
transformer-based pre-trained language models,
such as SpanBERT and XLNet, have been pro-
posed. Guz and Carenini (2020) extended Wang et
al.’s bottom-up parser (2017) by replacing SVMs
with a neural classifier and employing SpanBERT
to obtain representations for text spans. The per-
formance was greatly improved: They achieved
nuclearity-labeled and relation-labeled span F1
scores of 64.6 and 51.4, respectively. Shi et al.
(2020) extended Lin et al.’s top-down model (2019)
by introducing layer-wise beam search and XL-
Net. Nguyen et al. (2021) also introduced beam
search in their seq2seq-based top-down model and
reported that XLNet greatly contributed to improv-
ing performance. Zhang et al. (2021) improved a
seq2seq-based top-down model by exploiting ad-
versarial training. They also reported that perfor-
mance was boosted by XLNet, and the following
current best scores were obtained: 76.3, 65.5, 55.6,
and 53.8 for unlabeled, nuclearity-, relation-, and
fully labeled span F1 scores, respectively.

As another approach, Guz et al. (2020) and
Kobayashi et al. (2021) proposed a pre-training and
fine-tuning framework for RST parsing. They ob-
tained silver data from automatically parsed large-
scale data and used them to pre-train their models.
Then, they fine-tuned the models with gold data.

Table 1 summarizes the previous best non-neural
parser and recent end-to-end neural RST parsers
with performance that can be considered state-of-
the-art. We can see that the RST parsing models
with the transformer-based language models outper-
formed the other models regardless of the parsing
strategy. The performance improvements are re-
markable, especially for the relation-labeled and
fully labeled span F1 scores.

3 End-to-end Neural RST Parsing

We employed the span-based parser (Kobayashi
et al., 2020; Koto et al., 2021) for the top-down
parsing strategy and the shift-reduce transition
parser (Guz and Carenini, 2020), an end-to-end
variant of Wang et al.’s parser (2017), for the
bottom-up parsing strategy. These parsers were
chosen here for their simple architecture and their
open code. Overviews of the parsers are shown
in Figs. 2 and 3. Both parsers basically consist of
simple Feed-Forward Networks (FFNs) and BERT-
based embeddings. In this study, we used a two-
layer perceptron with the GELU activation function
and a dropout layer.

3.1 Vector Representations for Text Spans

Before describing the parsing models, we explain
how to obtain a vector representation for an ar-
bitrary text span by using BERT-based language
models. Our procedure for obtaining the vector
representation is a simplified variant of Guz and
Carenini’s method (2020).

First, we transform a document into a sequence
of subwords, {t1, t2, . . . , tn}. Then, we obtain the
vector representation for each subword in the se-
quence {w1,w2, . . . ,wn} using a language model.
Following Guz and Carenini (2020), the vector rep-
resentation of a text span ui:j , consisting of the
i-th EDU to the j-th EDU, is obtained by aver-
aging the vector of both edge subwords, ui:j =
(wb(i) +we(j))/2, where b(i) returns the index of
the leftmost subword in the i-th EDU and e(j) re-
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Figure 2: Top-down parsing model.

turns that of the rightmost subword in the j-th EDU.
A document longer than the maximum allowed
length of BERT (512 subwords) is embedded with
sliding windows with 30-subword over-wrapping.

3.2 Top-down Parsing
Since the minimal span-based parser does not re-
quire any additional module like a decoder, as in
the pointer-network-based top-down parsers, it is
suitable for a comparison with a bottom-up parser
of the shift-reduce algorithm, which consists of
three simple FFNs, as we describe in Section 3.3.
This top-down parser splits each span into smaller
ones recursively until the span becomes a single
EDU. We modified the code3 to utilize transformer-
based embeddings and simplified it by excluding
organizational features that represent sentence and
paragraph boundary information. By following
Koto et al. (2021), we introduced a biaffine layer
for span splitting and a loss penalty.

For each position k in a span consisting of the
i-th EDU to the j-th EDU, a scoring function,
ssplit(i, j, k), is defined as follows:

ssplit(i, j, k) = hi:kWhk+1:j + vlefthi:k

+ vrighthk+1:j , (1)

where W is a weight matrix and vleft, vright are
weight vectors corresponding to the left and right
spans, respectively. Here, hi:k and hk+1:j are de-
fined as follows:

hi:k = FFNleft(ui:k), (2)

hk+1:j = FFNright(uk+1:j), (3)
3https://github.com/nttcslab-nlp/

Top-Down-RST-Parser

Then, the span is split at position k that maximizes
Eq. (1):

k̂ = argmax
i≤k<j

ssplit(i, j, k). (4)

When splitting a span at position k, the score of
the nuclearity status and relation labels for the two
spans is defined as follows:

slabel(i, j, k̂, `) = hi:k̂W
`hk̂+1:j+v`

lefthi:k̂

+v`
righthk̂+1:j , (5)

where W` is a weight matrix for a specific label
`, and v`

left and v`
right are weight vectors corre-

sponding to the left and right spans for the label
`, respectively. While the correct split position in
the training data is used for k̂ in training time, the
position predicted with Eq. (4) is used in testing
time.

Then, the label that maximizes Eq. (5) is as-
signed to the spans:

ˆ̀= argmax
`∈L

slabel(i, j, k̂, `), (6)

where L denotes a set of valid nuclearity status
combinations, {N-S,S-N,N-N}, for predicting the
nuclearity and a set of relation labels, {Elaboration,
Condition,. . .}, for predicting the relation. Note
that the weight parameters W` and FFNs for the
nuclearity and relation labeling are learned sepa-
rately.4

3.3 Bottom-up Parsing
Formally, in shift-reduce parsing, a parsing state is
denoted as a tuple (S,Q), where S is a stack and
Q is a queue that contains incoming EDUs. Each
element in S can be a completed constituent or a
terminal. At each step, the parser chooses one of
the following actions with a neural classifier and
updates the state:

• SHIFT: pop the first EDU off the queue and
push it onto the stack.

• REDUCE: pop two elements from the stack
and push a new constituent that has the popped
subtrees as its children onto the stack as a
single composite item.

4Koto et al. (2021) reported that jointly predicting nuclear-
ity and relation labels would improve performance. However,
this might be due to the high-frequency label bias, and the
total performance degraded in macro averaging. Thus, we
predict them independently.
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Figure 3: Bottom-up parsing model.

In the REDUCE action, nuclearity status and rela-
tion labels are predicted by different neural classi-
fiers. That is, RST trees are built in three stages:
First, unlabeled trees are built and then nuclear-
ity status and relation labels are assigned indepen-
dently. Note that previous shift-reduce parsers were
based on the two-stage approach, which means
they first build nuclearity-labeled RST trees and
then assign relation labels to the trees. To fairly
compare top-down and bottom-up approaches, we
employed the three-stage approach both in top-
down and bottom-up parsing. Our experiments
demonstrated that there is no significant difference
between the performances of the two-stage and
three-stage approaches.

Our bottom-up parser has three classifiers,
FFNact, FFNnuc, and FFNrel, for predicting action,
nuclearity, and rhetorical relations, respectively.
The difference among them is only the output di-
mension related to the number of classes; specifi-
cally, the output dimension of the action classifier is
two (shift or reduce), that of the nuclearity classifier
is three (N-S, N-N, S-N), and that of the relation
classifier is the number of the rhetorical relations
utilized in the dataset.

s∗=FFN∗(Concat(us0 ,us1 ,uq0)), (7)

where function “Concat” concatenates the vectors
received as the arguments. us0 is the vector repre-
sentation of a text span stored in the first position
of the stack S, us1 is that in the second position of
S, and uq0 is that in the first position of the queue
Q. Weights for each FFN and the language model
used for span embeddings are trained by optimiz-
ing the cross-entropy loss of sact, snuc, and srel.

LM Data Size Objective

BERT 16GB MLM+NSP
RoBERTa 161GB MLM
XLNet 161GB PLM
SpanBERT 16GB MLM
DeBERTa 85GB MLM

Table 2: Data size and task for pre-training. The data
size is from (He et al., 2021).

Note that we do not utilize organizational features
as in top-down parsing.

4 Pre-trained Language Models

Since most of the transformer-based pre-trained
language models originated in BERT, we employed
BERT and four of its variants as language models to
obtain vector representations for text spans. Table 2
shows the size of the dataset and the tasks for their
pre-training.
BERT: is trained with two tasks: (1) a masked
language model (MLM); 15% of the tokens in
the training data are randomly masked, and then
the model is trained to predict the masked tokens,
and (2) a next sentence prediction (NSP) task; the
model is trained to correctly predict the following
sentence for a given sentence. BERT is trained on
Book Corpus and English Wikipedia.
RoBERTa: is trained with longer and larger
batches over more data and longer sequences. It
further removes NSP and dynamically changes the
masking pattern applied to the training data. In
addition to the dataset used for training BERT, the
training dataset here includes CC-News, OpenWeb-
Text, and Stories as well.
XLNet: is a generalized autoregressive pre-trained
language model, known as a permuted language
model (PLM). It is trained by maximizing the ex-
pected likelihood over all permutations of the fac-
torization order of the input text to approximately
consider bidirectional context. In addition to the
dataset used for training BERT, the training dataset
includes Giga5, ClueWeb, and CC as well.
SpanBERT: is trained with (1) a masked language
model with random spans (contiguous tokens) and
(2) span boundary token prediction in the masked
span. Unlike the original BERT, SpanBERT does
not include the NSP task. The dataset used for
training is the same as that for BERT.
DeBERTa: is a modified variant of RoBERTa. It
uses disentangled attention and an enhanced mask
decoder. During training, it masks spans randomly
as for SpanBERT. While the dataset used for train-
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ing is a subset of that used for RoBERTa, it per-
forms consistently better on various NLP tasks.

5 Experimental Settings

5.1 Datasets

We used the RST-DT and Instr-DT to evaluate the
performance of the parsers. RST-DT contains 385
documents selected from the Wall Street Journal. It
is officially divided into 347 documents as the train-
ing dataset and 38 documents as the test dataset.
The number of rhetorical relation labels utilized in
the dataset is 18. Since there is no official develop-
ment dataset, we used 40 documents of the training
dataset as the development dataset by following a
previous study (Heilman and Sagae, 2015). Instr-
DT contains 176 documents of the home-repair
instruction domain. The number of rhetorical re-
lation labels in the dataset is 39. Since there are
no official development and test datasets, we used
126, 25, and 25 documents for training, develop-
ment, and test datasets, respectively. We used gold
EDU segmentation for both datasets by following
conventional studies.

5.2 Evaluation Metrics

As in previous studies, we transformed RST-trees
into right-heavy binary trees (Sagae and Lavie,
2005) and evaluated the system results with micro-
averaged F1 scores of Span, Nuclearity, Relation,
and Full, based on Standard-Parseval (Morey et al.,
2017). Span, Nuclearity, Relation, and Full were
used to evaluate unlabeled, nuclearity-, relation-,
and fully labeled tree structures, respectively.

Since neural models heavily rely on their given
initialization, we report average scores and stan-
dard deviations of three runs with different seeds.

5.3 Training Configurations

We implemented all models based on Py-
Torch (Paszke et al., 2019) with PyTorch Light-
ning (Falcon et al., 2019) and used language mod-
els from Transformers (Wolf et al., 2020). We
used basemodels, such as BERT-base-cased,
RoBERTa-base, for all the experiments. The di-
mension of hidden layers in FFNs was set to 512,
and the dropout rate was set to 0.2. By following
Guz and Carenini (2020), we employed span-based
batch rather than document-based batch. The mini-
batch size is 5 spans/action. We optimized all mod-
els with the AdamW (Loshchilov and Hutter, 2017)

optimizer. We used a learning rate of 1e-5 for lan-
guage models and 1e-5/2e-4 for other parameters5

such as FFN and biaffine layers. We scheduled the
learning rate by linear warm-up, which increases
the learning rate linearly during the first epoch and
then decreases it linearly to 0 until the final epoch.
We trained the model up to 20 epochs and applied
early stopping with a patience of 5 by monitoring
the fully labeled span F1 score on the development
dataset. Details of other hyperparameters are in
Appendix A.

6 Results

Table 3 shows the results with different pre-trained
language models. The scores on RST-DT are better
than those on Instr-DT. This is attributed to the size
of the datasets. Instr-DT is significantly smaller
than RST-DT while the number of rhetorical re-
lations is larger. In fact, standard deviations on
Instr-DT are larger than those on RST-DT. How-
ever, the tendencies of the experimental results on
both datasets are similar.

The results obtained from paired bootstrap re-
sampling tests6 between top-down and bottom-up
parsers whilst fixing the language model show that
significant differences are found only in Span and
Nuc. for XLNet on RST-DT, and Rel. and Full for
SpanBERT on Instr-DT, respectively.

On the other hand, the performance of the
parsers varies widely depending on their language
model when fixing the parsing strategy. To investi-
gate the significant differences among parsers, we
performed multiple comparison tests based on the
paired bootstrap resampling tests while controlling
the false discovery rate (Benjamini and Hochberg,
1995). The results show that DeBERTa signifi-
cantly outperformed BERT, SpanBERT, and some-
times significantly outperformed RoBERTa and
XLNet in top-down parsing. In contrast, it signifi-
cantly outperformed BERT, RoBERTa, XLNet, and
SpanBERT in bottom-up parsing. RoBERTa and
XLNet obtained similar results; they significantly
outperformed BERT, and sometimes significantly
outperformed SpanBERT. While SpanBERT only
significantly outperformed BERT, it sometimes has
comparable performance to RoBERTa and XLNet.
In particular, the bottom-up parser with DeBERTa
outperformed Span, Nuc., Rel., and Full scores of

5The learning rate was determined by using the develop-
ment dataset.

6In this paper, we set the significance level (α) to 0.05.
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RST-DT Instr-DT
Span Nuc. Rel. Full Span Nuc. Rel. Full

Zhang et al. 76.3 65.5 55.6 53.8 − − − −

To
p-

do
w

n BERT 69.8 (0.64) 59.1 (0.48) 48.3 (0.43) 46.6 (0.52) 65.3 (0.81) 44.6 (1.32) 37.6 (0.38) 30.9 (0.33)
RoBERTa 77.3 (0.13)♣ 66.6 (0.18)♣ 55.8 (0.34)♣ 53.8 (0.37)♦ 75.7 (0.45)♣ 56.1 (0.55)♣ 48.7 (0.63)♦ 41.5 (0.47)♦

XLNet 77.8 (0.16)♦ 67.4 (0.05)♦ 57.0 (0.38)♦ 54.8 (0.41)♦ 74.3 (0.13)♣ 55.2 (0.40)♣ 47.0 (0.57)♦ 40.2 (0.51)♦

SpanBERT 76.5 (0.59)♣ 65.4 (0.37)♣ 54.5 (1.01)♣ 52.2 (0.84)♣ 73.7 (0.92)♣ 54.5 (0.88)♣ 42.7 (0.19)♣ 36.7 (0.22)♣

DeBERTa 78.5 (0.14)♥ 67.9 (0.23)♦ 56.6 (0.11)♦ 54.4 (0.23)♦ 77.3 (0.66)♠ 57.9 (0.47)♣ 50.0 (0.38)♠ 43.4 (0.26)♦

B
ot

to
m

-u
p BERT 68.3 (0.60) 57.8 (0.69) 47.8 (1.04) 46.0 (0.82) 66.6 (1.04) 46.3 (1.63) 39.5 (1.59) 32.9 (1.20)

RoBERTa 76.1 (0.33)♣ 66.5 (0.23)♣ 55.4 (0.38)♣ 53.7 (0.15)♣ 73.2 (0.85)♣ 55.5 (0.25)♣ 47.9 (0.70)♣ 41.4 (0.38)♣

XLNet 76.1 (0.67)♣ 65.9 (0.19)♣ 56.3 (0.55)♦ 54.2 (0.48)♦ 73.6 (1.31)♣ 56.4 (1.59)♣ 47.4 (0.47)♣ 40.7 (1.24)♣

SpanBERT 76.1 (0.37)♣ 65.3 (0.54)♣ 54.9 (0.13)♣ 52.7 (0.32)♣ 72.9 (1.26)♣ 53.8 (1.97)♣ 46.0 (1.28)♣ 40.5 (1.32)♣

DeBERTa 77.8 (0.31)F 68.0 (0.48)F 57.3 (0.21)F 55.4 (0.36)F 77.8 (0.59)F 60.0 (1.26)F 51.4 (1.40)F 44.4 (1.20)F

Table 3: Results with various language models (Standard-Parseval). Standard deviations for three runs are shown
in parentheses. The best score is indicated in bold. F indicates significantly better than any model except De-
BERTa. ♠ indicates significantly better than BERT, XLNet, and SpanBERT. ♥ indicates significantly better than
BERT, RoBERTa, and SpanBERT. ♦ indicates significantly better than BERT and SpanBERT. ♣ indicates signifi-
cantly better than BERT.

RST-DT Instr-DT
Span Nuc. Rel. Full Span Nuc. Rel. Full

To
p-

do
w

n BERT 92.6 (0.53) 85.7 (0.41) 75.4 (0.45) 74.7 (0.54) 82.7 (0.91) 69.1 (0.42) 52.7 (1.40) 47.4 (1.09)
RoBERTa 94.1 (0.46) 88.4 (0.46) 79.6 (0.17) 78.7 (0.11) 85.9 (0.82) 72.3 (1.14) 56.9 (1.00) 52.3 (1.08)
XLNet 94.8 (0.39) 89.5 (0.39) 80.5 (0.59) 79.5 (0.53) 85.8 (0.23) 73.2 (0.90) 58.4 (1.06) 54.2 (1.43)
SpanBERT 94.1 (0.15) 88.8 (0.19) 79.4 (0.49) 78.5 (0.39) 85.5 (0.68) 71.9 (0.69) 52.4 (1.33) 48.5 (1.60)
DeBERTa 94.2 (0.33) 89.0 (0.16) 80.1 (0.43) 79.1 (0.32) 86.9 (0.34) 73.6 (0.41) 58.2 (0.23) 53.8 (0.38)

B
ot

to
m

-u
p BERT 91.9 (0.34) 84.4 (0.31) 74.4 (0.37) 73.8 (0.30) 84.5 (0.42) 69.4 (1.17) 53.7 (1.04) 48.8 (1.42)

RoBERTa 94.4 (0.12) 89.0 (0.34) 80.4 (0.47) 79.7 (0.51) 85.4 (0.99) 72.4 (0.65) 57.8 (0.49) 53.4 (0.60)
XLNet 94.7 (0.31) 89.4 (0.24) 81.2 (0.27) 80.4 (0.34) 85.8 (0.84) 74.3 (1.79) 59.0 (1.88) 54.9 (2.64)
SpanBERT 93.9 (0.24) 88.2 (0.19) 79.3 (0.37) 78.4 (0.29) 84.4 (0.53) 71.6 (1.52) 58.6 (0.50) 54.4 (1.01)
DeBERTa 94.6 (0.38) 89.8 (0.65) 81.0 (0.64) 80.2 (0.70) 87.3 (0.69) 76.0 (0.90) 60.7 (1.53) 56.7 (1.46)

Table 4: Results for intra-sentential parsing with various language models (RST-Parseval).

the current best parser (Zhang et al., 2021) by 1.5,
2.5, 1.7, and 1.6 points, respectively.7 Furthermore,
most parsers yield a performance comparable to
current state-of-the-art parsers.

We believe that the results have a significant im-
pact in the RST-parsing community. Since we built
our baseline parsers based on a simple architecture,
as described in Section 3, we can conduct more
reliable experiments to reveal the effectiveness of
newly proposed methods on top of them without
any concern regarding the choice of pre-trained
language models or parsing strategies.

While the evaluation results demonstrate that we
successfully built baseline parsers, they also raise
the following questions for us: (1) Why did De-
BERTa, trained with the half-size dataset (85G),
outperform RoBERTa, trained with the most exten-
sive dataset (161G) (2) Why did SpanBERT con-
sistently outperform BERT with significant differ-

7We compared vanilla top-down and bottom-up parsers un-
der the same conditions. We do not try to discuss which could
be better as a parser being decorated with new methodologies.

ences, even though they are trained with the same
dataset (16GB). It is well known that pre-trained
language models trained with large-scale datasets
boost the performance (Kaplan et al., 2020); how-
ever, the above results do not necessarily agree with
the finding.

We believe that the results may be due to a
span-masking scheme, a common feature between
SpanBERT and DeBERTa. With the span-masking
scheme, randomly generated spans consisting of
a sequence of tokens with the length up to 5 (for
SpanBERT) or 3 (for DeBERTa) are masked, and
then the language models are trained to predict the
span boundary tokens in the mask. That is, the
span-masking scheme is considered more context-
sensitive than the token-masking scheme. Thus,
pre-trained language models with a span-masking
scheme are suitable for obtaining vector represen-
tations for long text spans consisting of EDUs.

To discuss the impact of the span-masking
scheme in more detail, we evaluated our parsers
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RST-DT Instr-DT
Span Nuc. Rel. Full Span Nuc. Rel. Full

To
p-

do
w

n BERT 65.7 (1.01) 45.8 (0.12) 32.0 (0.51) 31.3 (0.43) 69.5 (0.64) 55.8 (0.20) 35.8 (0.59) 34.6 (0.61)
RoBERTa 73.6 (0.17) 54.8 (0.90) 41.3 (0.65) 40.3 (0.57) 78.3 (0.34) 66.7 (0.49) 49.3 (0.65) 47.9 (0.78)
XLNet 73.8 (0.61) 55.7 (0.96) 41.7 (0.84) 40.5 (0.76) 76.4 (0.12) 64.3 (0.34) 44.3 (1.11) 43.2 (1.06)
SpanBERT 72.1 (0.74) 52.9 (0.46) 38.7 (0.15) 37.5 (0.19) 76.5 (0.83) 63.8 (0.90) 44.2 (0.63) 43.5 (0.58)
DeBERTa 74.2 (0.48) 57.1 (0.11) 42.7 (0.44) 41.7 (0.54) 79.8 (0.85) 68.2 (1.16) 49.4 (1.37) 48.3 (1.39)

B
ot

to
m

-u
p BERT 64.4 (0.86) 45.9 (1.29) 32.4 (0.74) 31.3 (0.75) 71.6 (0.86) 57.9 (1.41) 38.0 (2.02) 36.4 (1.94)

RoBERTa 72.1 (0.11) 53.9 (0.81) 39.9 (0.59) 38.9 (0.77) 76.4 (0.80) 64.7 (0.50) 48.0 (1.01) 47.1 (1.02)
XLNet 71.9 (1.00) 54.2 (1.20) 40.3 (1.23) 39.5 (1.04) 76.8 (1.17) 65.1 (0.73) 46.4 (1.76) 45.2 (1.76)
SpanBERT 71.7 (0.43) 53.4 (0.96) 39.6 (1.24) 38.7 (1.23) 76.2 (1.29) 64.1 (1.36) 45.6 (1.01) 44.7 (0.94)
DeBERTa 74.3 (0.65) 57.2 (1.08) 42.9 (0.42) 41.8 (0.55) 80.6 (0.67) 68.3 (1.44) 50.2 (0.79) 48.8 (0.64)

Table 5: Results for multi-sentential parsing with various language models (RST-Parseval).

RST-DT Instr-DT
N-S S-N N-N N-S S-N N-N

To
p-

do
w

n BERT 60.0 65.0 50.7 45.8 30.0 45.6
RoBERTa 67.7 69.8 60.5 56.6 46.6 57.1
XLNet 68.7 70.8 61.1 57.1 38.6 56.3
SpanBERT 67.1 68.6 57.7 56.1 33.7 56.1
DeBERTa 69.1 69.6 63.1 58.8 37.9 60.3

B
ot

to
m

-u
p BERT 58.5 65.3 49.1 45.8 31.7 48.6

RoBERTa 67.7 71.9 58.5 55.5 43.3 57.4
XLNet 67.1 69.3 59.4 58.6 40.8 57.4
SpanBERT 66.2 69.1 59.4 55.1 39.4 55.1
DeBERTa 69.6 70.7 61.4 60.7 42.1 62.4

Table 6: Results for nuclearity prediction.

in terms of intra- and multi-sentential parsing per-
formance. Tables 4 and 5 show the results.8 From
Table 4, we can see that the tendency of the results
is quite different from that in Table 3; the differ-
ences among parsers are smaller than those in Ta-
ble 3. Particularly, the differences among the four
methods except for BERT are within 1 point for
Full on RST-DT. Other noteworthy points include
that the scores of BERT are close to those of the
other methods, and DeBERTa often did not achieve
the best scores. In contrast, Table 5 emphasizes
the effectiveness of DeBERTa and SpanBERT. De-
BERTa completely outperformed the other methods
with large differences, and the differences between
SpanBERT and BERT became larger. To obtain
better results in multi-sentential parsing, we need
good representations for longer text spans over sen-
tences. Thus, we believe that the span-masking
scheme would help generate better representations
for the longer text spans. The results also reveal
that there is still much more room for further im-
provement than intra-sentential parsing.

Finally, we show another piece of evidence for

8Note that Standard-Parseval cannot be applied in this
setting because leaf nodes in the gold and predicted RST-
trees are not necessarily in one-to-one correspondence. See
Appendix B for more detail.

the effectiveness of the span-masking scheme in
Table 6, which demonstrates the performance of
nuclearity prediction among N-S, S-N, and N-N.
N-N relations originally occur in n-array (n > 2)
trees in many cases. Therefore, we need good rep-
resentations for longer text spans to detect N-N
relations accurately. From the table, we can see
that DeBERTa achieved the best for N-N with large
gains, over 2 points on RST-DT and over 3 points
on InstrDT. Furthermore, SpanBERT is sometimes
comparable to XLNet and RoBERTa in this ta-
ble. Those results indicate that the span-masking
scheme is effective in obtaining good representa-
tions for longer text spans again. The impact of
span-masking scheme may lead to novel research
perspectives toward RST parsing-specific language
models.

7 Conclusion

This paper explored ways to build strong base-
lines for RST parsing, based on existing top-down
and bottom-up parsers, while varying the use of
five transformer-based pre-trained language mod-
els: BERT, RoBERTa, XLNet, SpanBERT, and
DeBERTa. We employed a span-based model as
a top-down parser and a shift-reduce model as a
bottom-up parser. The experimental results ob-
tained from the RST-DT and Instr-DT revealed
that the language models, except for BERT, boost
the performance of RST parsing in both strategies.
The DeBERTa-based bottom-up parser achieved
the best scores; in particular, the fully labeled span
F1 score of 55.4 on the RST-DT. Furthermore, our
experimental results implied that language models
with a span-masking scheme, such as SpanBERT,
DeBERTa, are suitable for RST parsing since they
would generate better representations for long text
spans than those with a token-masking scheme.
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Limitations

As shown in the experimental results, our approach
would not perform well with insufficient training
data. For example, the performance obtained from
Instr-DT was inferior to that obtained from RST-
DT in Rel. and Full. The results were caused
by the small amount of training data and many
rhetorical relations. Since the annotation costs
for RST are considerable, how we obtain enough
high-quality data is a significant issue for building
RST parsers for new domains and languages. Fur-
thermore, since our parsers rely on a large-scale
pre-trained language model, they do not perform
well for languages that are not ready to use the
pre-trained language model, such as low-resource
languages. In future work, we should improve the
domain/language portability, and we believe the
following are practical approaches:

1. Introducing a multilingual pre-trained lan-
guage model,

2. Introducing transfer learning and data aug-
mentation.
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Computing Infrastructure GeForce RTX 3090

Hyperparameters
number of training epochs 20

patience of early stopping 5

batch size 5(# of spans/actions)

language model’s hidden size 768 (base)

FFN’s hidden size 512

dropout 0.2

learning rate scheduler Linear warm-up

optimizer AdamW

learning rate 2e-4, 1e-5

weight decay 0.01

gradient clipping 1.0

validation criteria Standard-Parseval: Full

Table 7: Parameter search space in our experiments.

A Hyperparameters

Table 7 shows the hyperparameters utilized in our
experiments.

B Evaluation in Intra- and
Multi-sentential Parsing

Because human annotators sometimes build RST-
trees with disregarding sentence boundaries, some
RST-trees have span boundaries that disagree with
span boundaries in sentences. Figure 4 shows an
example. In the gold tree, the subtree consisting of
e3 and e4 straddles the boundary between s1 and s2.
Parsers also sometimes disregard sentence bound-
aries when building RST-trees. In the predicted
tree, the subtree consisting of e11 and e12 straddles
the boundary between s4 and s5. Therefore, we
make a best effort to find sentences in the parse
trees.

We extract subtrees whose root nodes corre-
spond to sentences when evaluating a predicted
tree in terms of intra-sentential parsing. In the ex-
ample, we extract the subtrees corresponding to
s3, s4, and s5 from the gold tree and s1, s2, and
s3 from the predicted tree. However, in this case,
s1 and s2 are ignored even though they form valid
subtrees in the predicted tree. So we give a unary
tree whose leaf node is a sentence for s1 and s2 for
the gold tree. Similarly, we give a unary tree for s4
and s5 for the predicted tree (see the middle row
in Figure 4). As a result, the leaf nodes of a gold
RST-tree do not necessarily have a one-to-one cor-
respondence with those of a predicted tree. Thus,

we apply RST-Parseval to evaluate predicted trees
in terms of intra-sentential parsing.

We replace subtrees corresponding to sentences
as leaf nodes when evaluating a predicted tree in
multi-sentential parsing. In the example, the sub-
trees dominating e7 to e9, e10 to e11, and e12 to e13
in the gold tree are respectively replaced with the
leaf nodes s3, s4, and s5. Since the gold RST-tree
does not have valid subtrees dominating e1 to e3
and e4 to e6, we do not replace them as s1 and
s2, respectively. That is, subtrees that cannot be
converted into leaf nodes as sentences are left as
they are. Similarly, the subtrees dominating e1 to
e3 and e4 to e6 in the predicted tree are respectively
replaced as leaf nodes s1 and s2. We also do not
replace e10 to e11 and e12 to e13 as s4 and s5 (see
the bottom row in Figure 4). The transformation
may break down the one-to-one correspondence be-
tween leaf nodes of gold and predicted RST-trees.
Thus, we also apply RST-Parseval to evaluate pre-
dicted trees in terms of multi-sentential parsing.
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Figure 4: Example of decomposing a RST tree into intra- and multi-sentential trees.
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