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Abstract

Supervised training of existing deep learning
models for sequence labeling relies on large
scale labeled datasets. Such datasets are gener-
ally created with crowd-source labeling. How-
ever, crowd-source labeling for tasks of se-
quence labeling can be expensive and time-
consuming. Further, crowd-source labeling
by external annotators may not be appropri-
ate for data that contains user private infor-
mation. Considering the above limitations of
crowd-source labeling, we study interactive se-
quence labeling that allows training directly
with the user feedback, which alleviates the
annotation cost and maintains the user pri-
vacy. We identify two biases, namely, context
bias and feedback bias, by formulating interac-
tive sequence labeling via a Structural Causal
Model (SCM). To alleviate the context and
feedback bias based on the SCM, we identify
the frequent context tokens as confounders in
the backdoor adjustment and further propose
an entropy-based modulation that is inspired
by information theory. With extensive experi-
ments, we validate that our approach can effec-
tively alleviate the biases and our models can
be efficiently learnt with the user feedback.

1 Introduction

Recently, deep learning models have yielded state-
of-the-art performance for tasks of sequence la-
beling, such as POS tagging (Doostmohammadi
et al., 2020; Nguyen et al., 2021a) and Named En-
tity Recognition (NER) (Devlin et al., 2018; Lam-
ple et al., 2016; Xu et al., 2021). Unfortunately,
existing deep learning models are well-known of
data-hungry (Guo et al., 2020; Hathurusinghe et al.,
2021; Nguyen et al., 2021b), relying on large an-
notated datasets for training. These datasets are
generally created with crowd-source labeling, e.g.,
using Amazon Mechanical Turk.
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Example 1

exFAT is supported in Windows XP and Windows Server 2003 
with update KB955704, Windows Vista with  Service Pack 1.

government

organizationlocation

newspaper none of the above

Quarry Visitor Center in Dinosaur National Monument was built 
as part of the National Park Services Mission 66 program.

government

organization

location

newspaper none of the above

software

government

Figure 1: Example use cases in NER. In a modern NER
system, there may be hundreds of entity classes. In ex-
ample 1, the user gets the top 1 prediction "organiza-
tion" and a list of other predicted top candidate entities
and provides the feedback that "government" is correct.
In example 2, the user cannot find the correct entity
within the top candidate entities, and chooses "none of
the above".

Crowd-source labeling can be expensive and
time-consuming, especially for sequence labeling
tasks. This is because training for sequence label-
ing generally requires token-level annotations, i.e.,
assigning labels to each token/word within a given
text sequence. Further, it may not be feasible to
adopt crowd-source labeling for privacy-sensitive
domains, involving private data of the users. For in-
stance, in commercial scenarios, the user-generated
text might contain Personal Identifiable Informa-
tion (PII), e.g., person names or home addresses.
Such user data may be prohibitive to be collected
or saved, not along distributed for crowd-sourcing.
Therefore, we consider an alternation of crowd-
sourcing, i.e., interactive sequence labeling, where
the sequence labeling model is directly trained with
feedback from the users, in lieu of crowd-sourced
annotators. Specifically, the sequence labeling
model is trained with batches of streaming data
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from the users. Each time when the model receives
a batch of user data, the users will receive the top
predicted token classes together with some other
possible classes, and provide feedback for model
training, as in Figure 1. To reduce feedback effort
of users (and also sometimes with limited space in
UI), each time the model only displays its top K
predicted classes, after which the user can either
select the correct one from the predicted classes
(positive feedback), or provide the feedback that
none of the candidates is correct (negative feed-
back). This reduces the feedback/annotation effort,
compared with always asking for feedback with
the ground truth label. Further, by training directly
with the user feedback, we circumvent the necessity
of saving and distributing the user data for crowd-
source labeling, maintaining the user privacy.

Compared with requiring users to provide the
exact label each time, the above feedback is sim-
pler and alleviates the user efforts. However, the
sequence labeling model trained with such feed-
back is likely to be biased, which we will explain
in a casual perspective. In initial stages of interac-
tive learning, model predictions may suffer from
spurious correlation with certain context features
(confounders) in the training data (Zhang et al.,
2020b; Wang et al., 2020a), due to the bias from
pretraining (Delobelle et al., 2021) or insufficient
fine tuning. As a result, the model prediction will
be confounded by such context features, such that
its predictions lean towards a certain set of token
classes (i.e., context bias). Thus, when interact-
ing with users, the model might receive negative
feedback, since the ground truth label is unlikely
displayed in the top K candidates. We term such
a disparity of feedback as feedback bias. We can
observe that the positive feedback of ground truth
labels provides stronger supervision for training,
since with negative feedback, we can only rule out
K negative candidates. Consequently, the feedback
bias will aggravate the context bias, with the model
more sufficiently trained for data with the positive
feedback, while remaining weakly supervised oth-
erwise.

We formulate the interactive sequence labeling
as a Structural Causal Model (SCM), and subse-
quently develop debiasing mechanisms. For the
context bias, we identify the confounders as the
most frequent context tokens and design a decon-
founding layer based on the backdoor adjustment,
reducing the effect of spurious correlation with the

context features. To enable more efficient training
on the negative feedback, we employ doubly robust
estimation (Dudík et al., 2011) using an imputa-
tion model for weak supervision. However, with
the proportion of negative feedback significantly
larger than positive feedback, the feedback bias
is likely to accumulate. Besides the context con-
founders Z, some unobserved confounders C (e.g.,
users’ prior knowledge and expertise (Wang et al.,
2022, 2020b; Gao et al., 2021)) from user feedback
can also form the backdoor paths and result in the
feedback bias. Since the feedback bias results
from both the observed confounder and some unob-
served confounders, the backdoor adjustment may
not be sufficient for de-biasing (Bahadori and Heck-
erman, 2021; Puli and Ranganath, 2020). Thus, we
introduce an external random noise variable as the
instrumental variable (Angrist and Krueger, 2001;
Yue et al., 2020). To properly determine the random
noise, we propose an information-theoretic causal
de-biasing method, entropy-based modulation. Our
approach can decrease the chances of negative feed-
back, when selecting the K candidates from model
predictions for display.

Our contributions are summarized as follows.

• We study interactive sequence labeling that
allows training directly with the user feed-
back, which alleviates the annotation cost and
the user privacy concern by traditional crowd-
source labeling. We fundamentally analyse
the context bias and feedback bias involved
in the interactive learning with a structural
causal model (SCM).

• To alleviate the above two biases, we design
a confounder layer that identifies the con-
founders as the most frequent context tokens
and further propose an information-theoretic
causal de-biasing method, entropy-based mod-
ulation, leveraging the relations between the
predictions and context.

2 Interactive Sequence Labeling

In this section, we elaborate the procedures of our
interactive sequence labeling on batches of stream-
ing data of the users. Specifically, for each batch of
the test sequence, the interaction between sequence
labeling model and the users can be decomposed
into: display, feedback and training.

Display: We apply the current sequence labeling
model on the text sequences X = [x1, . . . , xN ]
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with length N . For each token E ∈ X , we
collect the predicted probability distribution over
Y = [y1, . . . , yM ] with total M token labels, from
which we select top K candidate labels based on
the predictions and the entropy-based modulation
detailed in Section 4.1. Then, the token E and its
selected K candidates {d1, . . . , dK} are displayed
to the users for feedback.

Feedback: As discussed in Section 1, our inter-
active sequence labeling involves two types of user
feedback: positive feedback and negative feedback.
Given a token and its K candidate labels, the user
will provide a positive feedback via pointing out
the ground truth label y if y ∈ {d1, . . . , dK}. Oth-
erwise, the user will feedback with "none of the
above", i.e., negative feedback.

Training: The sequence labeling model is pe-
riodically trained with the feedback from users
over time. For a positive feedback, we train the
model with the designed deconfounding layer and
the cross-entropy loss with the ground truth label y.
If a negative feedback is given, we train the model
with the proposed entropy-based modulation and
doubly robust estimation, described in Section 4.2.

3 Interactive Sequence Labeling from a
Causal View

To fundamentally explain the biases and their
sources in the interactive learning, we analyse inter-
active sequence labeling from the causal perspec-
tive and propose a Structural Causal Model (SCM).

3.1 SCM for Interactive Sequence Labeling
Figure 2 shows our SCM for our interactive se-
quence labeling, which contains 6 key variables
in the interactive sequence labeling procedure: 1)
Token Embeddings, embeddings of tokens from a
pretrained BERT model. We reload E that refers
to both the token and the token embedding; 2) Con-
text confounders Z, which we identify as a set of
context tokens potentially forming the spurious
correlation with the entities; 3) Prediction Y , the
predicted token labels. 4) Displayed Labels D, the
K selected candidates based on Y ; 5) Unobserved
confounders C, from user feedback during inter-
actions; 6) Instrumental variable ε, which is an
external random noise variable independent from
confounders C.

• Context Bias: In Figure 2(a), Y ← Z →
E represents the backdoor paths which will
introduce spurious correlation between Y

Z

YE

Z

(a) Context bias (b) Feedback bias

(a) Alleviating 
Context bias

(b) Alleviating 
Feedback bias

E Y D

Figure 2: The proposed structural causal model for in-
teractive sequence labeling.

and E. Based on the total probability the-
orem, P (Y = y|E) =

∑K
i=1 P (Y =

y|E, zi)P (zi|E). For some confounder z ∈
Z, the high value of P (z|E) will make
P (Y = y|E, z) dominate the total probability.
Thus, the prediction of the model is biased by
coufounders Z.

• Feedback Bias: Our displayed candidates D
are generated based on the model prediction
Y . Besides the context confounders Z, some
unobserved confounders C (e.g., users’ prior
knowledge and expertise (Wang et al., 2022,
2020b; Gao et al., 2021)) from user feedback
can also form the backdoor paths and result
in the feedback bias. Since such confounders
C are unobserved, we indicate their effects on
E and Y with dashed lines. With the direct
influence of the external randomness ε, the
causal effect of confounders C are intervened,
which makes ε an instrumental variable. In
our considered interactive sequence labeling,
the user can only provide a positive feedback
when the ground truth label is included in the
displayed D. As in Section 1, the feedback
bias is caused by the disparity between such
positive and negative feedbacks.

4 De-biasing Interactive Sequence
Labeling

4.1 Alleviating Context Bias Based on
Context Confounders

As mentioned in Section 1, predictions from se-
quence labeling model may suffer from spuri-
ous correlation with certain context features (con-
founders) in the training data. In alleviating such
context bias, we add a deconfounding layer on top
of a BERT encoder, leveraging the relation between
model predictions and potential confounders.

Inspired by (Wang et al., 2020a) that identifies
the context bounding boxes for visual tasks as
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Alleviating Context Bias (Section 4.1)

Alleviating Feedback Bias (Section 4.2)

It is operated by the Texas Department of State Health  Services  .
The U.S. General  Services  Administration initiated a demonstration ``First Impressions'' project.

...
The mortgage business segment of Fidelity National Information  Services  was spun off in 2008.

Service

Service

Service
(Pretrained Samples)

Government Organization Software

Government Organization Software

(Current Observed Sample) exFAT is 
supported in Windows XP and 
Windows Server 2003, Windows Vista 
with   Service   Pack 1.Service

(7) Click

Software

none of the above

Government Organization Software

Language 
Model

Deconfounding 
Layer

Context 
Confounder 
Dictionary Z

(2) Input context X 
and token E

(3)
Entropy-based 

Modulation

(4)

(4) (5)

(8) User Feedback

Organization

(6) Display

Before context debiasing

national

Windows

department
Service

?

Context-aware 
Borrow & Put via 

deconfounding Layer

Given

Given

Given
Government

… Windows ... Service … Pack ...
Context 1 Entity Context 2

national department Windows bussiness

national department Windows bussiness

Information-theoretic spurious 
correlation measurement

(1) Offline 
pretrain

Limited samples having “Software” 
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Figure 3: Our proposed context-aware information-theoretic causal de-biasing for interactive sequence labeling.

the confounders, we novelly identify the frequent
context words as the potential confounders for se-
quence labeling, denoted as Z = {zi}Ki=1, where
K is the number of confounder tokens. We over
load zi for both the text token and its embedding.
Following (Wang et al., 2020a; Zhang et al., 2020b),
we leverage the confounders Z for the backdoor
adjustment and define a deconfounding layer on
top of the pretrained BERT encoder,

P (Y |do(E)) =

K∑

i=1

P (Y |E, zi)P (zi) (1)

= softmax


Wc


xi,

K∑

j=1

P (zj) · αi(zj) · zj




 ,

where E is the embedding of xi, the current token
to be labelled in the i-th position of the sentence
X , and

αi(zj) =
exp

[
(WxE)>(Wzzj)

]
∑K

k=1 exp [(WxE)>(Wzzk)]
(2)

is the importance factor of zj for xi, measured by
the attention weight learned in the deconfounding
layer. The attention score αi(zj) measures the co-
dependence between token embedding xi and the
confounder zj . In practice, we compute P (zj) as
the frequency of each confounder zj , j = 1...K on
the initial dataset (in Section 5). P (zj) is normal-
ized so that

∑K
j=1 P (zj) = 1.

As shown in Figure 3, when the context tokens
"state" and "national" are observed, it is highly pos-
sible that "service" is predicted as "government".

By also considering other confounders (i.e., borrow
& put (Wang et al., 2020a)) such as "windows", we
are able to predict "service" as "software".

4.2 Alleviating Feedback Bias via
Entropy-Based Modulation

To further alleviate the feedback bias, we leverage
the doubly robust estimation (Dudík et al., 2011) to
reduce the disparity between the positive and neg-
ative feedback. Since the negative feedback only
contain information for weak supervision, i.e., only
ruling out K candidate labels that is not the ground
truth, we instead train our sequence labeling model
from an unbiased imputation model, denoted as σ.
σ is another sequence labeling model trained offline
(before interactive learning) on a small gold dataset
with ground truth labels. σ is unbiased since it is
not exposed to the positive and negative feedback
online, i.e., do not suffer from the feedback bias.
For sample xi that receives negative feedback from
the user, our sequence label model is trained by

Ln =
∑

yi∈Y
−pσ(yi|xi) log p(yi|xi) (3)

where pσ(yi|xi) is the prediction from the imputa-
tion model σ. The imputation model is used when
the user clicks "none of the above" (Figure 1) i.e.,
model receives negative feedback. In this case, in-
stead of using "none of the above" as feedback, the
model receives feedback as the predictions from the
imputation model. We implement the imputation
model with the pretrained BERT model (Devlin
et al., 2018).
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Entropy-based Modulation When the model suf-
fers from the context bias due to spurious correla-
tion with context confounders Z, the model pre-
diction is likely biased. In addition, with the users
involved in the sequence labeling process, there
are several unobserved confounders existing in the
interactions (Wang et al., 2022, 2020b; Gao et al.,
2021), which can form the extra backdoor paths.
For example, after the users from a specific knowl-
edge background (e.g., medical) have interacted
with the system for a number of rounds, the data
labels collected from the users can be biased. Thus,
the model trained on these batches of data may
display biased predictions for the following new
user with a different knowledge background. Then,
the user can only provide a negative feedback, with
which the model cannot be directly supervised with
the ground truth label. Consequently, the model
will be biased toward data with positive feedback
during interactive learning, resulting in the feed-
back bias.

Since the feedback bias results from both the
observed confounder and some unobserved con-
founders, the backdoor adjustment may not be suf-
ficient for de-biasing (Bahadori and Heckerman,
2021; Puli and Ranganath, 2020). Thus, we in-
troduce an external random noise variable ε as
the instrumental variable (Puli and Ranganath,
2020; Peysakhovich and Eckles, 2018; Angrist and
Krueger, 2001; Yue et al., 2020). Under the as-
sumption that ε is independent from confounders
C, the token embedding E is intervened by ε and
no longer dominated by the confounders. To prop-
erly determine the random noise, we propose an
information-theoretic causal de-biasing method,
entropy-based modulation. Following (Seo et al.,
2022), we quantify the co-dependence between
confounders Z and E via their mutual information,

I(Z;E) = H(Z)−H(Z|E)

≈
(

1

N

N∑

i=1

H(Z|xi)
)
−H(Z|E),

in which H(·|·) denotes the conditional entropy
and H(Z) is estimated with the average effect of
H(Z|xi) over all the tokens in X . Formally,

H(Z|xi) = −
K∑

j=1

logαi(zj) · αi(zj),

where we approximate P (Z|xi) as αi(zj). Intu-
itively, as analysed in (1), the co-dependence can

be modeled by the cross attention between the fre-
quent text tokens Z (confounders) and the learnt
token embeddingsE. Thus, when the model predic-
tion is confounded, we can expect a large attention
value αi on some context confounders, with which
the learnt token embedding is correlated to a large
extend. This inspires us that, by scaling the ran-
dom noise ε with I(Z;E), we can modulate the
selection of the top K from model predictions via
monitoring the attention value between Z and E.

Specifically, for prediction of a token xi from a
text sequence X , we consider selecting the top K
candidates from the following modulated predic-
tion distribution

P (D|do(E))

= softmax
(
logitP (Y |do(E)) + I (Z;E) · ε

)
,

where ε ∼ N(0, 1) is the instrumental variable.
Concretely, P (D|do(E)) is the modulated predic-
tion distribution, with which we select the top K
labels with the highest probability. The selected
labels are displayed to the users for feedback.

If I (Z;E) is relatively larger, it indicates that
xi is highly correlated with Z, and thus the back-
door path is constructed. In order for the model
to focus on the direct path, we intervene with the
instrumental variable ε by encouraging randomly
selecting the entity types with lower predicted
probabilities (with P (Y |do(E))) to be displayed
to the users. We denote our method as Context-
aware Information-Theoretic Interactive Sequence
Labeling (CITISL).

5 Experiment

5.1 Experimental Settings

Dataset and Metric. We evaluate our method
on two POS tagging datasets and two NER
datasets. CoNLL-2003-POS (Tjong Kim Sang
and De Meulder, 2003) includes 34 types of tags
and contains about 14.4K training data and 3.4K
test data. The UD-ENG (Nivre et al., 2015) dataset
includes 15 types of tags. This data has about
37K training data and 7.4K test data. The Few-
NERD dataset (Ding et al., 2021) which contains
66 classes of entities. The Few-NERD dataset has
127.6K training data and 37.6K test data. The
OntoNote dataset (Hovy et al., 2006) which con-
tains 18 classes of entities. The OntoNote dataset
has about 40.6K training data and 13.5K test data.
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CoNLL-2003-POS UD-ENG Few-NERD OntoNote
Initial Data 0.1 0.15 0.2 0.1 0.15 0.2 0.03 0.05 0.1 0.1 0.15 0.2
BERT 66.71±0.06 66.89±0.17 66.68±0.12 48.51±5.18 54.92±7.96 46.43±5.05 50.59±0.84 51.57±0.42 51.47±0.56 75.53±0.0 75.79±0.34 75.09±0.39
CBA 66.81±0.08 66.81±0.08 66.87±0.09 53.15±0.82 50.75±4.21 50.21±4.49 51.44±0.75 50.70±0.36 51.61±0.31 78.97±0.61 82.02±0.21 81.51±0.18
IS 66.69±0.04 66.83±0.06 66.82±0.13 54.25±3.81 54.83±4.71 52.28±0.96 50.20±1.42 51.62±0.56 51.66±0.48 76.89±0.33 75.92±0.96 75.65±0.82
CITISL 85.90±0.66 91.89±0.07 91.39±0.65 80.22±6.48 75.06±0.08 79.98±5.57 62.48±0.67 62.57±1.36 65.14±0.29 78.66±0.21 81.89±0.31 81.16±0.35
- EM 85.36±1.29 85.09±2.02 83.94±0.86 54.99±3.68 54.85±9.63 53.85±4.72 61.63±0.40 60.63±0.73 62.57±0.83 81.42±3.88 79.64±6.74 83.35±2.59
- EM - CBA 85.64±1.33 83.47±0.12 83.54±0.11 53.55±0.76 58.10±7.06 61.46±7.80 61.36±1.03 61.78±0.55 62.71±0.79 76.71±1.09 75.54±0.16 74.79±0.35
GroundTruth 86.22±0.76 86.22±0.76 86.22±0.76 64.38±11.5 64.38±11.5 64.38±11.5 67.26±0.97 67.26±0.97 67.26±0.97 78.00±0.47 78.00±0.47 78.00±0.47
TotalData 91.63±0.0006 93.52±0.0008 68.59±0.004 86.78±0.004

Table 1: F1 score comparison results on CoNLL-2003, UD-ENG, Few-NERD and OntoNote.

We finetune the model on a portion of the dataset
before interactive learning. In practice, we expect
the data available for initial training should be lim-
ited to minimize the reliance on ground truth labels.
Specifically, on CoNLL-2003-POS, UD-ENG and
OntoNote5 we use 10%, 15%, 20% of the training
data to train an initial NER model. On the Few-
NERD dataset we use 3%, 5% and 10% to train
the initial model. Afterwards, the initial model
interacts with the end user on the remaining train-
ing data, receives user feedback, and learns online.
During the interactions, the model expects to re-
ceive feedback from the end users. Similar to (Shen
et al., 2018), we calculate the F1 score of the mod-
els on the test data after each interaction (i.e., time
step). The average results on the test data over 10
runs with standard errors are reported.

Baselines. We evaluate on several baselines: (i)
BERT. We finetune BERTbase (Devlin et al., 2018)
encoder and a linear projection layer for predic-
tion. This is a simple baseline without de-biasing.
(ii) Context Bias Alleviation (CBA). We alleviate
the pretrained correlation bias by following (Zhang
et al., 2020b). Instead of considering both vision
confounders and language confounders, we only
leverage the language confounders which are con-
text words. We set the size of the confounder dictio-
nary as 100 and the embedding length as 768. (iii)
IS. We alleviate the feedback bias by importance
sampling (Kloek and van Dijk, 1978). We keep
tracking the frequencies of user feedback labels
and use them as importance weights to reweight
the feedback loss. (iv) GroundTruth. During each
interaction, it is assumed that the model can always
receive the feedback indicating the exactly correct
labels (Shen et al., 2018; Fang et al., 2017; Rad-
mard et al., 2021). This assumption is unrealistic
considering (i) there are many entity types while
the space of displaying the entity types to the users
is limited, as discussed in Section 1 and (ii) it is
difficult for the users to provide the perfectly cor-
rect label when all entity types can be displayed

but the number of types is large, as shown later in
the human evaluation in Section 6.2. GroundTruth
is to understand the effect of bias on the model.
Specifically, it evaluates how the biased model
will perform with correct labels provided during
the interactions. (v) TotalData. Different from
GroundTruth, TotalData assumes crowd-sourced
training. Specifically, the whole dataset is crowd-
sourced and correctly annotated before model train-
ing. TotalData is to understand the upper bound
performances of the model trained on the data with
ground truth labels. Since crowd-source labeling re-
quires more human effort, training with TotalData
can be expensive and is also not suitable for privacy-
preserving domain. Note that our model is trained
with the user feedback, among which the nega-
tive feedback may not contain ground truth labels.
Differently, the crowd-sourced annotations with To-
talData are usually in higher quality with ground-
truth labels, i.e., from paid annotators, which may
contribute to data efficiency and convergence of
training, but at the expense of 1) expensive and
time-consuming annotating. 2) risking the user
privacy in distributing data to crowd-sourced anno-
tators.

Our model also have several variants. We denote
our propose Entropy-based Modulation as EM and
Context Bias Alleviation as CBA. i) CITISL-EM:
Our CITISL without EM. ii) CITISL-EM-CBA:
Our CITISL without both EM and CBA. Note
that both CITISL-EM-CBA and CITISL-EM are
trained along with doubly robust training.

5.2 Main Results

Alleviating Context Bias To validate the effec-
tiveness of our proposed context deconfounding
method, we compare our CITISL-EM with its
variants and the baselines, considering alleviating
context bias. The results are shown in Table 1.
There are several observations. Firstly, our ap-
proach can successfully alleviate the context cor-
relation bias, compared with the baselines. On
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CoNLL-2003-POS UD-ENG Few-NERD OntoNote
Initial Data 0.1 0.15 0.2 0.1 0.15 0.2 0.03 0.05 0.1 0.1 0.15 0.2
CITISL 74.05±2.98 97.05±0.13 96.50±0.43 77.68±8.83 70.48±0.29 77.55±7.72 54.86±3.78 54.56±4.37 58.65±0.83 76.25±0.48 75.86±0.73 75.96±0.63
- EM 72.54±4.96 71.06±7.72 66.43±3.37 42.97±5.21 43.05±13.1 41.86±6.37 47.57±2.89 49.06±1.37 49.39±1.16 77.76±2.43 69.57±15.2 79.52±4.19
- EM - CBA 73.90±5.55 64.81±0.07 64.72±0.07 41.24±0.89 47.54±9.72 52.00±10.6 48.21±1.67 49.41±1.91 49.53±0.55 78.88±1.77 76.07±0.46 76.02±0.50
GroundTruth 74.98±3.02 74.98±3.02 74.98±3.02 55.65±15.8 55.65±15.8 55.65±15.8 73.07±1.20 73.07±1.20 73.07±1.20 80.90±0.20 80.90±0.20 80.90±0.20
TotalData 97.06±0.0006 95.97±0.003 74.43±0.006 86.16±0.008

Table 2: Analysis of our method and its ablations (CITISL-EM and CITISL-EM-CBA). We experiment on
interactive learning with classes that are unseen in initial training.

ConLL-2003-POS, the improvements of CITISL-
EM over BERT are 27.95%, 27.21% and 25.89%
on 10%, 15% and 20%, respectively. On Few-
NERD, the improvements of CITISL-EM over
BERT are 21.8%, 17.6% and 21.2% when 3%, 5%
and 10% initial data are used. On UD-ENG and
OntoNote, we observe the similar improvements.
Secondly, compared with only using doubly ro-
bust training, context deconfounding can further
alleviate the context bias. On the ConLL-2003-
POS dataset, CITISL-EM achieves 1.94% final
improvement over CITISL-EM-CBA, when the
initial dataset size is 15%. On OntoNote5 with 20%
initial data, CITISL-EM gains 11.45% improve-
ment over CITISL-EM-CBA. When the initial
data sizes are 15% and 10%, the improvements of
CITISL-EM over CITISL-EM-CBA are 5.43%
and 6.14%.

Alleviating Feedback Bias To validate the effec-
tiveness of our proposed entropy-based modula-
tion, we compare our method CITISL with its
variants and the baselines. By the entropy-based
modulation, our approach can learn on the enti-
ties with unobserved labels more sample-efficiently.
There are some observations showing that our pro-
posed entropy-based modulation can successfully
alleviate feedback bias. On Few-NERD, when
there are 5% and 10% initial data, CITISL out-
performs CITISL-EM by 3.2% and 4.1% respec-
tively. On ConLL-2003-POS, when 10% initial
data are used, CITISL and CITISL-EM are com-
parable. When the initial data increase to 15% and
20%, the improvements are increased to 8.0% and
8.9%. On UD-ENG, when 10%, 15% and 20%
data are used, CITISL gains 45.9.4%, 36.8% and
48.5% improvements over CITISL-EM.

We further compare our proposed method,
CITISL, to GroundTruth, which has access to the
perfectly correct labels at each time. The results
are in Table 1. Our approach achieves very similar
performance, compared to GroundTruth. In some
cases, our approach outperforms GroundTruth, be-
cause GroundTruth learns on datasets with imbal-

anced entity types which is actually the context
bias, while our de-biased approach encourages the
model to also learn on the minor entity types (i.e.,
entities with lower probabilities to display) and al-
leviates the feedback bias. All the baseline models
are trained in an interactive way as our method with
the training dataset split being exactly the same as
in our method. Please refer to Appendix A.2 for the
learning curves, showing the behaviors of different
algorithms during the interactive learning.

6 Discussion

6.1 Analysis

In the main experiments, some classes are made
unseen to the model before interactions, to simu-
late a biased sequence labeling setting. To further
analyze our proposed causal de-biasing methods,
i.e., CITISL and its ablations (CITISL-EM and
CITISL-EM-CBA), we report the F1 score com-
parison results only on unseen classes (entity types).
The results are shown in Table 2. On ConLL-
2003-POS, there are 10.3K tokens with unseen
classes and 29.6K tokens with seen classes. On
UD-ENG, classes of 40.7K tokens are unseen and
classes of 15.2K tokens are seen. On Few-NERD,
there are 43.8K tokens with unseen classes and
147.6K tokens with seen classes. On OntoNote,
classes of 13.5K tokens are unseen and classes of
19.0K tokens are seen. From Table 2, our proposed
methods result in superior performance that can be
close to TotalData and GroundTruth. Additionally,
CITISL has much better performance than its abla-
tions (CITISL-EM and CITISL-EM-CBA). This
shows that our proposed entropy-based modulation
and context debasing can actively explore and dis-
play the classes which are uncertain to the current
trained model. Thus, collected user feedback is less
biased and more efficient for interactive learning
with our model.

6.2 Human Evaluations

We further conduct human evaluations, to under-
stand the (i) quality of the feedback provided by
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the human and (ii) required efforts (i.e., labeling
time) when users provide feedback to the model
update using our approach. By our approach, the
users are required to select the correct entity from
the top-K predictions by our model or ‘none of the
above’. For comparison, the users are also required
to select the correct entity from all candidate en-
tities, as in the traditional annotation mechanism
(Shen et al., 2018; Fang et al., 2017; Radmard et al.,
2021). The human evaluations are conducted on
the FewNERD dataset. We collect human feedback
in 1600 sessions by 5 users. In each session, the
system shows a sentence with predicted candidates
to the user, and the user provides feedback.

In the evaluation of the quality of the feedback
provided by the human, by traditional annotation
mechanism, 41.5% sentences receive groundtruth
feedback from the users (i.e., users label the cor-
rect type). By our feedback mechanism, 44.5%,
43.8% and 43.0% sentences receive groundtruth
feedback from the users, when K = 3, 5 and 7, re-
spectively. If we only consider the (68.3%, 70.0%
and 70.5%) sentences where the groundtruth en-
tity type is within the top-K predictions by our
model, 65.2%, 62.5% and 61.0% sentences receive
groundtruth feedback, when K = 3, 5 and 7, re-
spectively. In the evaluation of labeling efforts,
by traditional annotation mechanism, in average
23.96 seconds are needed to label a sentence. By
using the feedback studied in our paper, in average
16.99 seconds are needed. The above results show
that by using the studied feedback, we can collects
feedback of higher quality with less human label-
ing efforts, compared to the traditional annotation
mechanism.
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Figure 4: Following (Devlin et al., 2018; Wang et al.,
2020a; Rao et al., 2021), we show differences between
the likelihood before and after de-biasing. (a) shows
the difference by alleviating the context bias and (b)
shows the difference by alleviating the feedback bias.

6.3 Case Study

To analyze the effect of our proposed causal in-
tervention methods, we show some examples of
the likelihood before and after the intervention on
the context bias and feedback bias respectively.
In Figure 4(a), before intervention on the context
bias, the likelihood of P (Y |E) can be significantly
high due to spurious correlations. For example,
because the token "service" and the label “gov-
ernment” frequently co-occur in the imbalanced
dataset, P (government|service) can dominate
the prediction probabilities. With the backdoor
adjustment intervention (Wang et al., 2020a; Zhang
et al., 2020b), P (government|do(service)) is
lower and enables the model to predict other possi-
ble labels (e.g. organization, software). In Figure
4(b), we show the average display probabilities of
six token labels. Due to the context bias, some
frequently occurred labels (e.g., actor, music) have
relatively much higher probabilities to be displayed.
The introduced random noise instrumental variable
εmodulates the display probabilities. Scaled by the
measurement of spurious correlations, the modula-
tion can promote labels with low prediction proba-
bilities to be displayed.

7 Related Work

Causal Inference for Sequence Labeling Previ-
ous works (Zhang et al., 2021; Nan et al., 2021;
Zeng et al., 2020) identified several causal effects in
sequence labeling problems including named-entity
recognition and part-of-speech tagging. To iden-
tify the confounders and analyze spurious correla-
tions in their models, they fundamentally formu-
late their problems via a Structural Causal Model
(SCM). Further, they employ the backdoor adjust-
ment (Zhang et al., 2021; Nan et al., 2021; Zeng
et al., 2020) to remove the spurious correlation
introduced by the backdoor paths in the SCM.
Active Learning Given a dataset of unlabeled sam-
ples, active learning aims at selecting the most
task-informative subset of samples (queries) for
labeling, so as to maximize the model performance
trained with the acquired labels, while minimiz-
ing the annotation cost (Shen et al., 2018; Fang
et al., 2017; Radmard et al., 2021; Zhang et al.,
2020a; Siddhant and Lipton, 2018; Yao et al., 2019;
Shelmanov et al., 2019). Our setting of interactive
sequence labeling is different from active learn-
ing in the following perspectives: i) Unlike active
learning that select samples for annotation from an
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unlabeled dataset, our sequence labeling model is
trained with batches of streaming data. ii) We send
all the data of each batch to the users, i.e., we do
not perform sample selection, but instead focusing
on alleviating the context and feedback biases in
interactive learning.
De-biasing for Interactive Learning (Qian et al.,
2020) studies the task of interactive learning for
named entity normalization. However, differ-
ent from our work, they ignore the bias prob-
lems involved with the top K display. Previous
works (Lakkaraju et al., 2017; Swaminathan and
Joachims, 2015a; Yuan et al., 2019) realized the
importance of handling non-displayed events. They
regarded non-displayed events as unlabeled in-
stances, and model the CTR prediction as a learn-
ing problem with labeled and unlabeled instances,
which aims to learn under covariate shift (sample
bias corrections). Several counterfactual estima-
tors have been developed. Importance sampling
(IS) is a simple way to tackle this issue, but suffers
from high variances. Classic variance reduction
techniques (Bottou et al., 2013; Li et al., 2015;
Swaminathan and Joachims, 2015b) for IS are use-
ful for counterfactual evaluation and learning. In-
verse propensity score (IPS) (Horvitz and Thomp-
son, 1952) weights each labeled event with the
inverse of its propensity score, which is determined
by the likelihood of the logged data. Doubly ro-
bust for counterfactual learning (Dudík et al., 2011)
takes advantage of the IPS (Horvitz and Thomp-
son, 1952) and direct method (Yuan et al., 2019) to
increase the chances of accurate ratio estimations.

8 Conclusion

The state-of-the-art sequence labeling models rely
on an adequate amount of labeled data. Crowd-
source labeling for sequence labeling can be ex-
pensive, time-consuming, and not be appropriate
for data containing user private information. We
study how to efficiently and accurately train se-
quence labeling models directly with the user feed-
back, with a simple feedback mechanism. More-
over, we fundamentally analyze and explain the
biases involved in interactive sequence labeling,
formulating interactive sequence labeling from a
causal view and propose a structural causal model.
Based on the structural causal model, we learn de-
biased interactive sequence labeling, via identify
the confounders as the most frequent context tokens
for the backdoor adjustment and further propose

an information-theoretic causal de-biasing method,
i.e., entropy-based modulation, by leveraging the
relations between the contexts and entity tokens.
With extensive evaluations, we validate the effec-
tiveness of our proposed de-biasing approaches.

9 Limitations

One of the limitations is that our interactive learn-
ing is based on user feedback on the token-level pre-
diction of the NER model. This may not be conve-
nient for NER models that generates sequence-level
prediction, e.g., those predicts with a Conditional
Random Field (CRF) (Sutton et al., 2012) module,
with which we need additional forward and back-
ward operations to extract the token-level predic-
tions. It would be interesting for the future work to
also consider user feedback on the sequence level
prediction with CRF-based NER models.
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A Appendix

A.1 User Feedback
We show some illustrations of how users interact
with the system and provide feedback in our human
evaluations (Section 6.2). Figure 5 shows the main
page with introductions.

Figure 6 shows how the user interacts with the
system in the GroundTruth approach. In this case,
the user is provided all the candidate types and
selects the most suitable one. It can be very time-
consuming and requires more human effort, since
the user needs to scroll down, compare all the 66
candidates and select the most suitable one.
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Figure 7 shows how the user interacts with
the system in our proposed approach CITISL. In
this case, the user gets the most likely prediction
"person-athlete", as well as two more candidates
"person-other" and "other-livingthing". Among
the top 3 candidates, it is easier for the user to
decide the most suitable one, compared to that in
the GroundTruth approach. If the user cannot find
the most suitable one, the user will select "none
of the above". Due to the context bias and feed-
back bias, it is possible that the correct entity type
is not within the top 3 candidates. By our causal
de-biasing approach, we alleviate the bias and the
model can efficiently learns to identify the correct
entity type , including it in its top 3 predictions.

Figure 5: Main page.

A.2 Learning Curve
To further understand the behaviors of different
algorithms during the interactive learning and vali-
date the efficiency of our algorithm, we also show
the learning curves by different algorithms, in ad-
dition to the comparison results shown in Table
1. The curves are shown in Figure 8, 9, 10 and
11. We can observe that our approach improves
quickly and outperforms most of the baselines even
in the early stages. On CoNLL-2003 and UD-ENG,
our approach outperforms GroundTruth, because
GroundTruth learns on datasets with imbalanced

Top1 prediction

Click and the following 
drop-down list will appear

Since there are 66 
token classes in 
the drop-down 

list, the user need 
to scroll down to 
go through all the 
candidates, which 
is time-consuming 
and requires more 

human effort

Figure 6: How the user interacts with the system in the
GroundTruth approach.

Figure 7: How the user interacts with the system in our
proposed approach, CITISL. In this example, the top 3
candidates are suggested to the user.

entity types which reflects context bias, while our
de-biased approach encourages the model to also
learn on the minor entity types, alleviating the feed-
back bias.
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Figure 8: Comparisons between different approaches on CoNLL-2003.
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Figure 9: Comparisons between different approaches on UD-ENG.
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Figure 10: Comparisons between different approaches on Few-NERD.
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Figure 11: Comparisons between different approaches on OntoNote.

3448


