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Abstract

We propose a simple ranking strategy to solve
a generative commonsense question answering
(QA) problem. Compared with multiple-choice
QA, it is challenging because the answers to a
question are not unique and they are supposed
to be popular and diverse. Our strategy ex-
ploits the dataset itself and negative samples
that we collect from WordNet to train a ranker
that picks out the most popular answers for
commonsense questions. The effectiveness of
our strategy is verified on different pre-trained
masked language models (MLMs) in a pipeline
framework, where an MLM reranks the gen-
erated answers. Further, we explore an end-
to-end framework where MLMs are utilized to
guide the generation of generative language
models (GLMs). Taking advantage of rein-
forcement learning, we apply policy gradient
to train a GLM with the rewards fed back by
an MLM. Empirical results on ProtoQA dataset
demonstrate that MLMs can acquire the ability
to distinguish the popular answers and improve
the typical answer generation of GLMs as well.

1 Introduction

Commonsense reasoning has been making progress
over recent years (Rajani et al., 2019; Tambor-
rino et al., 2020; Lin et al., 2021; Liang et al.,
2022, 2021), arising from the advent and wide ap-
plication of pre-trained language models (PLMs).
Most current commonsense reasoning studies fo-
cus on multiple-choice question answering (QA),
such as CommonsenseQA (Talmor et al., 2019) and
Social IQa (Sap et al., 2019b), for which a well-
designed model is required to determine which of
the candidate choices can best answer the question.
However, such multiple-choice QA models may not
be helpful in practical scenarios where candidate
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Figure 1: An example from ProtoQA dataset. The rea-
sonable answers are collected and categorized into clus-
ters with the numbers indicating their typicality.

answers are not provided (e.g, answering a question
asked in a search engine or during a conversation).

Towards this problem, Boratko et al. (2020)
present a novel question/answer dataset ProtoQA
for generative QA, in which several plausible an-
swers are generated as a ranked list, rather than
selected from candidates. For example, as shown
in Figure 1, given a question “Name something that
people often remember for a long time, even when
they get old”, a QA model is expected to generate
commonsensical and typical answers which cover
commonest clusters as many as possible. In this
case, a combination of “first love”, “ friends”, and
“name” would receive the highest score when three
answers are allowed. In this setting, generative lan-
guage models (GLMs) are apt to generate plausible
answers (Ma et al., 2021; Chang and McCallum,
2022). However, in our preliminary experiments,
we observe that GLMs such as GPT-2 (Radford
et al., 2019), T5 (Raffel et al., 2020), and BART
(Lewis et al., 2020) have difficulty distinguishing
the most typical answers from the rare ones. Mean-
while, Zhou et al. (2020) find that masked language
models (MLMs) such as BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) which utilize bidi-
rectional contexts are more capable of learning
commonsense knowledge than unidirectional LMs
(UniLMs) such as GPT-2. Based on this observa-
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tion, we pose a question: Whether MLMs can be
utilized to promote the typicality of answers gener-
ated by GLMs?

Figure 2: The pipeline framework and the end-to-end
framework. In pipeline, the ranker reranks the generated
answers to yield the final results. In end-to-end, the
trained agent (GLM) directly yields the final results;
during training phase, the agent passes the generated
answers to the environment and receives the feedback
rewards to update its parameters.

To this end, we propose a simple ranking strat-
egy for MLMs to model the typicality of answers.
In this strategy, an MLM is trained with the dataset
purely without extra knowledge. To further in-
crease the discrimination of the MLM, it is trained
with the original answers as positive samples and
negative samples gleaned from WordNet (Miller,
1994). After training, it serves as a ranker to find
out the most popular answers among the genera-
tions by a fine-tuned GLM.

On top of that, we attempt to take advantage of
MLMs’ discrimination to improve the generation
probability of typical answers by GLMs. Inspired
by reinforcement learning (RL, Kaelbling et al.,
1996), we construct a network with two PLMs: an
agent (GLM) and an environment (MLM). We ap-
ply policy gradient (Sutton et al., 1999) to train
the agent in three steps. First, the agent samples
one answer for each question. Second, the envi-
ronment, which is trained ahead with our ranking
strategy, calculates a reward for every generated
answer. Third, the agent updates its parameters
according to both ground truth answers and the
rewards from the environment. During inference,
the final answers are generated by the trained agent
without post-processing. The pipeline and the end-
to-end frameworks are illustrated in Figure 2.

We design a series of experiments on ProtoQA
to comprehensively examine our proposed rank-
ing strategy. We develop our trials from UniLM

GPT-2 to T5 and BART, which are sequence-to-
sequence GLMs. For MLMs, we investigate BERT,
RoBERTa, and DeBERTaV3 (He et al., 2021). The
effectiveness of our strategy is evidenced by the
experimental results: a leap (over 11 points) in
the pipeline framework and a modest improvement
(around 3 points) in the end-to-end framework.

Our research reveals that MLMs can learn to
tell which answers are more popular, with little
knowledge or even without knowledge. Moreover,
they can guide the training of GLMs by providing
higher rewards for the popular answers, and conse-
quently the trained GLMs gain higher generation
probabilities of typical answers.

2 Preliminary

We introduce the concept of reinforcement learning
and the essential of policy gradient in this section.

Reinforcement Learning. Along with super-
vised learning and unsupervised learning, reinforce-
ment learning (RL) is one of the three basic ma-
chine learning methods. It is composed of five
elements: agent, environment, state, action, and
reward. The agent takes actions within the environ-
ment and its states changes accordingly. Reversely,
the environment feedbacks a reward to the agent.

Policy Gradient. In RL, the actor does not know
whether an action is correct or not, it can only judge
the quality of the action by the rewards. If an action
gets more rewards, then the actor increases the
probability of its occurrence; if fewer rewards, the
probability decreases. Given a neural network with
parameters θ and its state-action sequence τ , the
expected reward of this network is the sum of the
product of the likelihood of each sequence pθ(τ)
and its corresponding reward R(τ). The objective
function is maxθ R̄θ.

R̄θ =
∑

τ

R(τ)pθ(τ) (1)

In our task, an answer may not be absolutely
right or wrong, so a reward R(·) is introduced to
indicate the typicality of the answer. In our end-to-
end framework, the agent, environment, and action
are a GLM, an MLM, and answers generated by the
GLM, respectively. The GLM is trained to receive
a maximum expected reward.

3 Methodology

In this section, we elaborate on our simple rank-
ing strategy for MLMs (i.e. the ranker or envi-
ronment). Then, we detail the implementation of
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policy gradient applied for the training of GLMs in
the end-to-end framework.

3.1 Ranking Strategy
We train MLMs with (question||answer, typicality)
pairs to model the distribution of typical answers.

We denote a question with s words as
q = {q1, q2, . . . , qs} and its original an-
swer set with descending typicality as Ãq =

{(Ãq
1, c

q
1), . . . , (Ã

q
k, c

q
k)}, where each answer Ãq

i

is composed of u words {aqi1, a
q
i2, . . . , a

q
iu} and

c is the typicality. We set the typicality of neg-
ative answers to zero. Then, the negative set is
Āq = {(Āq

1, 0), . . . , (Ā
q
n, 0)} and the compound

answer set is Aq = Ãq ∪ Āq. We assume that
the frequency can depict the distribution of typical
answers, where freqqi = cqi /

∑k
j=1 c

q
j .

The typicality predicted by the ranker is obtained
as follows:

hq,Aq
i
= MLM(q||Aq

i )[CLS] (2)

scoreq,Aq
i
= Whq,Aq

i
+ b (3)

where q||Aq
i is concatenated as [CLS], q, [SEP],

Aq
i , [SEP]. The scores are converted to an esti-

mated probability of being typical by the softmax
function so that negative values (scores) can be as-
signed to negative samples. Then, we compute the
Kullback-Leibler divergence between the probabil-
ity and the target distribution.

σ(q, Aq
i ) = softmax(scoreq,Aq

i
/t) (4)

Lkl(q) =

k∑

i=1

freqqi log
freqqi

σ(q, Aq
i )

(5)

where t is the temperature hyperparameter.
The above formulas only determine the relative

numeric relationship between positive and negative
answers. To ensure answers’ class labels (posi-
tive or negative), we consider binary cross entropy
(Lbce) to constrain their value ranges. We use the
least typical positive answer Ãq

k and one negative
answer Āq

1 to calculate the loss:

Lbce(q) =− log sigmoid(scoreq,Ãq
k
) (6)

− log(1− sigmoid(scoreq,Āq
1
))

The parameters of the ranker are updated with
objective function min

∑
q(Lkl(q) + Lbce(q)).

This strategy is also applicable without neg-
ative answers and it becomes a knowledge-free

ranking strategy, where the objective function is
min

∑
q Lkl(q).

In the pipeline framework, a GLM needs a stan-
dard fine-tuning. After training, the fine-tuned
GLM generates an answer set for all input ques-
tions. Then, the ranker estimates the typicality of
every question||answer with Eq 2 - Eq 3. The score
is finally converted to range (0, 1) with sigmoid
function. The most popular answers are regarded
as the final results.

3.2 GLM’s Training with Policy Gradient
Inspired by reinforcement learning, we set an agent
and an environment in our end-to-end framework.
The agent is a GLM which is responsible for an-
swer generation. The environment is an MLM
discerning how typical the generated answers are.
The parameters of the environment are well-trained
with the ranking strategy (Section 3.1) and fixed
during the training of the agent.

Specifically, given a question q, the GLM sam-
ples several answers Âq. Then the MLM calculates
the reward indicating the typicality for each answer
Âq

i and feeds it back to the agent. We optimize the
GLM by maximizing the overall expected reward.
Technically, this can be formulated as:

L1(q) = −
∑

i

R(q, Âq
i ) · logP (Âq

i |q) (7)

P (Âq
i |q) =

∑

j

PGLM(Âq
i,t=j |q, Â

q
i,t≤j) (8)

where R denotes the reward yielded by the environ-
ment. It is a normalized value of the score (Eq 3)
by the sigmoid function:

R(q, Âq
i ) = sigmoid(scoreq,Âq

i
) (9)

In addition, we utilize ground truth answers Ãq
i

to supervise the training of the GLM and the cross
entropy loss is defined as follow:

L2(q) = −
∑

i

logP (Ãq
i |q) (10)

where P (Ãq
i |q) is computed as Eq 8.

As a whole, the objective function of the GLM
is min

∑
q(α · L1(q) + β · L2(q)), where α and β

are hyperparameters.

4 Experiments

4.1 Dataset
We evaluate our methods on a generative com-
monsense QA dataset: ProtoQA (Boratko et al.,
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2020)12, instead of multiple-choice benchmarks.
It consists of around 9k commonsense reasoning
questions over prototypical situations. The dataset
splits used in our experiments follow the partition
of Boratko et al.’s. (8782, 52, 102 pieces of ques-
tions for train, dev, and test). The average number
of answers to each question in train set is 5.

The answers for test set of ProtoQA are pos-
sessed by AllenAI Leaderboards3 and not public.
As a result, the traps of test data leakage and param-
eters overfitting are eliminated from our results.

4.2 Negative Samples Preparation

From preliminary experiments, we have found that
MLMs embrace the ability to tell whether a sen-
tence is grounded in commonsense or not. To refine
the discriminative ability of the ranker / environ-
ment, we construct negative samples with the fol-
lowing three strategies. The gleaned negatives are
displayed in Table 1.

Synset. For each answer in ProtoQA, from its
“brothers” (hyponyms of its hypernym), we chose
one furthest “brother” as the negative according
to the jcn-similarity (Jiang and Conrath, 1997) be-
tween synsets in WordNet (Miller, 1994).

Definition. For each question in ProtoQA, we
collect a bunch of negatives among the “brothers”
and “father” (hypernym) of every answer according
to their definitions in WordNet. The word whose
definition embedding has less than 0.5 cosine sim-
ilarity with those of all answers to the question
is regarded as a negative sample. The sentence
embedding of definition is obtained by bert-base-
nli-mean-tokens (Reimers and Gurevych, 2019).

Echo. We have observed that the GLMs would
answer the questions with words in question stems,
which are definitely not the expected answers in
most cases. So we select words (nouns, verbs, and
adjectives) appearing in the questions and their
antonyms (only for adjectives) as the negatives.

4.3 Baselines

Due to the generative requirement of this task, old-
fashioned classifier models are not applicable. We
compare our methods with all the baselines re-
ported by Boratko et al. (2020): Human, QA Model,
GPT-2, and GPT-2 FT. We also report the results
by fine-tuning T5 (Raffel et al., 2020) and BART

1https://github.com/iesl/protoqa-data
2As far as we know, this is the only dataset for multi-

answer generative commonsense QA.
3https://leaderboard.allenai.org/protoqa/submissions/public

Question At the beach, name something that
might protect you from sun.

Answer sunscreen, sun block, umbrella, . . .
Strategy Negatives Average
Synset cold cream 5
Definition lanolin, nard 20
Echo beach, protect, sun 5

Table 1: The statistics and instances of negative samples
under different strategies. Negatives are chosen for the
answer sunscreen and from the question stem. Average
denotes the average number of negatives for each ques-
tion in train set.

(Lewis et al., 2020) with the original dataset. In
addition, there are two studies report only on dev
set (Ma et al., 2021; Chang and McCallum, 2022),
and we compare our results on dev set with theirs
in Appendix D.

The MLMs we explore are DeBERTaV3 (He
et al., 2021), RoBERTa (Liu et al., 2019), and
BERT (Devlin et al., 2019), which are trained with
our ranking strategy.

The version of models used in our experiments
are gpt2-large, t5-base, bart-large, deberta-v3-
large, roberta-large, and bert-large-uncased.

4.4 Evaluation

We follow the metrics proposed for ProtoQA by
Boratko et al. (2020): Max Answers @ k and Max
Incorrect @ k.4 Employing the Hungarian match-
ing algorithm (Kuhn, 1955; Munkres, 1957), the
metrics compute the optimal matching between
the answers and the clusters based on the reward
matrix, where the rewards are equal to the size of
clusters.5 The scores of WordNet Similarity are
given by AllenAI Leaderboards.

4.5 Parameters

The experimental results are mainly produced by
the following parameters. AdamW is the optimizer
for all models.

GLMs. We fine-tune the GPT-2 model with a
batch size of 8, gradient accumulation batch of 1,
and the others following the parameters for the best
performing model by Boratko et al. (2020). GLMs
are trained for 1 epoch, with 1e-5 and 1e-3 learning
rates for BART and T5 respectively. For a fair
comparison, we follow their generation settings.

4Max Answers @ k limits the total number of answers al-
lowed to up to k answers. Max Incorrect @ k allows unlimited
answers, but stops after k unmatched answers.

5https://github.com/iesl/protoqa-evaluator
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Models Max Answers (%) Max Incorrect (%) △ (%)
@ 1 @ 3 @ 5 @ 10 @ 1 @ 3 @ 5 Max Min Ave

Human* 78.4 76.8 76.0 77.0 59.0 74.0 77.9
QA Model* 3.4 6.4 9.1 15.7 1.4 5.3 8.4
GPT-2* 6.2 18.5 23.0 30.5 4.3 17.9 24.2

+ rerank 41.9 39.5 39.6 42.7 25.4 35.1 39.0 35.7 12.2 19.8
GPT-2 FT* 36.4 44.4 46.4 53.5 26.1 41.7 48.2

+ rerank 53.8 56.4 56.4 62.2 39.3 53.2 57.6 17.4 8.7 11.7
GPT-2 RL 41.9 45.5 49.4 55.6 27.7 45.8 51.0 5.5 1.1 2.9

+ rerank 55.1 56.4 56.7 60.2 39.2 50.9 57.0 18.7 6.7 11.2

Table 2: The main results on test set. Rows with * are reported by Boratko et al. (2020). The rest are our methods.
The △ column are max, min, and average increments over the metrics, compared with the first row within the
section. All scores are evaluated by AllenAI Leaderboards.

Methods Max Answers (%) Max Incorrect (%) △ (%)
@1 @3 @5 @10 @1 @3 @5 Max Min Ave

GPT-2 FT* 36.4 44.4 46.4 53.5 26.1 41.7 48.2
+filter (pipeline) 38.6 45.4 50.0 52.5 26.9 44.3 49.1 3.4 −1.0 1.4

GPT-2 RL (Binary) 42.4 46.4 49.0 55.9 28.4 46.8 51.4 6.0 2.0 3.3
GPT-2* 6.2 18.5 23.0 30.5 4.3 17.9 24.2
GPT-2 RL w/o L2 22.0 29.8 30.7 36.2 15.5 27.5 31.7 15.8 5.7 9.8

Table 3: The results of ablation study on test set. The underlined scores are lower than the baseline GPT-2 FT*.

Rankers. We train the Rankers with 15 neg-
atives, which is composed of up to 3 from Echo
and 12 from the union of Synset and Definition.
Learning rate and epoch are set to 5e-5 and 5.

Agents. The environment is actually a ranker
trained with the above parameters. The agent is
trained with a weight decay of 1e-5. The epochs
and coefficients (α, β) in the overall loss function
vary with the GLM and MLM combinations. They
are listed in Appendix B.

5 Results

In this section, we report results in both pipeline
and end-to-end framework. Ablation study, further
analysis of the two frameworks, and case study are
located in Section 5.2, 5.3, 5.4, and 5.5. Results
on dev set are listed in Appendix D and E. In
addition, we test our method on multiple-choice
dataset CommonsenseQA(Talmor et al., 2019) in
Section 5.6.

5.1 Main Results

The main and best results are listed in Table 2.
The GPT-2 RL model applies policy gradient to
train the agent with rewards calculated by the en-
vironment. In the pipeline framework, we rerank
the sampled answers generated by GLMs, denoted
with "+rerank". We report reranked results of GPT-
2 (vanilla), GPT-2 FT (fine-tuned with train set),
and GPT-2 RL. It should be noted that the ranker in
pipeline is DeBERTaV3 trained for 1 epoch with

train set plus 10 negatives per question.
The ranker raises the scores of fine-tuned mod-

els more than 11 points on average, manifest than
those of GPT-2 RL. It indicates that the typicality
of answers is beneficial to the training of rankers;
nevertheless, the environment in end-to-end pro-
vides a relatively weak influence for the training of
the agent. The biggest leap is the reranked results
of vanilla GPT-2, especially Max Answers @ 1
(41.9, even better than GPT-2 FT’s 36.4). It cor-
roborates that GPT-2 is an implicit source of world
knowledge and thus, even without fine-tuning, the
answers which are more popular can be excavated
by the ranker. From the fact that the increases of
GPT-2 FT+rerank and GPT-2 RL+rerank are al-
most on a par, we conjecture that policy gradient
method increases the probability of typical answers
and does not have deleterious effects on the overall
diversity of generated answers.

5.2 Ablation Study

We conduct three ablation experiments (Table 3),
and the corresponding findings are in bold.

A filter or binary ranker still works. For the
pipeline framework, we degrade our softmax model
to a filter, which filters GPT-2 FT’s outputs ranked
by the occurrence. The results in the second line
shows that it can cross out less popular answers to
increase the typicality. Moreover, we train a hard
label ranker, where 1 is assigned to the ground truth
and 0 to the negatives. Results of reranking with
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the binary ranker lying in the third line proves that
our ranking strategy also works for a binary ranker.

The ranking strategy and policy gradient are
reliable. For the end-to-end framework, we disre-
gard the ground truth and eliminate L2 (Eq 10) in
the objective function. The results in the last line
are much better than GPT-2’s. It indicates that the
reward is helpful to a vanilla PLM and therefore
verifies the effectiveness of both our ranking strat-
egy and applying policy gradient. Nevertheless, the
result is worse than GPT-2 FT since the baseline
was fine-tuned with ground truth. Therefore, the
ground truth answers are still more valuable for
PLM’s training than pure reward.

5.3 Analysis on Ranking Strategy

The effectiveness of our simple ranking strategy is
evaluated from two aspects: we experiment with 1)
different numbers of epochs and the negatives on
GPT-2; 2) different GLMs and MLMs.

5.3.1 Epochs and Negative Samples
To investigate the effect of the number of epochs
and the negatives, we train the ranker with different
(# epochs, # negatives) combinations and test them
in the pipeline framework. We experiment with (1,
10), (1, 15), (5, 10), (5, 15), and (10, 5). Figure 3
depicts the scores and increments on each metric.
Rankers of different combinations all significantly
surpass the baseline on all metrics. Among them,
there is a clear trend over the metrics, except for
the Max Answers @ 1.

From the specific metric perspective, such as
Max Answers @ 1, more negatives or epochs may
be favorable. For instance, (5, 15) which has more
negatives than (5, 10) achieves better score, and so
does (1, 15) versus (1, 10). Surprisingly, (10, 5)
trained with most epochs receives the best score.

From the overall perspective, the ranker learns
the most important weights in early epochs, espe-
cially the first epoch. The rankers trained with one
epoch gain greatest average increase (top three in
the rightmost bar chart). On one hand, the increase
falls as the training epoch rises, still there being
an apparent improvement in the worst case (8.3
points of average increase). On the other hand, the
appropriate number of negatives is correlative to
the number of epochs. For small epochs, too many
negatives may distract the attention to the positive
answers. For moderate epochs, which may lead
to overfitting, the shortage of negatives would in-
tensify the imbalance. This explains why (1, 10)

outperforms (1, 15) while (5, 15) exceeds (5, 10).
To verify the effect of negative samples, we com-

pare the one-epoch rankers trained with or without
negatives.6 The solid line represents the ranker
trained without negatives and it generally lies un-
der (1, 10) and (1, 15). Despite the fact that its
overall increment is slightly inferior to (1, 10) and
(1, 15), it exceeds the other combinations. So the
negatives are not a decisive factor to our ranking
strategy, but they are valuable to boosting the per-
formance. Therefore, the negatives are the icing
on the cake and our ranking strategy can be
knowledge-free, without negatives.

The wide range of epochs and negatives demon-
strate the robustness of our ranking strategy.

5.3.2 Choices of MLMs
Reranked results of different GLM+MLM7 combi-
nations are displayed in Table 4. In Table 5 are the
average scores and the standard deviations of the
same MLM against different GLMs. Among the
MLMs, there are large differences between their
average scores but each model has a small variance.
It indicates that, although MLMs have their own
upper bound, their discrimination to answers gen-
erated by different GLMs are fairly stable. Taking
both mean and standard deviation into considera-
tion, DeBERTaV3 is the best ranker, followed by
RoBERTa. The discriminative ability of BERT is
insufficient, compared to the other two MLMs, and
it even holds back the scores of GPT-2 FT.

The consistent reranked results of different
GLMs further demonstrate that they can obtain
the ability to answer commonsense questions af-
ter simple fine-tuning (sampled answers can cover
typical ones for the rankers to choose from and to
achieve similar reranked results). A suitable MLM
can be utilized as a post-processer to effectively
improve the typicality of the generations.

5.4 Analysis on Policy Gradient
In end-to-end mode, the typicality of generated
answers by the agents trained with policy gradient
are shown in Table 6. The majority of models
improve the typicality of the first answer most (Max
Answers @1), which also occurs in the pipeline.

However, the relative strength among MLMs
is obscure. For GPT-2, DeBERTaV3 makes im-
provements in all metrics; RoBERTa has more mer-
its than faults; BERT is deleterious for the whole,

6Because the rankers trained for one epoch perform best.
7The corresponding parameters are listed in Appendix A.
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Figure 3: Effects of the number of negatives and epochs. Dotted line with crosses is the baseline GPT-2 FT*; solid
line with crosses is the ranker trained without negatives; dashed lines with various markers are trained with different
(# epochs, # negatives) combinations. On the right side, the values in blue bars are the increases on each metric
compared with the baseline, along with the average increase over all metrics.

GLM Ranker Max Answers (%) Max Incorrect (%) △ (%)
@ 1 @ 3 @ 5 @ 10 @ 1 @ 3 @ 5 Max Min Ave

GPT-2

FT* 36.4 44.4 46.4 53.5 26.1 41.7 48.2
FT 36.0 44.8 48.6 53.1 25.7 43.5 49.6
DeBERTaV3 53.8 56.4 56.4 62.2 39.3 53.2 57.6 17.4 8.7 11.7
RoBERTa 49.7 46.0 49.0 56.2 31.5 44.6 51.1 13.3 1.6 4.4
BERT 32.2 42.6 44.6 54.7 21.8 40.8 48.0 1.2 −4.3 −1.8

T5

FT 21.9 32.4 37.8 47.1 15.5 30.8 39.6
DeBERTaV3 53.8 55.2 57.3 61.5 39.3 52.9 58.5 31.9 14.4 21.9
RoBERTa 47.2 48.1 49.6 54.9 28.6 44.7 49.9 25.3 7.8 14.0
BERT 28.5 32.2 39.5 44.1 17.8 33.1 40.4 6.6 −3.0 1.5

BART

FT 26.4 31.7 37.9 47.2 16.6 31.1 38.5
DeBERTaV3 53.8 52.0 53.6 59.7 35.6 51.4 55.8 27.4 12.5 18.9
RoBERTa 48.8 47.3 48.9 53.3 31.9 45.0 49.8 22.4 6.1 13.7
BERT 28.5 31.3 39.3 47.8 16.9 32.4 40.0 2.1 −0.4 1.0

Table 4: The results of the pipeline framework on test set. FT denotes a fine-tuned GLM without reranking. The
underlined scores are lower than the first row within the section. We also report our fine-tuned GPT-2 (in the second
line) to show that it is our ranking strategy which contributes to the increase, rather than fine-tuning tricks.

Ranker AVE/ Max Answers (%) Max Incorrect (%) △ (%)
STDE @ 1 @ 3 @ 5 @ 10 @ 1 @ 3 @ 5 Max Min Ave

DeBERTaV3
AVE

53.8 54.5 55.8 61.1 38.1 52.5 57.3 25.6 11.9 17.5
RoBERTa 48.6 47.1 49.2 54.8 30.7 44.8 50.3 20.3 5.2 10.7
BERT 29.7 35.4 41.2 48.9 18.8 35.4 42.8 3.3 −2.6 0.2
DeBERTaV3

STDE
0.0 2.3 1.9 1.3 2.1 1.0 1.4 7.5 2.9 5.2

RoBERTa 1.3 1.1 0.4 1.5 1.8 0.2 0.7 6.3 3.2 5.5
BERT 2.1 6.3 3.0 5.4 2.6 4.6 4.5 2.9 2.0 1.7

Table 5: The discrimination of different MLMs. The values are derived from Table 4. AVE and STDE are the
average and the standard deviation.

which may be the result of error propagation from
the environment to the agent through the supervi-
sion signal. For T5, RoBERTa is the most helpful
environment followed by DeBERTaV3 and BERT.
For BART, RoBERTa is still the best environment;
BERT improves most on average but has one metric
lagged behind; DeBERTaV3 hardly plays a role.

We conjecture that the typicality of answers is
indigestible to GLMs, so their generation proba-
bility of popular answers increase modestly and
similarly after RL, no matter which MLM serves as

the environment. Due to the more elaborate selec-
tion of hyperparameters, the larger time consump-
tion (Appendix B and C), and the smaller gains
of end-to-end models than reranking, the pipeline
framework is much more economic.

5.5 Case Study

Since the answers of test set are not public, we
gather different models’ outputs of a question in
dev set (Figure 4), taking GPT-2 as an example.
GPT-2 FT generates 4 typical answers which cov-
ers 3 clusters. All models in the pipeline pick out at
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Agent Environment Max Answers (%) Max Incorrect (%) △ (%)
@ 1 @ 3 @ 5 @ 10 @ 1 @ 3 @ 5 Max Min Ave

GPT-2

FT* 36.4 44.4 46.4 53.5 26.1 41.7 48.2
DeBERTaV3 41.9 45.5 49.4 55.6 27.7 45.8 51.0 5.5 1.1 2.9
RoBERTa 41.0 45.2 48.7 53.4 25.2 43.6 47.6 4.6 −0.9 1.1
BERT 40.4 39.9 46.9 54.6 26.6 39.5 48.1 4.0 −4.5 −0.1

T5

FT 21.9 32.4 37.8 47.1 15.5 30.8 39.6
DeBERTaV3 25.5 32.5 38.5 49.2 17.5 32.1 40.6 3.6 0.1 1.5
RoBERTa 28.2 35.4 40.1 50.9 17.0 34.5 41.8 6.3 1.5 3.3
BERT 26.8 34.3 36.1 45.6 17.1 31.1 38.6 4.9 −1.7 0.6

BART

FT 26.4 31.7 37.9 47.2 16.6 31.1 38.5
DeBERTaV3 28.5 31.9 38.1 47.0 17.9 30.8 38.6 2.1 −0.3 0.5
RoBERTa 26.7 34.4 38.8 47.8 18.3 33.3 39.8 2.7 0.3 1.4
BERT 30.7 31.5 38.9 48.2 17.5 32.5 41.8 4.3 −0.2 1.7

Table 6: The results of the end-to-end framework on test set. FT denotes a fine-tuned GLM without RL.

Figure 4: An example of answer generation in the pipeline and the end-to-end frameworks. The first row is a
question and its answers in clusters. The following are generations of GPT-2 FT, reranked outputs of GPT-2 FT, and
generations of GPT-2 RL. The third column is the number of unique clusters covered by the generations. Typical
answers are in green with superscripts indicating the clusters they belong to. Full data is listed in Appendix F.

least 6 popular answers, two more than the baseline,
and they also cover more unique clusters. So do the
end-to-end models, but they cover fewer clusters
on average than the pipeline models. The prior-
ity of typical answers among models in pipeline
varies wider than those in end-to-end. In addition,
the order of answers generated by end-to-end mod-
els are similar to the baseline (+DeBERTaV3 vs
GPT-2 FT) as well as to each other (+RoBERTa
vs +BERT). These are consistent with previous ex-
periment results: 1) pipeline models perform better
than end-to-end models; 2) the increase of pipeline
models differ significantly while end-to-end mod-
els have similar improvements; 3) Parameters of
GLMs are slightly steered with policy gradient.

5.6 Results on CommonsenseQA

Although the number of answers varies with the
question in this generative task, our method can be
easily adapted for multiple-choice QA. 8 We assign
1 to the typicality value of the true answer and 0 to

8Most existing methods are tailored to multiple-choice QA,
but they are not adaptive to our answer generation task.

that of wrong answers. The multiple-choice ranker
is trained with the same process as Section 3.1.
During inference, for each question, the ranker cal-
culates the probability of each (question, answer)
pair. The highest one among all candidates is the
predicted answer.

DeBERTaV3 is trained with learning rate of 1e-
5 for 3 epochs. The accuracy on dev and test set
of CommonsenseQA(Talmor et al., 2019) are 83.8
and 77.4 respectively.9 We ranked 9 among the
single models and the Top-15 single models on
the CommonsenseQA leaderboard10 are listed in
Appendix G.

6 Related Work

Prior works evaluate LMs against commonsense
benchmarks to probe the commonsense knowledge
learned by LMs. Recent studies have shown that
PLMs are implicit sources of world knowledge
(Davison et al., 2019; Petroni et al., 2019). Et-

9We use official random split.
10https://www.tau-nlp.sites.tau.ac.il/csqa-leaderboard
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tinger (2020) finds that BERT struggles with chal-
lenging commonsense inferences but it is robust
on within-category distinctions. Meanwhile, Zhou
et al. (2020) finds that MLMs are better at learning
commonsense knowledge than unidirectional LMs.
Based on these, we assume that PLMs can generate
commonsensical answers and we utilize ProtoQA
(Boratko et al., 2020) to explore the discriminative
ability of MLMs. ProtoQA has been used by Ma
et al. (2021) to study the effect of fine-tuning and
prompt methods (Li and Liang, 2021; Shin et al.,
2020) on PLM’s learning process and by Chang
and McCallum (2022) to compare the quality of
the distributions generated by different LMs for
answering ambiguous questions.

Goodfellow et al. (2014) proposed a training
method for generative models. To make it feasible
to discrete probabilistic models, Yu et al. (2017)
proposed SeqGAN, an extended GAN with a re-
inforcement learning-based generator (Sutton and
Barto, 2018), to solve the sequence generation prob-
lem. Inspired by SeqGAN, we apply policy gradi-
ent methods (Sutton et al., 1999) to optimize the
agent with a reward function to guide the policy,
where an MLM serves as the environment.

7 Conclusion

In this work, we propose a simple ranking strategy
for masked language models (MLMs) to find out
typical answers from the generation of generative
language models (GLMs). It is a knowledge-free
strategy when training without the negatives. In
addition, we apply policy gradient to the training of
GLMs to improve the generation of GLMs in end-
to-end mode. Comprehensive experiments demon-
strate the effectiveness of our proposed strategy
and the discriminative ability of MLMs.

Limitations

Our research investigates the discriminative abil-
ity of MLMs in the pipeline framework and the
end-to-end framework and these two paradigms
both increase the typicality of generated answers.
However, there still exists a large gap between per-
formance of well-designed models and human’s.
In addition, reasoning of neural models lacks trans-
parency and interpretability. We argue that it would
be more beneficial to investigate reasoners that can
utilize commonsense knowledge bases such as Con-
ceptNet (Liu and Singh, 2004) and ATOMIC (Sap
et al., 2019a). Knowledge-aware models can incor-

porate external knowledge as relational inductive
biases in an explicit way. This would enhance their
reasoning capability and improve the transparency
of model behaviors for more interpretable predic-
tions.
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A Parameters of Pipeline Models

The rankers are trained with the following parame-
ters in Table 7.

GLM Ranker Epoch Negative

GPT2
DeBERTaV3 1 10

RoBERTa 5 15BERT

T5
DeBERTaV3 1 10

RoBERTa 5 15BERT

BART
DeBERTaV3

5 15RoBERTa
BERT

Table 7: The parameters of the rankers.

B Parameters of End-to-end Models

The agents are trained with the following parame-
ters in Table 8.

G D Epoch α β

GPT-2
DeBERTaV3 2 1

8
RoBERTa 4BERT 3

T5
DeBERTaV3

2 4 0.5RoBERTa
BERT 1

BART
DeBERTaV3 2

4 1RoBERTa 3
BERT 2

Table 8: The parameters of the agents.

C Time Consumption and Model Size

The statistics of time consumption and the amount
of parameters are listed in Table 9. In reinforce-
ment learning, since only the parameters of the
agents are updated, the amounts of parameters are
the same as single models’.

D Results of Pipeline Models on Dev Set

We report the results of GPT-2, BART, and T5
on dev set in Table 10. Ma et al. (2021) experi-
mented with GPT-2 and BART; Chang and McCal-
lum (2022) experimented with GPT-2 only.
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Mode Model Time Parameter Epoch

Single

GPT-2 30 min 774M
1T5 20 min 223M

BART 20 min 406M
DeBERTaV3

15 min
435M

5RoBERTa 355M
BERT 335M

RL
GPT-2 1.5 hr 774M

2T5 6 hr 223M
BART 8 hr 406M

Table 9: Time consumption on average per epoch and
the number of parameters.

In addition, we report the reranked result of dif-
ferent GLM+MLM combinations on dev set in Ta-
ble 11.

E Results of End-to-end Models on Dev
Set

We report the results of GPT-2, BART, and T5 on
dev set in Table 12.

F Metadata of the Example in Figure 4

Table 13 and Table 14 are the raw answers and clus-
tered answers of dev question r2q15, respectively.

G CommonsenseQA Leaderboard

Top-15 single models are listed in Table 15.
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Model Strategy Max Answers (%) Max Incorrect (%) △ (%)
@1 @3 @5 @10 @1 @3 @5 Ave

GPT-2

softmax 34.1 35.2 37.8 45.0 18.3 30.7 38.5
MoS 33.9 36.0 37.7 44.9 18.3 31.7 38.2

MFS w/o Multi-partition 34.3 36.7 38.1 45.2 19.4 32.0 38.6
MFS 34.1 36.7 38.6 45.4 19.7 32.1 39.7

(vanilla) 28.2 27.1 27.2 30.7 14.4 21.1 27.5
Autoprompt 25.5 30.9 35.1 42.4 14.7 28.7 35.5
Prefix-tuning 42.7 51.5 52.2 60.8 28.8 47.6 56.9

Finetune 49.3 50.3 53.0 63.0 31.9 49.9 57.9
rerank (Ours) 55.8 52.2 56.2 61.7 36.3 51.3 55.6 1.8

BART

(vanilla) 20.9 29.8 32.2 37.5 15.1 27.3 32.2
Autoprompt 28.2 33.8 37.2 44.6 16.6 31.1 38.9
Prefix-tuning 45.5 51.0 54.8 62.9 32.7 51.4 58.7

Finetune 53.6 54.3 56.3 62.6 35.6 53.9 59.5
rerank (Ours) 63.1 55.2 58.9 63.3 38.1 52.3 59.3 2.0

T5 rerank (Ours) 47.4 51.0 55.3 62.3 34.1 50.5 59.0

Table 10: The main results of the pipeline framework on dev set. The ranker is DeBERTaV3. The bold figures are
the best scores in these two related works and the scores that is higher than baselines in our method. The average
increment is the difference between our scores and the best scores among other models.

GLM Ranker Max Answers (%) Max Incorrect (%) △ (%)
@1 @3 @5 @10 @1 @3 @5 Ave

GPT-2

FT 41.9 43.2 47.6 53.6 21.7 38.5 49.1
DeBERTaV3 55.8 52.2 56.2 61.7 36.3 51.3 55.6 10.5
RoBERTa 42.2 46.5 47.7 57.4 26.2 39.4 50.3 2.0
BERT 37.5 40.6 43.0 52.5 22.2 38.0 45.2 -2.4

T5

FT 24.3 31.8 42.2 50.8 13.1 32.7 42.3
DeBERTaV3 47.4 51.0 55.3 62.3 34.1 50.5 59.0 17.5
RoBERTa 34.8 39.7 45.7 51.8 20.4 39.5 46.3 5.9
BERT 36.2 36.8 38.1 48.1 21.0 32.2 41.7 2.4

BART

FT 25.8 33.1 39.8 49.3 15.1 32.5 40.2
DeBERTaV3 63.1 55.2 58.9 63.3 38.1 52.3 59.3 22.1
RoBERTa 41.8 42.7 48.4 53.0 21.8 38.6 46.9 8.2
BERT 27.5 34.8 39.4 50.0 15.6 33.7 39.8 0.7

Table 11: The results of the pipeline framework on dev set. FT denotes a fine-tuned GLM without reranking.

Agent Environment Max Answers (%) Max Incorrect (%) △ (%)
@1 @3 @5 @10 @1 @3 @5 Ave

GPT-2

FT 41.9 43.2 47.6 53.6 21.7 38.5 49.1
DeBERTaV3 48.8 47.3 51.0 57.6 30.4 43.1 52.4 5.0
RoBERTa 37.5 47.3 52.7 55.3 27.8 45.9 51.8 3.2
BERT 38.1 48.1 50.5 56.2 27.0 44.9 49.5 2.7

T5

FT 24.3 31.8 42.2 50.8 13.1 32.7 42.3
DeBERTaV3 27.3 33.0 40.8 50.1 14.4 32.8 42.5 0.5
RoBERTa 25.9 34.7 38.6 53.1 15.7 31.8 46.0 1.2
BERT 24.6 34.0 41.7 52.5 16.0 34.0 41.9 1.1

BART

FT 25.8 33.1 39.8 49.3 15.1 32.5 40.2
DeBERTaV3 30.2 34.8 37.5 49.1 17.2 33.2 39.5 0.8
RoBERTa 31.0 37.2 38.3 47.6 16.5 32.4 37.1 0.6
BERT 29.2 35.0 37.4 47.0 16.2 34.2 40.0 0.5

Table 12: The results of the end-to-end framework on dev set. FT denotes a fine-tuned GLM without RL.
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Data split dev.crowdsourced
ID r2q15
Question Name something that people often remember for a long time, even when they get old.

Answers

"birthday": 6, "a kiss": 1, "accidents": 1, "achievements": 1, "age": 3,
"childhood": 9, "children trauma": 1, "eat": 1, "family": 1, "family members": 1,
"first kiss": 6, "first love": 9, "first time": 1, "first time something happened": 1,
"friends": 4, "graduation day": 1, "grandmother": 1, "happy moments": 1,
"best childhood moments": 1, "travels": 1, "parents": 5, "lose virginity": 1,
"memories of childness": 1, "mother": 1, "name": 6, "name of family": 1, "no": 1,
"one love": 1, "pets": 1, "relations": 1, "sons": 3, "bad experiences": 1, "heat": 1,
"the first person they fell in love": 1, "love of his life": 2, "names": 2, "love": 3,
"the old times": 1, "toys": 1, "travel": 2, "wedding": 4, "when a son is born": 1,
"wife": 1, "your age": 2, "happy moment": 1, "anniversaries": 1, "youth": 2

Table 13: Raw answers of dev question r2q15. The answer in clusters are listed in Table 14.

No. Count Answers

0 30 "the first person they fell in love", "first kiss", "love", "wedding", "one love", "a kiss",
"first time something happened", "first love", "first time", "love of his life", "lose virginity"

1 20 "mother", "parents", "family members", "when a son is born", "family", "grandmother",
"pets", "wife", "sons", "friends", "relations"

2 14 "name of family", "names", "age", "your age", "name"
3 12 "childhood", "best childhood moments", "memories of childness", "children trauma"
4 6 "birthday"
5 5 "happy moment", "travels", "happy moments", "travel"
6 2 "bad experiences", "accidents"
7 2 "youth"
8 1 "achievements"
9 1 "graduation day"

10 1 "anniversaries"
11 1 "heat"

Table 14: Answer clusters of dev question r2q15.

Rank Model Affiliation Accuracy Accuracy
with ConceptNet

Human 88.9
1 CPACE Anonymous 87.4
2 KEAR Microsoft Azure Cognitive Services Research 86.1
3 ALBERT+DESC-KCR Microsoft Cognitive Services Research 80.7
4 ALBERT+KD HIT-SCIR-QA 80.3
5 Albert + KCR ITNLP (Harbin Institute of Technology) 79.5
6 UnifiedQA Allen Institute for AI 79.1
7 Albert+Headhunter SUDA-NLP & I2R 78.4
8 T5 Allen Institute for AI 78.1
9 DeBERTaV3 (Ours) HITSZ-HLT 77.4
10 ALBERT+HGN USC MOWGLI / INK Lab 77.3
11 TeGBERT Anonymous 76.8
12 QA-GNN Stanford University 76.1
13 PEAR Sogang University and Gachon University 76.1
14 Albert + PathGenerator USC MOWGLI / INK Lab 75.6
15 ACP Graph + ELECTRA NLP & AI, Korea University 75.4

Table 15: Top-15 single models on CommonsenseQA Leaderboard.
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