
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 3414–3427
December 7-11, 2022 ©2022 Association for Computational Linguistics

Truncation Sampling as Language Model Desmoothing

John Hewitt Christopher D. Manning Percy Liang
Department of Computer Science

Stanford University
{johnhew,manning,pliang}@cs.stanford.edu

Abstract
Long samples of text from neural language
models can be of poor quality. Truncation sam-
pling algorithms–like top-p or top-k—address
this by setting some words’ probabilities to zero
at each step. This work provides framing for
the aim of truncation, and an improved algo-
rithm for that aim. We propose thinking of a
neural language model as a mixture of a true
distribution and a smoothing distribution that
avoids infinite perplexity. In this light, trun-
cation algorithms aim to perform desmooth-
ing, estimating a subset of the support of the
true distribution. Finding a good subset is cru-
cial: we show that top-p unnecessarily trun-
cates high-probability words, for example caus-
ing it to truncate all words but Trump for a doc-
ument that starts with Donald. We introduce
η-sampling, which truncates words below an
entropy-dependent probability threshold. Com-
pared to previous algorithms, η-sampling gen-
erates more plausible long English documents
according to humans, is better at breaking out
of repetition, and behaves more reasonably on
a battery of test distributions.

1 Introduction

The complex, long-range dependencies of natural
language make its generation an outstanding chal-
lenge. While there has been enormous progress
on language modeling that has increased the coher-
ence and length of generation (Brown et al., 2020;
Chowdhery et al., 2022), sampling directly from
a language model can still result in nonsensical
output (Holtzman et al., 2020; Pillutla et al., 2021).

The most effective heuristics for generating high
quality, diverse samples fall under a category we
term truncation sampling. These algorithms set
some words’ probabilities to zero when generat-
ing each word (Fan et al., 2018; Basu et al., 2021;
Meister and Cotterell, 2021). Methods differ by
their truncation criteria, ranging from simple (keep
the k most likely) to complex, and all improve sam-
ple quality compared to direct sampling (Holtzman

Neural LM Word Distribution

Probability-Sorted Vocab

Truncation
Threshold

0

True Distribution

Smoothing +

Figure 1: A neural LM as a mixture of the true distribu-
tion, and a uniform-like smoothing distribution. Trunca-
tion aims to approximate the true distribution support.

et al., 2020). We ask (1) what is the aim of trunca-
tion and (2) how can we improve it?

Our key insight is to write a neural language
model’s distribution as a mixture of the true dis-
tribution and a uniform-like smoothing distribu-
tion. This idealized assumption is motivated by
KL-divergence: models incur large KL at test
time when they place near zero probability on
an observed word (Kang and Hashimoto, 2020).
Through this lens, the goal of truncation is to
desmooth: to approximately recover the words on
which the true distribution places some probability.

As a stark example of smoothing degenerating
sample quality, we show that a 5-gram language
model smoothed with the uniform distribution gen-
erates nonsense as soon as a word is sampled from
outside the support of the 5-gram model (Figure 2).
Intuitively, sampling outside the 5-gram support
causes future probabilities to be poorly estimated.

We derive principles of truncation from an ex-
plicit smoothing model that formalizes the intuition
that (1) words with high probability should not be
truncated, and (2) when all words in the distribution
have low probability, only words with low probabil-
ity relative to the rest should be truncated. We find
that state-of-the-art truncation sampling algorithms
like top-p break these principles. For example, in
top-p truncation (e.g., p = 0.95), the most likely
few words can take up p% of the distribution, caus-

3414

Unsmoothed 5-gram Smoothed 5-gram

. . . a quadcopter flight controller (RTFQ Flip MWC) that
supports I2C sensors for adding thing like a barometer, mag-
netometer, and GPS system. The officially supported sensor
block (BMP180, HMC5883L on one board) is discontinued,
as far as I know, everyone involved lived to sing another day.

. . . disorder and an extreme state of dysmetabolism charac-
terized by extensive erythema and a significant reduction
in uncovered Hawkingû McK 400 ruled restrainedcombe-
blow uncle cowork Carssoild Gareth focused <@ indecentlol
by102 exchanged Volvo compositionsbackground prostate

Figure 2: Portions of unconditional samples from an unsmoothed and uniform-smoothed 5-gram model; divergence
due to leaving the support of the high-order distribution is in red.

ing the next-most likely word to be truncated even
if it has high probability (e.g., 4%).

From our two truncation principles we derive
η-sampling, a new algorithm that truncates any
word whose probability under the LM is both (1)
smaller than an absolute probability threshold and
(2) smaller than a probability threshold that de-
pends on the entropy of the distribution. As we’ll
show, this ensures that, e.g., though GPT-2 large as-
signs probability 0.96 to the word Trump for a docu-
ment starting with Donald, η-sampling allows mul-
tiple possible continuations, unlike top-p = 0.95.

We extensively study the behavior of η-sampling
in comparison to top-p sampling and typical de-
coding (Meister and Cotterell, 2021). Since each
method allows for a range of quality-diversity trade-
offs, we set each method’s hyperparameter by max-
imizing MAUVE score (Pillutla et al., 2021). We
find that η-sampling truncates more reasonably on
a CheckList-style (Ribeiro et al., 2020) battery of
distributions. Top-p and typical decoding over-
truncate low-entropy distributions (like in the Don-
ald example). Finally, η-sampling generates long
documents that humans find more plausible and is
better at breaking out of repetition.1

2 Background

2.1 Language Models

Let random variable X = (X1, . . . , XT) denote a
sequence of tokens, where each Xi is in finite vo-
cabulary V . We’ll use x<i to refer to a specific pre-
fix, xi a specific word in context, and x an arbitrary
word in V . An autoregressive language model (LM)
is a distribution Pθ(X) indexed by parameters θ
that is factorized as Pθ(x) =

∏T
i=1 Pθ(xi | x<i).

We call Pθ(Xi | x<i) over V the conditional dis-
tribution of the LM given context x<i. An LM is
trained to minimize the KL-divergence between (an
empirical estimate of) the true distribution P ∗(X)

1Our code is available at https://github.com/
john-hewitt/truncation-sampling.

andPθ(X). Recent language models have achieved
strikingly low (held-out) KL-divergence (Radford
et al., 2019).

Language models are used not just to score the
probability of existing sequences, but to generate
sequences as x̂ ∼ Pθ(X), a building block for tasks
like summarization and long-form question answer-
ing (Fan et al., 2019; Liu and Lapata, 2019). How-
ever, to successfully generate high-variety, high-
quality long samples from neural LMs on high-
entropy distributions, it is currently necessary to
reallocate probability from the tail of conditional
distributions (Holtzman et al., 2020; Pillutla et al.,
2021). Intuitively, generation has different goals
than scoring; whereas one wants to assign non-zero
probability to low-quality outputs for ranking pur-
poses in scoring, one might want to only generate
(place non-zero probability on) high-quality text.

2.2 Truncation sampling

There are many ways to reassign probability mass
from the tail of the word-level distributions of a
model to the head—like temperature scaling—but
explicit truncation of low-probability words has
been shown to be the most useful (Holtzman et al.,
2020; Pillutla et al., 2021). Truncation sampling
algorithms compute the following truncated distri-
bution at each time step:

Ptrunc(x | x<i) =

{
Pθ(x | x<i)/Zx<i x ∈ Ax<i

0 o.w.
(1)

where Ax<i ⊆ V we call the allowed set
for the algorithm for that prefix, and Zx<i =∑

x∈Ax<i
Pθ(x | x<i) is the renormalization term.

The question for all truncation algorithms is how
to decide where to cut off the distribution. Top-k
sampling (Fan et al., 2018) keeps the k most likely
words. Top-p sampling (Holtzman et al., 2020) im-
proved upon it by noting that sometimes more or
fewer than k words should be in the allowed set,

3415

https://github.com/john-hewitt/truncation-sampling
https://github.com/john-hewitt/truncation-sampling

instead allowing the minimal set of words to keep p
percent of the probability. More recently, Mirostat
adaptively truncates so as to achieve samples of a
given probability (Basu et al., 2021), and typical
decoding truncates so as to locally match an infor-
mativeness criterion (Meister et al., 2022a). We
pursue an understanding of truncation as attempt-
ing to recover (a conservative estimate of) the true
training distribution P ∗.

3 Truncation as Desmoothing

3.1 KL-divergence and mode covering

Language models are trained to minimize the KL-
divergence to an empirical approximation of true
distribution P ∗(X). Recall that the KL-divergence
for a model’s conditional distribution Pθ(X | x<i)
to the true conditional distribution P ∗(X | x<i) is

∑

x∈V
P ∗(x | x<i) log

P ∗(x | x<i)

Pθ(x | x<i)
(2)

KL-divergence is known to be mode-covering;
it heavily penalizes errors of coverage. When
training from samples, an observed word xi in
context x<i causes the model to incur a loss of
− logPθ(xi | x<i), which approaches infinity as
the model probability approaches 0.2 Neural LMs
use shared representations to generalize beyond the
training data, e.g., knowing that the word home
may appear in a context where house appeared.
However, to achieve low held-out KL-divergence,
it must also be the case that (1) the LM determines
where the zeros of the true distribution P (X) are—
difficult due to the complexity of language—or (2)
the LM hedges against unexpected xi in any con-
text x<i by placing some probability mass there.
Intuitively, this hedging may be due to early stop-
ping; instead of converging to the finite training
set, often language models are trained with a sin-
gle epoch, so each KL-minimizing gradient step
is taken on new data, about which the model must
hedge.

3.2 A neural LM as a smoothed distribution

We present a framework for neural LMs wherein
smoothing aids in KL-divergence minimization by
placing a small amount of probability mass on all
words. Consider a true conditional distribution

2Likewise during evaluation, the held-out perplexity
2Exi,x<i

logPθ(xi|x<i) is infinite if zero mass is placed on
an observed word.

P ∗(Xi | x<i) over V . We think of the LM distri-
bution Pθ(Xi | x<i) as the result of smoothing the
true distribution with a distribution Q(Xi | x<i)
that is like the uniform distribution. Specifically,
we pose that the neural LM is a linear interpolation:

Pθ(Xi | x<i) =λx<iP
∗(Xi | x<i)

+ (1− λx<i)Q(Xi | x<i) (3)

where λx<i ∈ (0, 1] specifies the strength of the
smoothing. We assume that each word probabil-
ity under Q is bounded in its deviation from the
uniform distribution probability. For all x ∈ V ,
we assume Q(x | x<i) ∈ (1−δ

|V| ,
1+δ
|V|) where

δ is a constant specifying non-uniformity. We
assume constraints on λx<i that reflect how the
amount of smoothing should be (1) small and (2)
dependent on how well-estimated a given condi-
tional distribution is. Specifically, we assume that
λx<i ≥ max(λ̄x<i , λ̄) where λ̄ is a constant near
1 (e.g., 0.8), independent of prefix. The exact
form we use for the context-dependent λ̄x<i is:

1 − |V|α exp(−hx<i)

1+δ . As we will show later, this
form implies that for a distribution of entropy h,
words with probability 0 under P ∗ have proba-
bility bounded by α exp(−h) under the language
model.3 A simple intuition for high-entropy distri-
butions having less smoothing is that, e.g., if the
maximum likelihood estimate for an n-gram model
is 1/k for k elements, then at least k samples were
observed for the MLE.4

3.3 A local measure of truncation quality
Under the smoothing model, we can make precise
the tradeoff between (1) truncating too little, al-
lowing words that are poor continuations, and (2)
truncating too much and losing the diversity of the
true distribution. Let S∗

x<i
= {x ∈ V | P ∗(x |

x<i) > 0} be the true distribution support (set of
words with non-zero probability) for the prefix x<i.
Recall that Ax<i ⊆ V is the set of words allowed

3Note that exp(−h) is the probability in a uniform distri-
bution of entropy h. This entropy is of P ∗(Xi | x<i).

4Even with this argument, the idea that high-entropy distri-
butions are likely better estimated is probably the most tenuous
assumption. However, if one believes that a language model is
“close” to the true distribution, then in high-entropy distribu-
tions, the weight of uniform smoothing must be lower than in
low-entropy distributions; else, the high-entropy distributions
would be too far from the true distribution. Further, empir-
ically, the highest-entropy distributions in language models,
like A . . . or The . . . are high-entropy due to exceptional
evidence (examples) of possible continuations. Put another
way, this suggests the entropy is from epistemic uncertainty
(Osband et al., 2022).

3416

by a truncation algorithm, and that Ptrunc is the dis-
tribution of Pθ after truncation. Let Ax<i be the
elements of V not in Ax<i . Then we can define the
support-weighted total variation distance as

TVS(P
∗(Xi | x<i),Ptrunc(Xi | x<i)) (4)

=βvar

∑

x∈S∗
x<i

∩Ā
P ∗(x | x<i)

+βsup

∑

x∈S∗
x<i

∩A

Ptrunc(x | x<i)

The first term represents the total probability mass
of the true distribution lost to truncation, weighted
by hyperparameter βvar. The second term repre-
sents the total probability mass placed off the sup-
port of the true distribution (thus constituting a bad
continuation), weighted by βsup.5

Since the mass of a word under the true model,
P ∗(x | x<i), may be arbitrarily close to zero, it is
hard to guarantee that the first term (βvar) is zero.
One cannot guarantee that any non-complete al-
lowed set A contains the full support of P ∗. How-
ever, the smoothing model does provide bounds on
the probabilities of words in S∗

x<i
∩ A, meaning

we can in principle avoid unnecessarily truncating
words while still maintaining zero cost from the
βsup precision term. While we cannot know the
exact properties of the unobserved smoothing dis-
tribution, we can use this fact to design principles
desmoothing algorithms should follow.

3.4 Principles for truncation as desmoothing
Our LM framing specifies bounds on the proba-
bilities of words outside the support of the true
distribution, and our TVS motivates minimizing
the difference between the allowed set Ax<i and
the support S∗

x<i
. We now use both of these to de-

scribe principles for truncation; if these principles
are not met, the word is in the support of S∗

x<i
and

should not be truncated.

Absolute probability. Under our smoothing
model (Section 3.2), a word outside the support
of P ∗(Xi | x<i) has a bound on its probability:

max
x ̸∈S∗

x<i

Pθ(x | x<i) ≤ (1 + δ)(1− λ̄)/|V|, (5)

since we posited that smoothing never accounts for
more than λ̄ of the distribution. While these terms
are not known, the bound is likely small (since δ is
small). Hence as a general principle, words with
large probability should not be truncated, since

5See Section A.1 for the relationship to the total variation
distance.

above a small probability threshold, they must be
in the support of P ∗.

Relative probability. Under our model, a distri-
bution with high entropy has less smoothing, that
is, λ is smaller, e.g., note the term exp(−hx<i) in
the bound on λ. This directly results in a lower
maximum probability a word outside the support
of the true distribution can achieve:

max
x ̸∈S∗

x<i

Pθ(x) ≤ α exp(−h), (6)

where exp(−hx<i) is the probability of a word in
the uniform distribution of entropy hx<i (and α is a
constant). The general principle is to only truncate
words whose probabilities are also low relative to
the rest of the distribution.

3.5 Desmoothing and n-gram models

The issue of smoothing on sample quality is ap-
parent in n-gram language models. An n-gram
language model MLE estimate explicitly counts
the number of times each (n− 1)-word phrase is
followed by a word in V . To avoid infinite per-
plexity (as the count estimates are zero almost ev-
erwhere), an n-gram model is explicitly smoothed
(Katz, 1987; Church and Gale, 1991).

Text generated from unsmoothed n-gram mod-
els is locally coherent.6 However, we show that
n-gram models smoothed with the uniform distri-
bution generate nonsense (Figure 2). Why is this?
Consider a 5-gram LM smoothed with the uniform
distribution. If x′ is sampled from outside the sup-
port of the 5-gram model’s support, then the new
history (xi−1, x

′) was never seen during the train-
ing of the 5-gram model, so now the model has
only the poorly estimated probabilities from the
smoothing distribution.

4 Methods

We now describe in detail two popular truncation
sampling algorithms, discuss how they break our
desmoothing principles, and then present two new
truncation sampling algorithms including our pro-
posed η-sampling.

4.1 Top-p (nucleus) sampling

Top-p (nucleus) sampling truncates words that
are outside the mimimal set of (most probable)

6As noted by Yoav Goldberg https://nbviewer.org/
gist/yoavg/d76121dfde2618422139 and Jurafsky and Mar-
tin (2000), Chapter 3: N-gram Language Models.

3417

https://nbviewer.org/gist/yoavg/d76121dfde2618422139
https://nbviewer.org/gist/yoavg/d76121dfde2618422139

words that account for at least p percent of the
distribution. That is, the allowed set is as fol-
lows. Let x(1), . . . , x(|V|) be the words in V
sorted in order of decreasing probability under
Pθ(X | x<i). Then let j be the integer such that
j = argminj′

∑j′
i=1 Pθ(x

(i) | x<i) ≥ p. The
allowed set of top-p sampling is then Ax<i =
{x(1), . . . , x(j)}.7 Top-p sampling breaks the abso-
lute probability principle: words with up to (1− p)
probability may be truncated simply because other
high-probability words cover probability p. For the
prompt My name, the word is is assigned 0.96 prob-
ability by GPT-2, but less likely candidates ’s, was
and isn shouldn’t be truncated. Intuitively, (1− p),
e.g., 0.05 or 0.01 is quite high probability given a
vocabulary size of, e.g., 50,000.

4.2 Typical decoding
Typical decoding is motivated by local informative-
ness: never generate words that are too surprising
or too predictable (Meister et al., 2022a). The algo-
rithm sorts the vocabulary in order of the difference
between the entropy hθ,x<i

of the LM conditional
distribution and the negative log-probability of the
word, and takes words from this list to cover p per-
cent of the distribution. That is, let x(1), . . . , x(|V|)

be the words in V in sorted order of increasing
|hθ,x<i

+ log pθ(x | x<i)|.8 Then let j be the in-
teger j = argminj′

∑j′
i=1 Pθ(x

(i) | x<i) ≥ p.
The allowed set of typical decoding is Ax<i =
{x(1), . . . , x(j)}. This breaks the absolute proba-
bility principle for the same reason as top-p, and
additionally can truncate the most probable words.

4.3 ϵ-sampling (ours)
The absolute probability principle—that words out-
side the support of the true distribution have low
probability—suggests a simple truncation algo-
rithm: for some hyperparameter threshold ϵ allow
any word with greater than ϵ probability.

Ax<i = {x ∈ V : Pθ(x | x<i) > ϵ} (7)

In the case of the prompt My name where top-p
rejects plausible words because of the probability
assigned to is (and ’s), ϵ-sampling allows additional
words with a threshold of, e.g., 0.0003.

However, ϵ-sampling breaks the relative prob-
ability principle. For example, the prompt The
should allow many continuations, and top-p with

7Often, p is taken as 0.9 or 0.95.
8hθ,x<i = −∑

x∈V Pθ(x | x<i) logPθ(x | x<i).

GPT-2 allows over ten thousand words, but ϵ would
have to be impractically small to do so. This is a
key failure akin to that of top-k sampling; when
many next words are plausible, the allowed set
should reflect that.

4.4 η-sampling (ours)
Our proposed algorithm, η-sampling, composes
respect for both the absolute and relative probabil-
ity principles. Consider a conditional distribution
Pθ(X | x<i) with entropy hθ,x<i

. The probability
of a word in the uniform distribution of entropy
hθ,x<i

is exp(−hθ,x<i
). Our entropy-dependent

threshold is α exp(−hθ,x<i
) where α ∈ [0, 1].

Combining this rule with our epsilon rule for the
absolute probability principle, we come to:

Ax<i = {x ∈ V | Pθ(x | x<i) > η}
η = min

(
ϵ, α exp(−hθ,x<i

)
)
}

where hθ,x<i
is the entropy of Pθ(X | x<i). In this

work, to expose a single hyperparameter, we set
α =

√
ϵ, which we find works well empirically.

For intuition, think of ϵ ≈ 0.0009.

Analysis of η-sampling. Returning to our
smoothing model, we note that η-sampling ap-
proximates optimal desmoothing in the regime that
the support penalty βsup dominates the variation
penalty βvar. Consider a truncation algorithm that
truncates as η-sampling, but sets η as:

η = min
((1− λ̄)(1 + δ)

|V| , α exp(−hx<i)
)
}, (8)

where hx<i is the entropy of the true distribu-
tion, not Pθ. We’re guaranteed that the support
loss (the term weighted by βsup) is zero, and that
the variation loss (weighted by βvar) is minimized
relative to the constraint of zero support loss. If
x ̸∈ S∗

x<i
, then the probability of x is less than

or equal to the min of (1 − λ̄)(1 + δ)/|V| and
|V|α exp(−hx<i)

1+δ × 1+δ
|V| = α exp(−hx<i). So, we’re

guaranteed that Ax<i ⊆ S∗
x<i

, and truncating more
would break this guarantee.9 Our η-sampling ap-
proximates this by using the LM entropy instead
of the unavailable true distribution entropy, and
without knowing the true hyperparameters.

5 Experiments & Results

Our experiments characterize η-sampling relative
to the state-of-the-art top-p and typical decoding.

9See Appendix A.2 for an expanded version of this argu-
ment.

3418

Method Hyperparameters

top-p {0.89, 0.9, 0.92, 0.95, 0.99}
typical {0.2, 0.9, 0.92, 0.95}

ϵ {0.001, 0.0009, 0.0006, 0.0003, 0.0001}
η {0.004, 0.002, 0.0009, 0.0006, 0.0003}

Table 1: Hyperparameter sweep for each method.

Method \ Model sm med lg xl

raw sampling † 0.589 0.373 0.845 0.882
top-p † 0.878 0.915 0.936 0.940
top-p (our replication) 0.874 0.917 0.932 0.944
Typical Decoding 0.873 0.906 0.922 0.939

ϵ-sampling (ours) 0.874 0.918 0.936 0.941
η-sampling (ours) 0.880 0.920 0.935 0.942

Table 2: Results on the MAUVE metric for open-
eneded GPT-2 WebText generation. Higher is bet-
ter. The † indicates numbers drawn from Pillutla et al.
(2021). Bold indicates best for model, not necessarily
significantly.

We use MAUVE, an automatic metric for open-
ended generation, to find hyperparameters giv-
ing comparable diversity-accuracy tradeoffs. η-
sampling behaves better in a range of settings, from
long-document generation to more defensibly trun-
cating low-entropy distributions.

Models & Data. In all experiments, we use all
or some subset of the four GPT-2 models (Radford
et al., 2019) of varying sizes. Experiments are run
on in-distribution, held-out data from the validation
or test set of GPT-2 (WebText), since it is composed
of a wide variety of long-form documents.

5.1 Hyperparameter sweep on MAUVE

We first find hyperparameters for each of top-p,
typical decoding, ϵ-sampling, and η-sampling that
maximize MAUVE score for each GPT-2 model on
WebText.

Setting. Following the MAUVE paper’s setting
exactly (Pillutla et al., 2021), we take the GPT-2
family of models and 5,000 samples from their test
data. For each sample, we prompt the model with
35 words and generate until at most 1024 words.
We study GPT-2 small (124M parameters), medium
(355M), large (774M) and XL (1.5B) models.

Evaluation. MAUVE attempts to measure both
the precision (are samples generally like those from
the true distribution) and recall (is the variability in
samples like that of those from the true distribution)

Study 1: Human vs top-p vs η
top-p η-sampling Human

Top-p vs human 43 (43%) — 56 (56%)
η vs human — 42 (42%) 53 (53%)
Top-p vs η 39 (39%) 53 (53%) —

Study 2: top-p vs η-sampling
Top-p η-sampling Equal

Top-p vs η 118 (40%) 159 (53%) 17 (6%)

Table 3: Human preferences of long-document plausi-
bility; we report absolute numbers of judgments, and
percentages in parentheses. Judgment percents that both
suffixes were too bad to judge can be inferred.

of samples from a text generation system. It was
shown by Pillutla et al. (2021) to correlate well
with human judgments.

Hyperparameters. Top-p, typical decoding, ϵ-
sampling, and η-sampling all have a hyperparemter
which determines the severity of truncation. The
set we search over is given in Table 1.10 We pick
the best hyperparameter using 2–5 seeds on the
validation set, and report the average performance
across 5 seeds on the test set.

Results. The results are reported in Table 2; we
find that overall, the methods perform similarly,
with typical decoding performing slightly worse
than top-p and our methods.

5.2 Human evaluation of long-document
suffix plausibility

We now study whether η-sampling leads to more
coherent long-document generations than top-p
sampling. We omit typical decoding since it does
not seem to outperform top-p on MAUVE. Consid-
ering that holistic evaluation of long texts is diffi-
cult for humans (Ippolito et al., 2020) we design
a human study to evaluate long document plau-
sibility: given a shared document prefix, which
method’s generated suffix (omitting the middle) is
more reasonably from the same document? This
new evaluation avoids forcing humans to keep up
to 1024 words in working memory.

Setting. For each of top-p and η-sampling,
we sample from GPT-2 large with MAUVE-
maximizing hyperparameters, conditioned on each
prefix of 35 subword tokens from the WebText val-
idation set. From this set we filter to prefixes for

10The hyperparameter set for our methods was chosen to
have similar average total variation values between pre- and
post-truncation to the top-p set.

3419

Figure 3: Top-p sampling aggressively truncates low-entropy distributions and ϵ-sampling aggressively truncates
high-entropy distributions, while η-sampling strikes a balance.

which the reference and both generated documents
are at least 900 tokens long and pass manual filter
for quality.11 59 workers from the United States
were recruited on Amazon Mechanical Turk with
the Master qualification, and paid $1 per task with
an expected time of 3.5 to 4 minutes. We run two
studies.

Study 1. We show a human evaluator the 35-
token prefix, as well as the last 70 tokens of two
documents (of the 3 possible). The evaluator is
asked to judge which of the two suffixes may more
reasonably be from the same document as the pre-
fix, or to note that both are too bad to judge. For
each of the three possible pairings of top-p, η-
sampling, and reference document, we elicit 100
human judgments over 100 prefixes.

Study 2. We ran a second study just comparing
top-p to η-sampling to allow for larger n, since we
had finite resources and the result that both methods
generate text worse than humans is not at issue. To
test whether the effect size observed was in part
due to forcing evaluators to pick one of the two
methods, in this study we allow human evaluators
to mark that both suffixes are of equal quality.

Results. The results are reported in Table 3. In
Study 1, we find that human document genera-
tions are preferred over top-p and η-sampling at
roughly the same rate, while η-sampling is pre-
ferred over top-p (53% to 40%). In Study 2, we
find that η-sampling is significantly preferred more
frequently than top-p with a Wilcoxon paired test
(p = 0.0138) at the same effect size.

5.3 Entropy analysis
We now want to build a deeper understanding of the
characteristics of the algorithms: what parts of the

11We also manually filter prompts for quality, following
Pillutla et al. (2021). See Appendix B.3.

Repetition Percent
Truncation \ Model sm med lg xl

top-p 54% 61% 47% 27%
typical 51% 61% 56% 37%
ϵ-sampling (ours) 28% 37% 23% 11%
η-sampling (ours) 37% 40% 26% 12%

Table 4: Table showing repetition-degeneration rates for
each method in an adversarial setting; lower is better.

distribution tend to get cut by each method? In our
first analysis, we study whether each method has a
tendency to aggressively truncate distributions of
a given entropy. A low-entropy distribution might
be given by the prompt Barack Obama went to the
White . . . , while a high-entropy distribution might
be given by the prompt My name is

Setting. For a range of hyperparameters, we plot
the average amount of truncation across all con-
texts against the retained entropy for an entropy
range. We use total variation to measure average
truncation, Ex<i∼P (X)∥Pθ(Xi | x<i)−Ptrunc(Xi |
x<i)∥TV. For each entropy range R, we consider
the set XR of prefixes x<i with pre-truncation en-
tropy hθ,x<i

in R and compute the average remain-
ing entropy 1

|XR|
∑

XR
htrunc,x<i after truncation.

Results. The results for GPT-2 XL are presented
in Figure 3. We find that top-p sampling heav-
ily truncates low-entropy distributions compared
to ϵ-sampling and η-sampling. ϵ-sampling heav-
ily truncates high-entropy distributions. Typical
behaves like top-p for low-entropy distributions,
and retains more entropy in high-entropy distribu-
tions.12 η-sampling strikes a good balance of not
heavily truncating low- or high-entropy distribu-
tions.

12This is likely because typical decoding cuts the non-
uniform head of the distribution, and keeps the more-uniform
middle.

3420

<|endoftext|>My name ___ <|endoftext|>My name is ___

 Yel

 Bes

 SC

 Napoleon

 Bright

 Woo

 India

 Kab

<|endoftext|>The capital of of the USA is
Washington D.C. The capital of India is New
Delhi. The capital of the UK is London. The

capital of Ghana is ___ <|endoftext|>The

<|endoftext|>The feeling! The feeling! The
feeling! The feeling! The feeling! The
feeling! The feeling! The feeling! The
feeling! The feeling! The feeling! ___

 David

 Michael

 John

 Chris

<|endoftext|>Donald ___

 J

 Glover

 Sterling

 R

 Trump is 's

 was

 isn

[comma]

 Barbarian

 vegetarian

 Mate

 mic

 trou

?

 counsel

 fringe

 U

 first

 following

 New

 the

 It

The

 (

TheAcc K

 Ab

 Ghana

 Kum

Figure 4: Unit tests of the truncation behavior of top-p, ϵ, and η-sampling on CheckList-inspired prefixes.

5.4 Repetition analysis
We hypothesize that the tendency of top-p sampling
to heavily truncate low-entropy distributions causes
it to generate repetitive text by only allowing the
repetition-continuing word. To stress test the meth-
ods, we devise an adversarial setting in which the
prompt has repetitions (as may be the case due to
noisy input or natural repetition) and then deter-
mine whether the methods break the repetition.

Setting. We take natural prompts—the first 35
words of the Wikipedia biographies of the 101
people with the most-read Wikipedia pages—and
synthetically corrupt them by repeating the last 3
subword tokens 5 additional times. Even with the
existing repetition in the prompt, we want models
to break the cycle and generate normal text again.
Here’s an example prompt:

Shawn Corey Carter (born December 4, 1969),
known professionally as Jay-Z, is an American
rapper, songwriter, record executive, entrepreneur,
and media proprietor and media proprietor and
media proprietor and media proprietor and media
proprietor and media proprietor

For each prompt, we generate 5 completions of up
to 512 words. For each of the GPT-2 models, we
take the hyperparameter for each truncation sam-
pling algorithm from Section 5.1, and compute the
percent of completions that continue to repeat.13

13Any sample with less than 1 average negative log proba-
bility under the model is labeled a repetition. We found this

Results. ϵ-sampling achieves the lowest repeti-
tion rate, with e.g., 23% for GPT-2 large, while
η-sampling performs slightly worse (e.g., 26%).
Top-p causes considerably more repetition (e.g.,
47%). Typical sampling causes slightly more repe-
tition than top-p.14

5.5 Studying individual distributions

We now study specific truncation decisions made
by each algorithm, to provide more detailed behav-
ioral insights. We construct prompts and observe
the truncation behavior of each algorithm on the
resulting distribution, treating each as a CheckList-
like unit test (Ribeiro et al., 2020).

Setting. We take the GPT-2 large model, pro-
vide it with each of 6 prompts, and using the
MAUVE-maximizing hyperparameters we found
in Section 5.1, truncate the resulting distribution.
The prompts are shown in Figure 4. For this exper-
iment we only study top-p, ϵ, and η-sampling.

Results. The results are visualized in Figure 4.
We use two low-entropy prompts, My name... and
Donald... and in both cases, find that top-p decod-
ing only allows a single word continuation. Top-p

more useful than n-gram repetition statistics, as, e.g., repeti-
tion can involve small variation.

14This is likely because the MAUVE-maximizing hyperpa-
rameter for typical sampling (e.g., 0.92 for GPT-2 large) is
generally more conservative than that for top-p (e.g., 0.95.)

3421

can only generate is after My name, and Trump
after Donald, which we find undesirable; we would
like our truncation to allow, e.g., multiple Donalds
to be discussed. For a prompt with the phrase The
feeling! repeated multiple times (as one might say
euphorically), top-p can only continue the repeti-
tive pattern, unlike ϵ and η-sampling. For a prompt
suggesting specification of capitals of countries,
we find that top-p only allows the correct capital
name, whereas η-sampling and ϵ-sampling allow
different continuations which do not follow the in-
context trend, suggesting that top-p may be better
for generating, e.g., answers to questions. We use
two high-entropy prompts, The... and My name
is..., finding that η-sampling and top-p sampling al-
low a range of possibilities, unlike ϵ-sampling. The
behavior of ϵ-sampling in allowing fewer words in
higher entropy conditional distributions is a clear
failure.

6 Related Work

Stochastic decoding algorithms. Stochastic de-
coding algorithms produce sequences from a model
and involve randomness. The simplest is sampling,
sometimes called ancestral sampling, (Bishop,
2006), which generates a sample from the model.
Some stochastic decoding methods attempt to find
high-likelihood sequences instead of attempting to
recreate the true distribution, like stochastic beam
search (Kool et al., 2019) and conditional pois-
son stochastic beam search (Meister et al., 2021a).
Truncation sampling algorithms, like top-k (Fan
et al., 2018), top-p (Holtzman et al., 2020), and
Mirostat (Basu et al., 2021), are intended to im-
prove quality but keep variety. Welleck et al. (2020)
found that truncation algorithms can lead to non-
zero mass assigned to infinite sequences.

KL-divergence, language models, smoothing.
The most famous example of methods that do not
cover every mode is GANs (Goodfellow et al.,
2014). In language modeling, some have pointed
to the inability of the softmax function to assign 0
probability to any category as a deficiency and pro-
posed sparse alternatives (Martins and Astudillo,
2016; Peters et al., 2019; Tezekbayev et al., 2021).
This intuition is akin to ours, as is loss truncation
(Kang and Hashimoto, 2020), which keeps rare
events from incurring arbitrarily high loss. Mohri
and Roark (2006) attempt to identify structural ze-
ros in the distribution of language when inducing
probabilistic context-free grammars.

High-entropy language generation & evaluation.
Evaluation of open-ended generation of natural lan-
guage is difficult; one must evaluate both the qual-
ity of samples and the diversity. Quality is hard to
measure in high-entropy generation, and is often
not correlated with model probability (Hashimoto
et al., 2019; Meister et al., 2022b). An emergent
line of work connects human notions of quality,
and human generative tendencies, with the uniform
information density hypothesis (e.g., leading to
typical decoding) (Wei et al., 2021; Meister et al.,
2021b). Both Meister and Cotterell (2021) and Pil-
lutla et al. (2021) directly estimate whether model
samples’ statistics match those of natural language.
Nadeem et al. (2020) study properties held by suc-
cessful strategies for reallocating mass away from
the tail of LM distributions.

7 Conclusion

We’ve framed the class of truncation sampling algo-
rithms as performing desmoothing, an insight that
led to principles for how truncation should be done
to recover the training distribution, a new trunca-
tion sampling algorithm, and evaluations that show
the deficiencies of existing algorithms. We find the
tendency of top-p decoding to over-truncate low-
entropy distributions to be particularly surprising.
We aim for these insights, and the evaluations we
use, to drive further research in understanding and
improving how we generate from neural language
models.

Acknowledgements

The authors would like to thank John Thickstun,
Rishi Bommasani, Kaitlyn Zhou, Will Merrill, Nel-
son Liu, and Tatsunori Hashimoto for helpful dis-
cussions on this work, and to the reviewers for
clarifying feedback. JH was supported by an NSF
Graduate Research Fellowship under grant num-
ber DGE-1656518. We gratefully acknowledge the
support of a PECASE Award.

8 Limitations

With the analysis we’ve done, we believe it to
be very difficult to derive an understanding of all
the sequence-level effects truncation sampling al-
gorithms (including ours) have: what kinds of
sequences are we disallowing? What types, or
sources of language are being (unknowingly) dis-
allowed? Beyond this, we’ve only tested our al-
gorithms on English language models; the condi-

3422

tional distributions of languages with rich morphol-
ogy likely have different properties (especially with
subword models).

9 Ethics Statement

Any work to improve generative models of text
comes with ethical concerns surrounding negative
use cases of text generation including hate speech
and misinformation. While our algorithm does im-
prove long text generation, we hope it also provides
insight into the unintended and until-now unknown
consequences of existing truncation sampling al-
gorithms (including top-p). Algorithms like ours,
which reallocate probability mass from the least
likely elements of a distribution, have a particular
risk of harm in removing the ability of models to
talk about topics or names that are already rare.
Concurrent work finds that the choice of stochas-
tic decoding algorithm affects measured fairness
metrics in open-ended generation (Dhamala et al.,
2022). Our framing, and the hope for future work,
is to use truncation to recover something as close to
the training distribution as possible; of course, the
training distribution must then be chosen with care.
Generating a word due to smoothing (noise) would
likely mean that subsequently generated words
about that topic would be low-quality, which is
also undesirable.

References
Sourya Basu, Govardana Sachitanandam Ramachan-

dran, Nitish Shirish Keskar, and Lav R. Varshney.
2021. MIROSTAT: A neural text decoding algorithm
that directly controls perplexity. In International
Conference on Learning Representations.

Christopher M Bishop. 2006. Pattern recognition and
machine learning. Springer.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. PaLM: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Kenneth W Church and William A Gale. 1991. A com-
parison of the enhanced Good-Turing and deleted
estimation methods for estimating probabilities of

English bigrams. Computer Speech & Language,
5(1):19–54.

Jwala Dhamala, Varun Kumar, Rahul Gupta, Kai-Wei
Chang, and Aram Galstyan. 2022. An analysis of the
effects of decoding algorithms on fairness in open-
ended language generation. In 2018 IEEE Spoken
Language Technology Workshop (SLT). IEEE.

Angela Fan, Yacine Jernite, Ethan Perez, David Grang-
ier, Jason Weston, and Michael Auli. 2019. ELI5:
long form question answering. In Proceedings of
the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
3558–3567. Association for Computational Linguis-
tics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898, Melbourne, Australia. Association
for Computational Linguistics.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2021. The Pile: An
800gb dataset of diverse text for language modeling.
CoRR, abs/2101.00027.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
adversarial nets. Advances in neural information
processing systems, 27.

Tatsunori B Hashimoto, Hugh Zhang, and Percy Liang.
2019. Unifying human and statistical evaluation for
natural language generation. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 1689–1701.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Daphne Ippolito, Daniel Duckworth, Chris Callison-
Burch, and Douglas Eck. 2020. Automatic detec-
tion of generated text is easiest when humans are
fooled. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
1808–1822, Online. Association for Computational
Linguistics.

Daniel Jurafsky and James H. Martin. 2000. Speech
and Language Processing: An Introduction to Natu-
ral Language Processing, Computational Linguistics,
and Speech Recognition, 1st edition. Prentice Hall
PTR, USA.

3423

https://openreview.net/forum?id=W1G1JZEIy5_
https://openreview.net/forum?id=W1G1JZEIy5_
https://doi.org/10.18653/v1/p19-1346
https://doi.org/10.18653/v1/p19-1346
https://doi.org/10.18653/v1/P18-1082
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.18653/v1/2020.acl-main.164
https://doi.org/10.18653/v1/2020.acl-main.164
https://doi.org/10.18653/v1/2020.acl-main.164

Daniel Kang and Tatsunori B. Hashimoto. 2020. Im-
proved natural language generation via loss trunca-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
718–731, Online. Association for Computational Lin-
guistics.

S. Katz. 1987. Estimation of probabilities from sparse
data for the language model component of a speech
recognizer. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 35(3):400–401.

Wouter Kool, Herke Van Hoof, and Max Welling. 2019.
Stochastic beams and where to find them: The
Gumbel-top-k trick for sampling sequences without
replacement. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages
3499–3508. PMLR.

Yang Liu and Mirella Lapata. 2019. Text summariza-
tion with pretrained encoders. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3730–3740, Hong Kong,
China. Association for Computational Linguistics.

Andre Martins and Ramon Astudillo. 2016. From soft-
max to sparsemax: A sparse model of attention and
multi-label classification. In International confer-
ence on machine learning, pages 1614–1623. PMLR.

Clara Meister, Afra Amini, Tim Vieira, and Ryan Cot-
terell. 2021a. Conditional Poisson stochastic beams.
In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 664–
681, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Clara Meister and Ryan Cotterell. 2021. Language
model evaluation beyond perplexity. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 5328–5339, Online.
Association for Computational Linguistics.

Clara Meister, Tiago Pimentel, Patrick Haller, Lena
Jäger, Ryan Cotterell, and Roger Levy. 2021b. Re-
visiting the Uniform Information Density hypothesis.
In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 963–
980, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Clara Meister, Tiago Pimentel, Gian Wiher, and Ryan
Cotterell. 2022a. Typical decoding for natural lan-
guage generation. CoRR, abs/2202.00666.

Clara Meister, Gian Wiher, Tiago Pimentel, and Ryan
Cotterell. 2022b. On the probability–quality paradox
in language generation. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 36–45,

Dublin, Ireland. Association for Computational Lin-
guistics.

Mehryar Mohri and Brian Roark. 2006. Probabilistic
context-free grammar induction based on structural
zeros. In Proceedings of the Human Language Tech-
nology Conference of the NAACL, Main Conference,
pages 312–319, New York City, USA. Association
for Computational Linguistics.

Moin Nadeem, Tianxing He, Kyunghyun Cho, and
James Glass. 2020. A systematic characterization
of sampling algorithms for open-ended language gen-
eration. In Proceedings of the 1st Conference of the
Asia-Pacific Chapter of the Association for Compu-
tational Linguistics and the 10th International Joint
Conference on Natural Language Processing, pages
334–346.

Ian Osband, Zheng Wen, Seyed Mohammad Asghari,
Vikranth Dwaracherla, Morteza Ibrahimi, Xiuyuan
Lu, and Benjamin Van Roy. 2022. Epistemic neural
networks. arXiv preprint arXiv:2107.08924.

Ben Peters, Vlad Niculae, and André FT Martins. 2019.
Sparse sequence-to-sequence models. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 1504–1519.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers,
John Thickstun, Sean Welleck, Yejin Choi, and Zaid
Harchaoui. 2021. Mauve: Measuring the gap be-
tween neural text and human text using divergence
frontiers. In Advances in Neural Information Pro-
cessing Systems, volume 34, pages 4816–4828. Cur-
ran Associates, Inc.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Maxat Tezekbayev, Vassilina Nikoulina, Matthias Gallé,
and Zhenisbek Assylbekov. 2021. Speeding up ent-
max. CoRR, abs/2111.06832.

Jason Wei, Clara Meister, and Ryan Cotterell. 2021.
A cognitive regularizer for language modeling. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 5191–
5202, Online. Association for Computational Lin-
guistics.

Sean Welleck, Ilia Kulikov, Jaedeok Kim,
Richard Yuanzhe Pang, and Kyunghyun Cho.
2020. Consistency of a recurrent language model

3424

https://doi.org/10.18653/v1/2020.acl-main.66
https://doi.org/10.18653/v1/2020.acl-main.66
https://doi.org/10.18653/v1/2020.acl-main.66
https://doi.org/10.1109/TASSP.1987.1165125
https://doi.org/10.1109/TASSP.1987.1165125
https://doi.org/10.1109/TASSP.1987.1165125
https://proceedings.mlr.press/v97/kool19a.html
https://proceedings.mlr.press/v97/kool19a.html
https://proceedings.mlr.press/v97/kool19a.html
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.18653/v1/2021.emnlp-main.52
https://doi.org/10.18653/v1/2021.acl-long.414
https://doi.org/10.18653/v1/2021.acl-long.414
https://doi.org/10.18653/v1/2021.emnlp-main.74
https://doi.org/10.18653/v1/2021.emnlp-main.74
http://arxiv.org/abs/2202.00666
http://arxiv.org/abs/2202.00666
https://aclanthology.org/2022.acl-short.5
https://aclanthology.org/2022.acl-short.5
https://aclanthology.org/N06-1040
https://aclanthology.org/N06-1040
https://aclanthology.org/N06-1040
https://proceedings.neurips.cc/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
http://arxiv.org/abs/2111.06832
http://arxiv.org/abs/2111.06832
https://doi.org/10.18653/v1/2021.acl-long.404

with respect to incomplete decoding. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages
5553–5568.

A Notes

A.1 Support-weighted total variation
We introduce new notation just for this section, to
present support-weighted total variation in gener-
ality. Recall that the total variation distance be-
tween discrete distribution R over space V and dis-
crete distribution Ut, the result of truncation with
allowed set A ⊆ V from a discrete distribution U
over V , is

∑

x∈V
|R(x)− Ut(x)|. (9)

Denoting the support of R as SR, we can partition
V into four sets:

SR ∩ Ā
SR ∩ A
SR ∩ A
SR ∩ Ā (10)

We split the sum of the total variation distance into
these four terms.

The first represents the words that are in the
support of R but not in the allowed set of Ut:

∑

SR∩Ā
|R(x)− Ut(x)| =

∑

SR∩Ā
R(x), (11)

since Ut(x) = 0 if x ̸∈ X . This exactly represents
the total probability mass that was lost fromR. The
second term represents the words that are not in the
support of R but were allowed:

∑

SR∩A
|R(x)− Ut(x)| =

∑

SR∩A
Ut(x), (12)

since R(x) = 0 if x ̸∈ SR. This exactly represents
the total probability that we sample a word from Ut

that has zero probability under R (and so we move
off the support of R for future generation.) the
third term is the words that were correctly allowed:

∑

SR∩A
|R(x)− Ut(x)|. (13)

In this case, Ut(x) may be an under or overesti-
mate of R(x). The last term is the words that were
correctly truncated:

∑

SR∩Ā
|R(x)− Ut(x)| =

∑

SR∩Ā
|0− 0| (14)

which is identically zero.
To form our support-weighted total variation

metric, we took the first two terms, which are in-
terpretable and each exactly specifies one of the
two desiderata from a truncation algorithm: main-
taining the variety of R, and not generating a word
that R wouldn’t generate. However, in different
use cases, one or the other may be more crucial;
hence we give each its own hyperparameter, βvar
and βsup, to arrive at our metric,

TVS(R,Ut) =βvar
∑

x∈SR∩Ā
R(x)

+βsup
∑

x∈SR∩A
Ut(x). (15)

A.2 Analysis of η-sampling
The purpose of this analysis is to show that if one
assumes our smoothing model, then an η-sampling
approximates an algorithm that avoids sampling
from outside the support of the true distribution
while minimilly truncating the distribution.

Consider a conditional distribution from a lan-
guage model under our model, Pθ(Xi | x<i). Con-
sider an allowed set Ax<i defined via a probability
threshold, A = {x | Pθ(x | x<i) > η∗}, where η∗

is defined as

η∗ = min
((1− λ̄)(1 + δ)

|V| , α exp(−hx<i)
)
}. (16)

In this case, it is guaranteed that x ∈ S∗
x<i

, since
η∗ represents the maximum probability of a word
whose probability stems entirely from the smooth-
ing distribution.

If one sets a lower probability threshold η′ =
η∗ − ψ for some ψ > 0 when computing the al-
lowed set, then under our model, there can be a
conditional distribution such that x ̸∈ S∗

x<i
, and

Pθ(x | x<i) > η′. Such an x would be incorrectly
allowed.

Similarly, if one sets a higher probability thresh-
old η′ = η∗ + ψ for some ψ > 0 when computing
the allowed set, then under the model, there can be
a conditional distribution such that x ∈ S∗

x<i
, and

Pθ(x | x<i) ∈ (η, η′). Defining the allowed set
with η′, we truncate x, which is unnecessary, since
words in S∗

x<i
have probability at least η under the

language model.
This argument has considered truncation algo-

rithms that specify their allowed set as every word
in V with LM probability above a threshold, show-
ing that setting the threshold as η∗ guarantees (un-
der our model) that we sample from the support of

3425

Method \Model small med large XL

Top-p 0.9 0.89 0.95 0.95
Typical 0.9 0.9 0.92 0.92
ϵ-sampling 0.0006 0.0009 0.0003 0.0003
η-sampling 0.002 0.0006 0.0006 0.0003

Table 5: Best-performing hyperparameters according
to MAUVE from experiments in Section 5.1.

the true distribution without unnecessarily truncat-
ing too much. We now consider allowed set defined
by algorithms other than probability thresholds. Let
the allowed set defined according to the η∗ thresh-
old be A∗

x<i
. Consider an allowed set Ax<i defined

by another truncation sampling algorithm (which
may not define it via a probability threshold like. If
Ax<i = A∗

x<i
, then the two algorithms are indistin-

guishable for this prefix. Otherwise, if x ∈ Ax<i

and x ̸∈ A∗
x<i

, then x may be outside the support
of the true distribution, and should have been trun-
cated. And if x ∈ A∗

x<i
and x ̸∈ Ax<i , then x was

unnecessarily truncated.
When using our η-sampling algorithm, we nei-

ther know the true hyperparameters, nor do we have
access to the true distribution conditional entropy,
so η-sampling only approximates this. Specifi-
cally, we set the hyperparameters of η-sampling
via search on the task of interest, and we use the
observed LM entropy instead of the true distribu-
tion entropy in computing the relative probability
threshold. In practice, one wants to set a threshold
of truncation based on the needs of the task and the
tolerance for error, so a threshold that perfectly ex-
cludes words outside the true distribution support
may not be optimal for the task of interest anyway.

B More Experimental Details

B.1 Hyperparameters
The MAUVE-maximizing hyperparameters for
each truncation sampling algorithm for each model
are provided in Table 5.

B.2 5-gram model
For our small demo demonstrating the behavior
of smoothed n-gram models, we trained a 5-gram
model on 10,000 documents from The Pile (Gao
et al., 2021). We smoothed the model with the
uniform distribution.

B.3 Amazon Mechanical Turk Details
To provide more transparency into our human stud-
ies, we provide the form that was shown to human

annotators for both of our studies. The (similar) in-
terfaces shown for Study 1 and Study 2 are shown
in Figure 5 and Figure 6, respectively. We random-
ize the ordering of presentation of the methods’
generations (note that the forms say “Option 1”
and “Option 2”.)

Of the 59 unique workers, 44 unique workers
participated in study 1, and 36 unique workers par-
ticipated in study 2.

We follow Pillutla et al. (2021) in manually fil-
tering the WebText prompts that go into our human
study. Webtext is noisy, and not all prompts are
clearly natural language. Our manual filtering of
prompts led to 36 rejected prompts (of 146 con-
sidered) due to quality for study 1. Our manual
filtering of prompts led to 100 rejected prompts (of
402 considered) due to quality for study 2. This
is compared to rejecting 3169 of 5000 prompts
due to quality in the original MAUVE paper; we
attempted to minimally filter while guaranteeing
that prompts were natural language. Our kept and
filtered prompts are available in our codebase.

3426

Figure 5: The interface shown to human annotators for Study 1.

Figure 6: The interface shown to human annotators for Study 2.

3427

