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Abstract

This paper deals with the problem of incre-
mental dialect identification. Our goal is to
reliably determine the dialect before the full
utterance is given as input. The major part
of the previous research on dialect identifica-
tion has been model-centric, focusing on per-
formance. We address a new question: How
much input is needed to identify a dialect? Our
approach is a data-centric analysis that results
in general criteria for finding the shortest input
needed to make a plausible guess. Working
with three sets of language dialects (Swiss Ger-
man, Indo-Aryan and Arabic languages), we
show that it is possible to generalize across di-
alects and datasets with two input shortening
criteria: model confidence and minimal input
length (adjusted for the input type). The source
code for experimental analysis can be found at
Github 1.

1 Introduction

Language identification depends very much on
what kind of languages we are discriminating. If
languages to be discriminated are distant (e.g., Rus-
sian vs. Chinese), the task is straightforward and a
short sequence of words provides enough informa-
tion to assign the correct class. But if languages are
similar and written in the same script (e.g. Russian
vs. Ukrainian), much longer samples are needed to
encounter the discriminating features (Tiedemann
and Ljubešić, 2012). The task is even harder when
dealing with non-standard orthography, which we
find in written dialects and user posts on the inter-
net (Zampieri et al., 2017).

Current research is mostly concerned with im-
proving the performance of the task by applying
increasingly sophisticated methods, including pre-
trained models, whose performance varies across
different language dialects (Jauhiainen et al., 2021).

1https://github.com/vanikanjirangat/
Dialect_Early_Guessing

However, many other aspects of the task may play
an important role in practical applications. One
of such challenges is the possibility to make early
guesses on the language or dialect before seeing the
whole message. Such a feature can be especially
useful for more dynamic classification of a contin-
uous stream of messages as in transcribed speech
or instant messaging, where sentence boundaries
are not clearly defined and the input can be seg-
mented arbitrarily. A reliable early classification
can improve further processing (e.g., translation,
information extraction).

In this paper, we address the problem of early
guessing in dialect identification mostly from the
data-centric point of view, but also consider some
model-centric issues. We search for criteria for
shortening the input so that the model performance
is the same or similar to the performance obtained
with the full input. We perform experimental stud-
ies with four datasets representing three sets of
dialects with considerably different writing prac-
tices (some writings are more standard than others)
and find that the same input shortening criteria give
the best results in all the cases.

2 Related Work

The task of dialect identification and discrimina-
tion between similar languages is mostly addressed
in the scope of the VarDial Evaluation Campaign
(Zampieri et al., 2017, 2018, 2019). The orga-
nizers of the tasks released datasets for various
dialects and similar languages, such as Swiss-
German, Indo-Aryan, Uralic, Romanian, Arabic,
Chinese, etc. In Arabic dialect identifications
(ADI), other popular datasets include Arabic On-
line Commentary (AOC) (Zaidan and Callison-
Burch, 2011), Nuanced Arabic Dialect Identifica-
tion (NADI) Twitter data set (Abdul-Mageed et al.,
2020)2, Multi-Arabic Dialect Applications and Re-

2https://sites.google.com/view/
nadi-shared-task
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sources (MADAR)(Bouamor et al., 2019)3 etc.
With the advent of transformers-based models,

we see a wide use of pre-trained models in di-
alect classifications (Popa and S, tefănescu, 2020;
Zaharia et al., 2020; Ljubešić and Lauc, 2021),
but traditional approaches based on n-gram statis-
tics also seems to remain quite popular (Ali, 2018;
Ciobanu et al., 2018b; Jauhiainen et al., 2018;
Gupta et al., 2018; Çöltekin et al., 2018; Ciobanu
et al., 2018a; Bernier-Colborne et al., 2021). In
the standard datasets (data from written sources) of
the VarDial task, such as Indo-Aryan and Roma-
nian, language specific pre-trained models worked
well (Zaharia et al., 2020, 2021), while in the non-
standard datasets (transcribed from speeches), such
as Swiss German and Arabic, pre-trained trans-
former models didn’t boost the performance as ex-
pected. Regarding other Arabic datasets, viz., AOC
and NADI, neural (CNN, BiLSTM, etc.) and trans-
former models were successfully used (Elaraby and
Abdul-Mageed, 2018; Talafha et al., 2020; Zhang
and Abdul-Mageed, 2019; Beltagy et al., 2020).

In contrast to most previous work, the main fo-
cus is not on improving the performance when the
task is the classification of the whole utterance but
on finding the minimal input on which an accept-
able classification performance can be achieved.
This aspect of the problem has been so far only
minimally addressed in the literature. One such
study was on the influence of the length of the
utterances in ADI on Basic Traveling Expression
Corpus (BTEC) (Takezawa et al., 2007) for coarse
and fine-grained dialect classification using n-gram
features with Multinomial Naive Bayes classifier.
They found that with an average length of 7 words,
it is possible to classify the dialects with acceptable
accuracy (Salameh et al., 2018). Our study is a
more general data-centric exploration of the early
classification involving varied datasets in multiple
languages.

3 Data

For our study, we select four datasets, three offered
by the VarDial Evaluation Campaign (see Section
2). We perform three tasks: German Dialect Identi-
fication (GDI)4, Indo-Aryan Language Identifica-

3https://camel.abudhabi.nyu.edu/
madar-shared-task-2019/

4https://drive.switch.ch/index.php/s/
DZycFA9DPC8FgD9

GDI ILI ADI ADI
VarDial AOC

Train 14647 68453 21001 86541
Dev 4659 8286 1566 10820
Test 4752 9032 1492 10812

Table 1: The size of datasets expressed as the number
of utterances.

tion (ILI)5 and the Arabic Dialect Identification.6

The GDI dataset represents four areas of Swiss
German: Basel, Bern, Lucerne, and Zurich.
Training and the test datasets are obtained from
the ArchiMob corpus of Spoken Swiss German
(Samardzic et al., 2016). GDI datasets are avail-
able from the years 2017-2019. We work with the
GDI-2018 in the 4-way classification setting. The
ILI task identifies five closely related languages
from the Indo-Aryan language family, namely,
Hindi, Braj Bhasha, Awadhi, Bhojpuri, and Magahi.
For each language, 15,000 sentences are extracted
mainly from the literature domain. The sources
were previously published either on the internet
or in print. These languages are often mistakenly
considered to be varieties of Hindi. The ADI Var-
Dial task (Malmasi et al., 2016; Ali et al., 2016)
focused on five classes, viz., Modern Standard Ara-
bic (MSA), Egyptian (EGY), Gulf (GLF), Levan-
tine (LAV), Moroccan (MOR), and North-African
(NOR). MSA is the modern variety of the language
used in news and educational articles. This differs
from the actual communication language of native
speakers lexically, syntactically and phonetically.
The VarDial ADI dataset is both speech transcribed
and transliterated to English. Another Arabic di-
alect dataset used for the experimentation is the
Arabic Online Commentary (AOC) (Zaidan and
Callison-Burch, 2011) dataset. This constitutes a
large-scale repository of Arabic dialects and cov-
ers MSA and the dialectal varieties, viz., Egyptian
(EGY), Gulf (GLF), Levantine (LEV), and Mo-
roccan (MOR). Table 1 reports the data statistics
of GDI, ILI and ADI datasets used for our exper-
imentation. We represent the ADI dataset from
VarDial as ADI-VarDial and AOC as ADI-AOC,
respectively.

5https://github.com/kmi-linguistics/
VarDial2018

6https://arabicspeech.org/resources/
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4 Methods

We perform incremental analysis by running the
same classifier on varied substrings of the test in-
put. This is to understand the performance at dif-
ferent lengths of the input text. We start with the
first word, then repeat the classification with the
first two words and so on until we reach the end
of the utterances. We refer to all the incremental
substrings as fragments. We observe the model’s
performance at each incremental step and analyze
its state (confidence) to determine the earliest point
when a plausible guess can be made. We perform
extensive analysis on the influence of different fac-
tors that directly and indirectly affect the model
performance after applying the shortening criteria.

Models In the case of each dialect group, we
compare the base model (pretrained on English)
with one or more models pretrained on a language
more closely related to the target dialect group.
For the GDI data set, we compared three models:
BERT-base-cased model (Devlin et al., 2019), mul-
tilingual BERT (mBERT) and German BERT7. In
the case of the ILI dataset, we compared four mod-
els: BERT-base-cased, mBERT, IndicTransformers
(Jain et al., 2020) and IndicBERT(Kunchukuttan
et al., 2020). IndicBERT covers 12 languages, in-
cluding Hindi, Tamil, English, Malayalam, etc.,
trained using AI4Bharat’s corpus and is based on
multilingual ALBERT.8 IndicTransformers9 is a
BERT model trained with 3 GB of data from the
OSCAR corpus 10 and covers Hindi, Bengali and
Telugu. For ADI-VarDial, we used two main mod-
els: BERT-base-cased and AraBERT (Antoun et al.,
2020).11. We did the experiments with mBERT too,
which gave poor performance (accuracy of only
28% with 7% F-score) and hence did not carry out
further experiments with mBERT in ADI-Vardial.
AraBERT is based on BERT-base model; it is addi-
tionally pre-trained on Arabic news articles and two
publicly available large Arabic corpora covering
24 Arab countries. For the ADI-AOC dataset, we
compare three models: BERT-base-cased, mBERT
and AraBERT.

Input Shortening We first tokenize the input sen-
tence by splitting it into white spaces. We then

7https://www.deepset.ai/german-bert
8https://indicnlp.ai4bharat.org/indic-bert/
9https://huggingface.co/neuralspace-reverie

10https://oscar-corpus.com/
11https://huggingface.co/aubmindlab/

bert-base-arabert

create fragments that consist of incrementally in-
creased prefixes of the original utterance. The
length of fragments ranges between 1 and N, where
N is the original utterance’s length (in tokens). For
example, consider the test sentence: ‘das haisst
im klarteggst’ of length N=4. The incremental
fragments will be: [‘das’, ‘das haisst’,‘das haisst
im’,‘das haisst im klarteggst’].
The number of fragments obtained in each case is
listed in Appendix A. For each fragment, we obtain
predictions using the same fine-tuned model. We
collect the information about model prediction and
its confidence for further analyses.

Model Confidence Analysis with Temperature
Scaling The confidence scores of a model can be
very high (close to 1) even when the predictions
are incorrect. Calibration is a method to disincen-
tivize a model from being over-confident (Bella
et al., 2010; Nixon et al., 2019; Widmann et al.,
2019). Although the transformers models are con-
sidered to be well-calibrated (Desai and Durrett,
2020), methods such as temperature scaling (Guo
et al., 2017) and label smoothing (Müller et al.,
2019) can improve the calibration. We expect this
to help, especially for the case of GDI data, where
the overall performance is rather low compared to
the other datasets. We explore temperature scal-
ing to calibrate the prediction probabilities of our
model: we divide the non-normalized logits (be-
fore the softmax operation) with the scalar tem-
perature hyperparameter T . After this step, the
prediction probability is obtained using the usual
Softmax function. In exploring model confidence
as a shortening criterion, we use calibrated prob-
abilities. The details of the model calibration are
explained in Appendix C.

5 Experiments and Results

Each model was trained for 4 epochs with Adam
optimizer using a learning rate of 2e-5 on the corre-
sponding training set using 1 Tesla K80 GPU. We
used the pre-trained models from the HuggingFace
library.12

BERT-base vs. Linguistic Proximity Table 2
shows the classification accuracy with full input
and with shortened input based on the input shorten-
ing criteria (Explained in Section 5 and Appendix
D). We note that the ILI and ADI-AOC datasets
are the closest to standard writing, while much

12https://huggingface.co/models
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Figure 1: Proportion of Correct Predictions at each
Fragment Length (%) for GDI, ILI and ADI Datasets.
Solid lines represent the proportion to the (constant) test
set data size. Dashed lines show the relative proportion
of correct predictions in the set of all test instances of
the given length.

more non-standard writing is found in the other
two datasets. Linguistic proximity 13 of the pre-
trained model seems useful only in combination
with standard writing (ILI and ADI-AOC dataset).
In ADI-AOC, we can see that AraBERT is more
helpful with shortened input than mBERT, although
they both achieve similar accuracy with full input.
The best performance on the strongly non-standard
data (GDI and ADI-VarDial) is still obtained with
BERT-base-cased. Note, however, that the best per-
formance on these non-standard datasets is rather
low in absolute terms, underlining the need for
better models in this domain.
Fragment Length The impact of the fragment
lengths on the model is analyzed in Figure 1. The
solid lines in the plot represent the ratio of the cor-
rect predictions at each fragment length n to the
total number of test instances (which is constant
for a given corpus). The dashed lines represent the
ratio of the correct predictions at fragment length n
to the number of possible predictions at that length
(i.e. sentences of length n or longer). These graphs
show that it is possible to make accurate and useful
predictions with shorter fragments, and the addi-
tional gain with longer fragments is proportionally
lower. A first peak for the GDI data is obtained
at the length 4, while the peak is on the length 7
for the ILI dataset. In ADI-AOC, the peak is on

13We refer to linguistic proximity in context with the
language-specific pre-trained models

Dataset Model Full Short

GDI
BERT-base-cased 62 55.2
mBERT 59 50.8
German BERT 60 54.4

ILI

BERT-base-cased 81 56.5
mBERT 88 69.9
IndicBERT 84 54.4
IndicTransformers 90 73.7

ADI_VarDial BERT-base-cased 43 33.7
AraBERT 38 29.8

ADI_AOC
BERT-base-cased 81 64.3
mBERT 82 65.8
AraBERT 82 66.7

Table 2: The accuracy (%) with different pretrained
models on full utterances and on shortened input.

the length 2. The trend in all these cases is the
same, modulated by the length of the original ut-
terances (longer in ILI). The trends are somewhat
different in the ADI-Vardial dataset: there are no
clear peaks, but the best scores are still obtained on
shorter segments.
Input Shortening Criteria For each set of di-
alects, we found the minimum input length for best
performances by repeated experiments on different
fragment lengths. We found that this minimum
fragment length was same as the peak values in
Figure 1. For ADI-Vardial, we found that at length
8, the maximum performance is obtained. Further,
the maximum input length is determined according
to two additional criteria: model confidence after
temperature scaling and label consistency. We ex-
periment with several criteria defined in terms of
these two variables (described in detail in Appendix
D).We find that the same selection criterion gives
the best results in all the data sets: the first decrease
in the model confidence after the minimum length
threshold. In addition to this, label consistency
was helpful in all the data sets except GDI: the re-
sults improve when we consider the decrease in the
model confidence only when the current and the
previous labels are the same. While analyzing the
performance on the shortened input, we checked
what would happen in an ideal case if we knew
where to cut the input utterance in each case. This
performance, which is the upper bound on our task
is, in fact, better than the performance with the full
input (details in Appendix B). It provides an em-
pirical justification for the research goal of finding
criteria for shortening the input.

6 Conclusion

We have identified general criteria for making early
guesses in dialect identification: language spe-
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cific minimal length of the input and language-
independent change in the model confidence score
(the first decrease in the confidence score). While
these criteria do not maintain the performance
achieved with the full input, they are the starting
point for further optimization, which can eventually
lead to an overall improvement on the task.

7 Limitations

The main limitation of our work is the fact that
early guesses do not achieve the performance as
the full input. We have shown empirically that it
is possible to maintain or even improve the perfor-
mance with early guessing and that this is a goal
worth pursuing. Elaborating methods to achieve
this goal remains outside of the scope of the current
paper and we leave it for future work. Another limi-
tation concerns the generalization of our findings to
standard and non-standard data, which still needs
to be better understood.
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A Fragment Statistics

The incremental processing gives 42797 fragments
for the 4752 test cases in the GDI dataset. In ILI,
we obtain 170710 fragments from 9032 test cases.
In ADI-VarDial, 59498 fragments from 1492 test
cases were obtained, while 205530 fragments from
10812 test cases were obtained in ADI-AOC.

B Upper Bound

To see whether correct predictions are possible be-
fore seeing the full utterance, we first find the mini-
mum length fragment at which a correct prediction
is made. For instance, consider the incrementally
processed example:

[‘das’
‘das haisst’
‘das haisst im’
‘das haisst im klarteggst’]

At length four (the fourth line in the example
above), we obtain a true prediction and hence this
will be selected as the optimal shortened input
for the given utterance since the predicted class
is wrong in the previous three fragments (lines 1-3
in the example above). In this case, length 4 is
the shortest length at which the correct prediction
is obtained (which could be at an earlier length
also). We find such fragments for each original test
utterance (one fragment per utterance) and then
compute the classification accuracy with respect to
these optimal input lengths.

Measured in this way, the accuracy scores are
higher than the full-input classification. In the case
of GDI, we get 80% (compared to 62% on the full
input). For ILI, we obtained an upper bound of 94%
compared to the 90% accuracy exhibited by the best
baseline model. In ADI-VarDial, the accuracy ob-
tained with a similar setup was 74.46% (compared
to 43% with full input). Finally, in ADI-AOC, we
obtained an upper bound of 90.16% (compared to
82% with full input). Hence, it was observed that
if we can find the optimal early guess point for all
the language datasets, the performance improves.
We consider this accuracy to be our upper bound:
this is what could be achieved if we knew where to
cut the input utterance in each case.

C Temperature Scaling

The values of the temperature scaling parameter
T > 0 are the same for all classes and they are opti-
mized with respect to the Negative-Log-Likelihood
(NLL) loss on the validation set. To compare the

models after and before calibration, we use Ex-
pected Calibration Error (ECE) as shown in Equa-
tion (1).

ECE =
K∑

k=1

bk
n
|acc(k)− conf(k)| (1)

Calibration is formally expressed as a joint distri-
bution which can be approximated by binning the
predictions to K disjoint sets. Each bin will have bk
predictions and n is the number of samples. ECE
is defined as the weighted average of the difference
between each bin’s accuracy and confidence or pos-
terior probability. A perfectly calibrated model
has conf(k) = acc(k) for each bucket of real-valued
predictions.

We found that ECE decreases considerably with
calibration using temperature scaling (TS) for all
the fine-tuned models.

For the fine-tuned BERT-base-cased model with-
out TS, the ECE was 23.96, while with TS t= 2.28,
ECE dropped to 6.3 in the GDI dataset. Similar
experiments were done on ILI data with the Indic-
Transformer model to fine-tune the T value. At
t=1, we have an ECE of 20.09 for ILI, while af-
ter calibrations at t=1.79, ECE dropped to 13.91.
In ADI-VarDial using Bert-base-cased, at t=1, we
obtained an ECE of 15.15, which dropped on to
7.45 with the fine-tuned temperature value, t=2.32.
For AOC, with AraBERT, the ECE was 11.03 at
t=1 and after temperature scaling with t=1.55, ECE
reduced to 1.09.

D Explored Early Guessing Possibilities

In Tables 3, 4, 5 and 6, ‘current’ is the current frag-
ment under consideration. prob() is the calibrated
probability. We compare the prob(current) with
prob(previous) and prob(next). As discussed, the
fragment is the output of incremental processing.
The criteria checks will be done for each group
of fragments associated with a particular sentence.
Another input shortening criterion included is la-
beling consistency. Here we check the consistency
of predicted labels, predicted label. Each of these
input shortening criteria is evaluated separately and
in combination with each other. We consider the
fragment that satisfies the input shortening criteria
at the first position after a pre-defined length point,
say, m. The value m will be different for each lan-
guage and needs to be tuned based on performance
metrics (accuracy/ F-score). The same input short-
ening criteria were evaluated for all the datasets
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while considering different starting lengths m. For
GDI we found optimal m=4, in ILI m=7 while
m=8 and m=2 in ADI-VarDial and ADI-AOC re-
spectively. The results for each input shortening
criterion are reported in Tables 3, 4, 5 and 6. All the
input shortening criteria are evaluated separately
and some of the potential input shortening criteria
are evaluated in combination.

In ADI-VarDial and ILI, we observed that the
best heuristic was p4 & l1, while in GDI, it was
p4. In ADI-AOC, the addition of p1 to p4 im-
proves the performance by 0.21 points. The be-
haviors were the same across the different models.
Generalizing, we found that with p4, the perfor-
mance is good across all the languages, which
means the main criterion is predicted probabil-
ity(current)>predicted probability(next). In other
words, we stop the incremental classification once
the model probability starts decreasing. In ILI and
ADI-VarDial, the addition of l1 criteria predicted
label(current)==predicted label(next) adds to the
performance by 0.39 points and 0.87 points respec-
tively.
Overall, we observed that it is possible to gener-
alize an input shortening criteria across different
language dialects. The slight variations could be
due to the nature of the data sets and inherent dif-
ferences in the languages. For instance, the ILI
and ADI-AOC datasets comprised standard written
texts, while GDI and ADI-VarDial were transcribed
from speeches and the latter was also transliterated.
In general, we observed that the model’s perfor-
mance has a direct influence on the results of input
shortening criteria.
Finally, we observed that for GDI, the mean length
of correctly predicted shortened input is 4.9 com-
pared to the 9.5 full length average. In ILI, it is
9.2 compared to 18.5 full length average. In ADI-
Vardial, the mean length is 9.02 (compared to 43.02
for full inputs) and 3.58 (compared to 19.89 in full
input) in ADI-AOC.
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Condition Description M Accuracy
p1 prob(current)>prob(previous) 4454 51.50% (2449)
p2 prob(current)<prob(previous) 4130 47.49% (2257)
p3 prob(current)<prob(next) 4048 44.90% (2134)
p4 prob(current)>prob(next) 4605 55.20% (2624)
l1 predicted label(current) equals predicted label(previous) 4549 52.50% (2496)
l2 predicted label(current) equals predicted label(next) 4628 51.40% (2445)
p1 and l1 4143 50.35% (2393)
p2 and l2 3475 43.37% (2061)
p4 and l1 4354 53.57% (2546)
p1 and p4 4351 53.45% (2540)
p2 and p4 3024 37.00% (1762)

Table 3: Input Shortening Results on GDI with Best Model (Bert-base-cased). M= number of fragments that satisfy
the criterion.

Condition Description M Accuracy
p1 prob(current)>prob(previous) 8096 71.24% (6435)
p2 prob(current)<prob(previous) 7842 67.17% (6067)
p3 prob(current)<prob(next) 7799 66.17% (5975)
p4 prob(current)>prob(next) 8285 73.7% (6658)
l1 predicted label(current) equals predicted label(previous) 7975 71.8% (6485)
l2 predicted label(current) equals predicted label(next) 7964 72.44% (6543)
p1 and l1 7975 71.8% (6485)
p2 and l2 7240 66.44% (6001)
p4 and l1 8250 74.1% (6694)
p1 and p4 7946 67.3% (6076)
p2 and p4 7964 72.4% (6543)

Table 4: Input Shortening Results on ILI with Best Model (IndicTransformers). M= number of fragments that
satisfy the criterion.

Condition Description M Accuracy
p1 prob(current)>prob(previous) 1266 31.43% (469)
p2 prob(current)<prob(previous) 1261 31.09% (464)
p3 prob(current)<prob(next) 1252 29.8% (445)
p4 prob(current)>prob(next) 1279 32.17% (480)
l1 predicted label(current) equals predicted label(previous) 1288 31.56% (471)
l2 predicted label(current) equals predicted label(next) 1265 32.37% (483)
p1 and l1 1267 32.17% (480)
p2 and l2 1247 31.76% (474)
p4 and l1 1276 33.04% (493)
p1 and p4 1254 31.97% (471)
p2 and p4 1255 30.49% (455)

Table 5: Input Shortening Results on ADI-Vardial with Best Model (Bert-base-cased). M= number of fragments
that satisfy the criterion.

Condition Description M Accuracy
p1 prob(current)>prob(previous) 10048 7191(66.51%)
p2 prob(current)<prob(previous) 9486 6577 (60.83%)
p3 prob(current)<prob(next) 9899 6868 (63.52%)
p4 prob(current)>prob(next) 9927 7185 (66.45%)
l1 predicted label(current) equals predicted label(previous) 10226 7167 (66.28%)
l2 predicted label(current) equals predicted label(next) 10125 7198 (66.57%)
p1 and l1 9968 7201 (66.6%)
p2 and l2 9230 6789 (62.79%)
p4 and l1 9874 7172 (66.33%)
p1 and p4 9775 7209 (66.67%)
p2 and p4 9230 5566 (51.47%)

Table 6: Input Shortening Results on ADI-AOC with Best Model (AraBERT). M= number of fragments that satisfy
the criterion.
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