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Abstract

Currently, researchers focus on generating
codes from the requirement documents. How-
ever, current approaches still perform poorly on
some requirements needing complex problem-
solving skills. In reality, to tackle such complex
requirements, instead of directly translating re-
quirement documents into codes, software en-
gineers write codes via unified modeling lan-
guage diagrams, such as flowcharts, an interme-
diate tool to analyze and visualize the system.
Therefore, we propose a new source code gener-
ation task, that is, to generate source code from
flowcharts with texts. We manually construct a
benchmark dataset containing 320 flowcharts
with their corresponding source codes1. Obvi-
ously, it is not straightforward to employ the
current approaches for the new source code gen-
eration task since (1) the flowchart is a graph
that contains various structures, including loop,
selection, and others which is different from
texts; (2) the connections between nodes in the
flowchart are abundant and diverse which need
to be carefully handled. To solve the above
problems, we propose a two-stage code gen-
eration model. In the first stage, a structure
recognition model is employed to transform
the flowchart into pseudo-code containing the
structural conventions of a typical program-
ming language such as while, if. In the second
stage, a code generation model is employed to
convert the pseudo-code into code. Experimen-
tal results show that the proposed approach can
achieve some improvement over the baselines.

1 Introduction

Recently, automated source code generation
from requirements documents has been a fashion-
able task that maps specific descriptions to various
executable codes in software engineering and arti-
ficial intelligence. Developments in deep learning

∗Corresponding author.
1https://github.com/LiuZeJie97/Code-Generation-From-

Flowcharts-with-Texts-A-Benchmark-Dataset-and-An-
Approach

Requirement document:
Given an array of integers nums and an integer
target, return indices of the two numbers such
that they add up to target.

Flowchart:

The sum of nums[i] 
and nums[j] is equal 

to the target
 

Set n to the length of the array num. 

J is less than n?
 

I is less than n?
 

Increment i

Increment j
 

YesNo

Yes

No

Yes

No

Define j as the index of the
array, and the initial value

of j is i+1
 

Start twoSum

input: self, nums, target

Returns an
empty list

Return their
array indices

Set i as the index of the array, the
initial value is 0

 

Code:
def twoSum ( nums , t a r g e t ) :

n = l e n ( nums )
f o r i in range ( n ) :

f o r j in range ( i + 1 , n ) :
i f nums [ i ]+ nums [ j ] == \

t a r g e t :
re turn [ i , j ]

re turn [ ]

Table 1: An example of the flowchart and its correspond-
ing code. The input to the model is the flowchart, and
the output is the code.

have facilitated the effectiveness of transformations
between natural language and source code. How-
ever, generating code that solves a specified task
requires searching in the huge structured space of
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possible programs, with a very sparse reward signal,
and the solutions can look dramatically different
even for the same problem (Li et al., 2022). There-
fore, most prior work has been limited to generat-
ing short code snippets from sentences (Oda et al.,
2015; Yin et al., 2018). However, these works’ sen-
tences are more straightforward than the require-
ment documents in real scenarios. For example,
to generate the code in Table 1, the model needs
to understand the task requirements and accurately
select traversal algorithm from many candidates
(e.g. dynamic programming, greedy, divide and
conquer).

In practice, to solve complex code generation
tasks, rather than translating requirements docu-
ments directly into code, software engineers write
code through Unified Modelling Language(UML),
which intends to provide a standard way of visu-
alizing the design of a system (Hutchinson et al.,
2014). For all UML, flowchart plays an important
role in the analysis of system requirements, pre-
liminary design, and detailed design (Sendall and
Kozaczynski, 2003). Before writing code, drawing
a flowchart to illustrate the algorithm to be used and
the steps to follow can significantly reduce task’s
difficulty. There is evidence that, in industrial prac-
tice, flowcharts have been widely used for problem
understanding (i.e. analysis) and documentation.
Thus, we propose a new task to generating exe-
cutable code from a flowchart with text.

There have also been several studies on convert-
ing flowcharts to code. Wu et al. and Wang et al.
proposed rule-based methods that can identify the
loop and selection semantics in the flowchart and
automatically convert it into pseudo-code which
use structural conventions of a normal program-
ming language such as while, if, but the details
in the pseudo-code are still in text, which makes
these codes unable to execute directly on the com-
puter. In contrast, we tackle the task of executable
code(python) generation from flowcharts with text.
Most closely related to our task is Oda et al. (2015),
they propose a task to generate code from pseudo-
code. However, each line of pseudo-code in their
dataset’s is independent of the other, models can
generate code snippets for each line regardless of
other lines. However, in our dataset, the connec-
tions between nodes in the flowchart are abundant
and diverse which need to be carefully handled.
Thus, although flowcharts and pseudo-codes can
be converted into each other, our dataset is different

from theirs.
We constructed a benchmark dataset, FC2Code,

which contains 320 flowcharts with natural lan-
guage and code pairs. We obtained the code from
the programming competition platform LeetCode
and manually drew the flowcharts with natural lan-
guage. Previous models cannot be used directly for
the new source code generation task for the follow-
ing reasons. Firstly, a flowchart is a graph contain-
ing various structures, including loops and selec-
tions, which is different from the text. Secondly, in
a natural scene, each node of the flowchart is not
independent. As seen from Table 3, 62% of nodes
in FC2Code are related with other nodes, which
means that the model cannot generate code snippets
for each node without considering its neighbors.

To solve these problems above, we propose a
two-stage code generation model. In the first stage,
the Structure Recognition Model transforms the
flowchart into a pseudo-code that containing some
structure information such as while, if. In the sec-
ond stage, a Code Generation Mode is employed to
merge the information in the node of the flowchart
and convert the pseudo-code into executable code.
The experiments show that it is necessary to en-
hance each node’s representation with its neighbors
according to the structure of the flowchart.

2 Related Work

2.1 Generating Source Code from
Requirements Document

Automatic generation of source code from require-
ments documents has recently been a hot topic in ar-
tificial intelligence communities, such as mapping
natural language directly to executable programs
in the form of logical forms (Zelle and Mooney,
1996), database queries (Yu et al., 2018, 2019), gen-
eral purpose code snippets (Oda et al., 2015; Yin
et al., 2018), complete executable code that can
solve a specific task (Liu et al., 2020; Li et al.,
2022). Ling et al. generated Java and Python
source code from Natural Language (NL) with card
attributes for games. Agashe et al. presented JuICe,
a large-scale NL-code dataset based on jupyter
notebooks. The notebooks comprise interleaved
NL markdown and code cells, and the model needs
to generate the target code cell based on the previ-
ous markdown. Iyer et al. introduced the task of
generating class member functions given English
documentation and the programmatic context, such
as Variables and Methods, provided by the rest of
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the class. Different from the above works, this
work introduces a new task of generating programs
from flowcharts with texts.

2.2 Generating Pseudo-code from Flowchart

There have been some rule-based methods for auto-
matically generating pseudo-code from flowcharts.
Carlisle et al. proposed a modeling and simula-
tion system, RAPTOR, which can automatically
generate code based on selection and loop prim-
itives offered by users. Wu et al. introduced
a structure identification algorithm that automat-
ically identifies loops and selections according to
the flowchart’s structure. Wang et al. proposed a
method that can generate code for semi-structured
flowchart which contains semi-structured seman-
tics such as break and return. However, all these
works only focus on identifying the structure in the
flowchart and generating pseudo-code with natural
language instead of executable source code.

3 Dataset Construction

We created a new dataset called FC2Code
(FlowChart to Code), which consists of code and
flowchart pairs. As can be seen in Figure 1. The ba-
sic process of dataset construction can be divided
into 3 steps: 1) Code Extraction. 2) Flowchart
Sketch Generation. 3) Nature Language Annota-
tion. The following sections describe the above
three steps in detail.

Code Extraction. Firstly, we extract 320 codes
from LeetCode2, an online programming competi-
tion platform. The code crawled in public available
code repositories such as Github often has project-
related operations or global variables and the logic
of some source code is often not clear enough, and
even has bugs. Thus, we extract the Python codes
from an online programming competition platform,
LeetCode. LeetCode provides open-domain tasks
with high-quality official solutions, each solution
contains well-tested code with a detailed explana-
tion. Because each function in the code will be
converted into a flowchart, we filter out the code
containing multiple functions to make sure each
flowchart contains complete information that can
generate executable code. We select 253 problems
with 320 codes from LeetCode.

Flowchart Sketch Generation. Secondly, we
use pyflowchart3 to automatically convert the code

2https://leetcode.com/problemset/all/
3https://github.com/cdfmlr/pyflowchart/

into flowchart sketches. Specifically speaking,
each line of code is transformed into a node in
the flowchart, then the tool automatically connects
edges to each node according to their execution or-
der in the code. Note that the content of the nodes
in the flowchart sketches is still code snippets.

Nature Language Annotation. Thirdly, we
translate each code in the node into natural lan-
guages in Chinese. We set the following principle
for annotators:

• When the programmer sees the flowchart,
he/she can write the code with the same func-
tionality as the source code.

• We also encourage annotators to describe the
same code in different ways. For example,
“i++” will be annotated as “Increment i” or
“Shift the subscript of an array to the right by
one unit.”

• In real scenarios, the nodes in the flowchart
are usually related to each other, for exam-
ple, some nodes may incorporate the vari-
able declared or described above. Therefore,
we increased the description’s abstraction and
added some relationships between nodes. For
example, when a new variable is defined, the
function and usage of the variable will also
be annotated, and in the following annotation
process, we will no longer directly mention
the name of the variable but refer to its func-
tion. Table 3 shows situations when one node
is connected to another in our dataset.

Annotating nodes in flowcharts is a time-
consuming process. Labeling one flowchart takes
us about 30 minutes of labor on average. And an-
notating 320 flowcharts costs us around 160 hours
of human labor. Table 2 presents statistics for our
dataset.

To verify the quality of the annotation, we let
annotators exchange their samples and infer the
code based on the annotation results. Finally, we
sampled 50 flowcharts with 771 nodes, and find
that 82.00% flowcharts and 98.44% nodes from our
dataset are solvable.

4 Data Statistics

4.1 Relation Between Nodes

The relations between nodes in the flowchart are
abundant and diverse. Our analysis of 50 flowchart
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    for i in range(n):
 

        if i % 3 ==0:

            break

    return i
if i % 3 ==0:

 

for i in range(n):
 

for i in range(n):

return i

Flowchart Sketch

for i in range(n):

I is divisible
by 3

I is less 
 than n? 

Set i to 0 

Return i

Flowchart with Texts

Increment i

Code
 

Yes Yes

Yes Yes

Flowchart Sketch
Generation

Nature Language 
AnnotationProgramming

Competition Platform

Code
Extraction

Figure 1: The basic process of dataset construction

Train Valid Test

Flowcharts 220 50 50
Avg Tokens 224.9 264.1 226.9
Avg Nodes 16.9 19.2 18.4

Codes 220 50 50
Avg Tokens 110.8 131.2 118.9
Avg Lines 12.5 14.3 14.5

Table 2: Statistics of FC2Code dataset.

examples reveals the relation types and their pro-
portion in FC2Code. Overall, 62% of nodes are
related to another node, and 98% flowcharts con-
tain the nodes that are related to another node. As
shown in Table 3, Most nodes (46%) require using
the variable declared or described in the previous
node. 7% require understanding the functions of
the variable. For example, in row 2 of Table 3,
given that dp[i] represents the i-th odd number,
“The first odd number” in the current node should
be converted to “dp[1]”. 4% nodes require under-
standing the properties of the variable and its data
structure. For example, in row 3 of Table 3, the
data type of “builder” is an array and the NL in cur-
rent node is “Return a valid string”, thus, we need
to convert “builder” to a string before returning
it. 9% nodes need to infer what the demonstrative
pronoun refers to. In row 4 of Table 3, the NL of
current node using a word “their”, which requires
the model to find what “their” refers to. Lastly,
17% nodes are related to at least 2 other nodes.

4.2 Distance of Two Interrelated Nodes
In the randomly sampled 50 flowcharts, the dis-
tance distribution of two nodes with a relationship
is shown in Figure 2. The number of nodes de-
creases as the distance of relations increases. The
reason account for it is that local variables are often
used repeatedly in code snippets. There are many
nodes with distances between 1 and 2. Maybe it’s
because the code in FC2Code contains a lot of for
keywords. As shown in Table 1: “I is less than n”,
“Set i as the index of the array, the initial value is

1 2 3 4 5 6 7 8 9 10 11 12
0%

5%

10%

15%

20%

25%

30%

Figure 2: The distance distribution of two nodes with a
relationship in FC2Code. The horizontal axis represents
the percentage of nodes, the vertical axis represents the
distance.

0” and “Increment i” are related and their distances
are between 1 and 2.

5 Task Definition

Flowchart is composed of nodes and edges. The
edge is directed, and the node can be divided
into 5 categories: Operation, Start, End, Con-
dition and Inputoutput. Given a flowchart with
n nodes[x0, ...,xn]. The model needs to trans-
form it into executable code with m code snippets
[y0, ...,ym].

Note that m and n are not always equal be-
cause the code snippets such as else, continue and
break do not related to any node in the flowchart.
They need to be generated according to the struc-
ture of the flowchart. We rewrite [y0, ...,ym] as
[y0, ...,yn,y

′
0, ...,y

′
l], where yi is generated from

xi and y′
i is the code snippets that is not related to

any node in the flowchart.

The relationships between the nodes [x0, ...,xn]
and the code snippets [y0, ...,yn] are also provided,
which can be used in the training phase.
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Type Percentage Examplenodes / flowcharts

Incorporates the variable de-
clared or described above 46% / 92%

Previous
NL & Code

The left boundary “low” is equal to 0, and the
right boundary "high" is equal to n
low, high = 0, n

Current NL: The left boundary is less than or equal to the
right boundary

Current Code: while low <= high:

Requires understanding of
the functions of the variable
declared or described above

7% / 38%

Previous
NL & Code

Declare an array “dp” of length n+1 where
dp[i] represents the i-th odd number
dp = [0] * (n + 1)

Current NL: The first odd number is equal to 1

Current Code: dp[1] = 1

Requires understanding of
the properties of the variable
and its data structure

4% / 32%

Previous
NL & Code

Initialize the array "builder"
builder = []

Current NL: Return a valid string "builder"

Current Code: return "".join(builder)

Requires understanding of
what the demonstrative pro-
noun refers to

9% / 54%

Previous
NL & Code

The sum of the i-th number and the jth num-
ber of the array “num” is target
if nums[i] + nums[j] == target

Current NL: return their array indexs

Current Code: return [i, j]

The node is related to at
least the other 2 nodes in the
flowcharts

17% / 74%

Previous
NL & Code

“tot” is the sum of dresses among washing
machines
tot = sum(machines)
“n” is the number of washing machines
n = len(machines)

Current NL: When the sum of dresses cannot be divided
into the number of washing machines

Current Code: if tot % n

Table 3: The relation types and their proportion in FC2Code dataset. Overall, 62% of nodes are related to another
node, and 98% flowcharts contain the nodes that are related to another node.

6 Two Stage Code Generation Method

The tokens in the code can be divided into two cat-
egories: the first category of tokens describe the
execution order of the code snippets, such as while,
for, if, break, continue, return. The second category
of tokens are used to describe a specific process,
such as assignment and comparison. Similarly, the
flowchart is a combination of nodes and edges, the
edges describe the execution order of each node.
There are two execution orders in the flowchart:
selection and loop, the loop in the flowchart should
be mapped to the statement while, as well as the
selection should be mapped to statement if. Identi-
fying the flowchart structure in advance will reduce
the difficulty of the task, and some rule-based meth-
ods can identify flowchart structures without errors.

Therefore, we can first use a rule-based method
to identify the structure of the flowchart and gen-
erate a pseudo-code, and then use a code gener-
ation model to convert the pseudo-code into exe-
cutable code. Specifically, given a flowchart with
n nodes[x0, ...,xn]. In the first stage, a Structure
Recognition Model is used to transform [x0, ...,xn]
into pseudo-code [z0, ...,zn, z

′
0, ...,z

′
l], zi is ob-

tained by adding spaces and prefixes like while,
if token before xi, z′

i do not related to any node
in the flowchart(e.g. else, continue, break) and
will be inserted into [z0, ...,zn] as a single line.
In the second stage, a Code Generation Model is
used to transform pseudo-code into executable code
[y0, ...,yn,y

′
0, ...,y

′
l].
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Set i to 0 
WHILE  I is less than n
IF I is divisible by 3

BREAK
Increment i 

Return i

I is divisible
by 3

Code Generation Model

I is less 
 than n? 

Set i to 0 

Return i

    for i in range(n):
 

        if i % 3 ==0:

            break

    return i

Flowchart Pseudo Code Code
 

Increment i

WHILE

Original
Flowchart

GAT

TranX

GAT

Structure Recognition 
 Model

IF
 

WHILE
 

BREAK

IF
BREAK

WHILE

Reversed
Flowchart

IF
BREAK

Yes Yes
YesYes

Stage 1 Stage 2

Figure 3: In the first stage, the Structure Recognition Mode is used to transform the flowchart into the pseudo-code.
In the second stage, the Code Generation Model is employed to convert the pseudo-code into executable code.

6.1 Structure Recognition Model

In this section we use the Structure Recogni-
tion Model to transform flowchart [x0, ...,xn]
into pseudo-code [z0, ...,zn, z

′
0, ...,z

′
l]. Wang

et al. proposed to generate pseudo-code from the
flowchart in the following steps:

• Step 1: Find out the loop and selection in
the flowchart. Flowchart is a combination
of two basic structures: selection and loop.
Wang et al. found that the flowchart can be
seen as a directed graph, in which each loop
forms a strongly connected sub-graph. They
used this method to find all the loop structures
in the flowchart. Then, the structures led by
the remaining Condition nodes are selection
structures.

• Step 2: Identify the nodes (e.g. while) and
edges (e.g. continue, break, return) associated
with the first category of tokens in the loop.
We identified these structures based on their
characteristics. For example: 1) The True
branch of the continue node will point to the
while node. 2) The True branch of the break
and return nodes will jump out of the loop.

• Step 3: Determining the scoping of Selection.
In the first step, we have found the Condi-
tion nodes related to selection. In this step,
we need to find where the 2 branches of the
selection meet.

• Step 4: Generate pseudo-code. To generate
the pseudo-code, the model will determine
the order of the nodes [x0, ...,xn] according

to the structure of the flowchart and convert it
into the pseudo-code [z0, ...,zn, z

′
0, ...,z

′
l].

We basically follow their method and generate
pseudo-code. The full algorithm can be found in
their paper (Wang et al., 2012).

6.2 Code Generation Model
In the second stage, we will transform the pseudo-
code [z0, ...,zn, z

′
0, ...,z

′
l] into executable code

[y0, ...,yn,y
′
0, ...,y

′
l]. Because [z′

0, ...,z
′
l] are al-

ready executable code snippets, they can be di-
rectly converted to [y′

0, ...,y
′
l] without making

any changes. The difficulty lies in converting
[z0, ...,zn] into [y0, ...,yn]

For each zi. We first use a bidirectional Long
Short-Term Memory (LSTM) to encodes the tokens
of zi into hi, and ci is the final cell state of LSTM.
Then, Graph Attention Networks (Velickovic et al.,
2017) is employed to enhance the representation of
ci. Specifically speaking, to preserve information
about the direction information of the edges in the
flowchart, we treat the flowchart as a directed graph
and construct the Reversed Flowchart by reversing
the edges in the flowchart. Then, we use the GAT
to fuse the information of ci with its neighbors cj
according to the original flowchart Gorg and the
reversed flowchart Grev respectively. We set the
window size on Gorg is dorg, and the window size
on Grev is drev, then we obtain ci’s new represen-
tations ci_org and ci_rev respectively. Then, we
use MLP to merge ci_org and ci_rev:

c′i = MLP (ci : ci_org : ci_rev)

Where [:] denotes vector concatenation. Then, hi

and c′i is sent to the TranX’s decoder (Yin and
Neubig, 2018) and generate code snippets yi.
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In addition, TranX’s decoder employs a hybrid
approach of generation and copying, allowing for
out-of-vocabulary variable names and literals in
zi to be directly copied to yi. In their work, the
copy probability of copying the j-th tokens in zi
is defined using a pointer network. According to
Table 3, 46% nodes in the flowchart refer to the
variable declared or described above, thus, our
model should have the ability to copy tokens from
zi’s neighbours {zk}, {zk} are the nodes that can
reach zi at most dorg steps on graph Gorg. When
the model needs to copy a word from zi or {zk},
we will concatenate their tokens’ representation hi

with {hk}, and feed them into the point network to
calculate the copy probability of each token.

7 Experiment

7.1 BaseLines

We use the following baseline model to trans-
form the pseudo-code [z0, ...,zn, z′

0, ...,z
′
l] into ex-

ecutable code [y0, ...,yn,y
′
0, ...,y

′
l].

The first baseline model LSTM (Agashe et al.,
2019) is a neural encoder-decoder model where
the encoder computes contextualized representa-
tions of input node embeddings using an n-layer
BiLSTM, and an LSTM-based decoder produces
a sequence of code tokens, while attending to the
encoder representations at every time step. For a
fair comparison, we concatenate current pseudo-
code snippet zi with 4 context pseudo-code snip-
pets above and 1 context pseudo-code snippet be-
low. Specifically, the inputs of the model are
{zi−4, ...,zi, zi+1}, the output is yi. We use dif-
ferent segmentation tokens [UP] and [BELOW] to
mark pseudo-code above and below respectively,
because we find that feeding the model with the
direction information of edges can slightly improve
model’s performance. Another baseline Trans-
former (Agashe et al., 2019) is utilizes the trans-
former (Vaswani et al., 2017) architecture where
the encoder and decoder consist of multiple layers
of multi-headed self-attention and position-wise
feed forward layers. The inputs and outputs are the
same as the LSTM model described above.

7.2 Hyperparameters

The hyperparameters of our model are exactly same
as TranX except that the hidden size of our model
is 128, we use beam search-based decoding with a
beam size of 5 during inference, and trained at most
80 epochs, we pick the model at the epoch with

highest validation performance. The hyperparame-
ters for the Transformer and the LSTM baselines
are exactly same as Agashe et al. (2019). The train-
ing set, validation set and test set contain 220, 50,
50 samples, respectively.

7.3 Experiment Result
In this section, we discuss our experimental results.
We use corpus-level BLEU score as performance
metrics for code generation. All results are aver-
aged over three runs with different random seeds.

Method BLEU
Dev Test

LSTM 34.02 38.25

Transformer 41.82 44.05

Ours 54.26 55.68
-graph 48.89 51.53
-direction 53.48 55.27

Table 4: BLEU score for the code generation task on
both the dev and test sets of FC2Code for all base-
lines. LSTM and Transformer are two baseline models
proposed by Agashe et al.. Without graph means the
window size dorg and drev is set to 0, without direction
means we do not construct the “reversed flowchart” and
treat the flowchart as an undirected graph.

As shown in Table 4, our model outperforms
both LSTM and Transformer baselines by more
than 10% BLEU score. We demonstrate the ef-
fectiveness of each structure of our model through
ablation experiments. Firstly, we verify the impor-
tance for GAT by setting the window size dorg and
drev to 0. To test the importance of preserving the
direction information of edges, we do not construct
the “reversed flowchart” and treat the flowchart as
undirected graph, which enables nodes to perceive
information from both the outgoing and incoming
edges at the same time during the convolution.

Table 5 illustrates the effects of window size
dorg and drev. We find that increasing dorg always
helps the model performance, however increasing
drev maybe damage the performance. This is most
likely owing to the habit of writing code straight
up and down, such as we often define a variable
above and then refer to it below.

We can fuse the information of each node zi
according to the flowchart, or directly according to
pseudo code. Table 6 shows the impact of different
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dorg drev
BLEU

dev test

0 0 48.89 51.53
0 1 50.93 51.77
0 2 49.05 50.61

2 0 51.54 53.14
4 0 53.33 55.16
8 0 55.09 55.85

2 1 52.53 54.44
4 1 54.26 55.68
8 1 55.18 56.71

Table 5: Models benefit from a larger window size.
dorg means the window size on Gorg, drev means the
window size on Grev .

ways of fusing information. In most settings, using
a flowchart as a metric for calculating distances
of each node is usually better than using pseudo-
code, a good example to explain this can be found
in Figure 1. For the code “for i in range(n):”, the
input to the model is “I is less than n?” , the related
node is “Set i as the index of the array ...” and
“Increment i”. In the flowchart, the distance for
both needed nodes is 1. However, in pseudo-code,
the distance between “Increment i” and “I is less
than n?” is 4, which means that, to achieve the
same performance, the window size drev will be
larger if we use pseudo-code as metric instead of
flowchart. (In the pseudo-code, “Increment i” will
appear at the end of the loop structure, that is, below
the pseudo-code snippet “Return their array indices”
in Figure 1. )

8 Conclusion

In this paper, we introduced the task of generating
source code from flowcharts with texts. To train
models for this task, we constructed a new open-
domain dataset (FC2Code) from the programming
competition platform LeetCode. We propose a two-
stage code generation model. In the first stage,
the Structure Recognition Algorithm is employed
to transform the flowchart into pseudo-code con-
taining the structural conventions of a typical pro-
gramming language such as while, if. In the second
stage, A code generation model is employed to con-
vert the pseudo-code into codes. The experiments
show that it is necessary to enhance each node’s
representation with its neighbors according to the

dorg drev
BLEU

flowchart pseudo-code

0 0 51.53 51.53
0 1 51.77 50.92
0 2 50.61 50.66

2 0 53.14 53.64
4 0 55.16 54.34
8 0 55.85 55.58

2 1 54.44 53.21
4 1 55.68 54.21
8 1 56.71 55.85

Table 6: We can get the neighbors of each node accord-
ing to the flowchart or to the pseudo-code. This table
shows the impact of different ways of fusing informa-
tion on model performance.

structure of the flowchart. And the ablation experi-
ments further show that considering the direction
of edges in the flowchart will improve the model’s
performance, and when fusing the information of
neighbor nodes, compared with pseudo-code, cal-
culating the distance of two nodes using a flowchart
is better, which means that the flowchart is impor-
tant for the second stage.

Limitations

Because our model is specially designed to fuse
the information of each node in the flowchart, this
model may not be suitable for fusing information
in pseudo-code. Therefore, whether merging the
information of each node according to the flowchart
or according to the pseudo-code is better is still
waiting for further study.
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