
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 2498–2509
December 7-11, 2022 ©2022 Association for Computational Linguistics

A Hierarchical N-Gram Framework for Zero-Shot Link Prediction

Mingchen Li1∗, Junfan Chen2, Samuel Mensah3

Nikolaos Aletras3, Xiulong Yang1, Yang Ye1

1Georgia State University 2Beihang University 3University of Sheffield
1{mli33, xyang22, yye10}@student.gsu.edu, 2chenjf@act.buaa.edu.cn

3{s.mensah,n.aletras}@sheffield.ac.uk

Abstract

Knowledge graphs typically contain a large
number of entities but often cover only a frac-
tion of all relations between them (i.e., incom-
pleteness). Zero-shot link prediction (ZSLP) is
a popular way to tackle the problem by auto-
matically identifying unobserved relations be-
tween entities. Most recent approaches use tex-
tual features of relations (e.g., surface names or
textual descriptions) as auxiliary information
to improve the encoded representation. These
methods lack robustness as they are bound
to support only tokens from a fixed vocabu-
lary and are unable to model out-of-vocabulary
(OOV) words. Subword units such as char-
acter n-grams have the capability of generat-
ing more expressive representations for OOV
words. Hence, in this paper, we propose a
Hierarchical N-gram framework for Zero-Shot
Link Prediction (HNZSLP) that leverages char-
acter n-gram information for ZSLP. Our ap-
proach works by first constructing a hierarchi-
cal n-gram graph from the surface name of rela-
tions. Subsequently, a new Transformer-based
network models the hierarchical n-gram graph
to learn a relation embedding for ZSLP. Experi-
mental results show that our proposed HNZSLP
method achieves state-of-the-art performance
on two standard ZSLP datasets.1

1 Introduction

Link prediction models aim to predict relations
between entities in knowledge graphs (KGs). Ma-
jority of these methods learn low-dimensional rep-
resentations of entities and relations (i.e., knowl-
edge graph embeddings (KGE)), which are then
used to infer links between entities. Traditional
approaches (Bordes et al., 2013) assume that all
relation types are known in the KG. This assump-
tion is however unrealistic since KGs are inherently
incomplete. To tackle this issue, the zero-shot link

∗Corresponding author
1The code is available here: https://github.com/

ToneLi/HNZSLP

prediction (ZSLP) task has been introduced for
identifying unseen relations by leveraging auxil-
iary information that bridges the gap between seen
and unseen relations (Qin et al., 2020).

Little previous work exists on ZSLP as the task is
relatively new (Qin et al., 2020; Geng et al., 2021;
Wang et al., 2021). Most efforts focus on using tex-
tual features (Qin et al., 2020; Wang et al., 2021)
or ontologies (Geng et al., 2021) as auxiliary in-
formation for the task. Particularly, Wang et al.
(2021) use surface names of entities and relations
while Qin et al. (2020) use the textual descriptions
of relations. However, these approaches have two
main limitations. First, common knowledge graphs
such as WordNet (Miller, 1995) and FreeBase (Bol-
lacker et al., 2008) often do not include textual
descriptions of the relations. As such, these need
to be obtained from other external sources (e.g.,
Wikipedia2) and are likely to be noisy, leading to
poor performance. Second, manually obtaining
such relation descriptions is a labor-intensive and
time-consuming process due to the large size of
KGs.

Alternatively, Wang et al. (2021) proposed learn-
ing word representations from the surface name of
relations using a pre-trained language model such
as RoBERTa (Liu et al., 2019). As surface names
are readily available in the KG, this approach is
more robust. However, it faces two fundamental
weaknesses. First, context is an essential require-
ment for any text representation method. Surface
names on the other hand are represented by short
texts, e.g., a relation “teammate” will have a single
word representation observed in training and will
therefore have little to no association with an unob-
served relation for zero-shot. Second, neural text
encoders lack the ability to capture representations
for out-of-vocabulary words. This same problem
also applies to “word”-delimited models (Qin et al.,
2020) that aim to learn from textual descriptions of

2https://www.wikipedia.org/

2498

https://github.com/ToneLi/HNZSLP
https://github.com/ToneLi/HNZSLP

relations. In such cases, the relation representation
ability of current methods may be limited signifi-
cantly, which inadvertently hurts the zero-shot link
prediction performance.

In this paper, we follow a different direction. In-
stead of simply learning representations from entire
words of a relation’s surface name, we hypothe-
size that leveraging character n-grams3 (or n-grams
for brevity) information from the relation name
will help in generating better representations of un-
seen relations in zero-shot settings. Models built
on subword units (e.g., character n-grams) have
the intrinsic ability of generating representations
for rare or out-of-vocabulary words (Santos et al.,
2021). Inspired by this, we propose a novel Hi-
erarchical N-gram framework for Zero-Shot Link
Prediction (HNZSLP) that learns auxiliary infor-
mation from character n-grams of the surface name
of a relation. HNZSLP consists of three main com-
ponents: (1) a new hierarchical n-gram graph (or
n-gram graph for brevity) for representing the re-
lationships between all the character n-grams of a
relation; (2) GramTransformer, a new transformer-
based (Vaswani et al., 2017) model for encoding
the relation n-gram graph; and (3) a KG Embed-
ding model which adapts prevalent KGE models
(e.g., TransE (Bordes et al., 2013), DistMult (Yang
et al., 2014), TuckER (Balažević et al., 2019)) to
compute a link prediction score between entities
in the zero-shot setting. We perform extensive ex-
periments on two standard datasets for zero-shot
link prediction demonstrating the superiority of our
method over prior state-of-the-art methods.

Our contributions are the following:

• We propose HNZSLP, a new framework that
uses the character n-gram information from
the relation surface name for ZSLP;

• We show that our approach outperforms pre-
vious state-of-the-art when evaluated on char-
acter and byte-level encoders;

• We conduct a thorough analysis of our
method, including an ablation study, demon-
strating the robustness of HNZSLP.

2 Related Work

2.1 Link Prediction
So far, a variety of works have been proposed for
link prediction, and the difference in their architec-

3A character n-gram is defined as a contiguous sequence
of n characters.

ture ranges from the scoring function to how the
optimization problem is modeled to learn entities
and relation embeddings. As current work is vast
and fast growing, we restrict ourselves to reviewing
only those closely related to our work. Some of
the well-known methods include the translation-
based model TransE (Bordes et al., 2013), which
requires that the tail entity embedding is close to
the sum of the head and relation embeddings; the
bilinear model DistMult (Yang et al., 2014) that
interprets the relation as a bilinear map and uses
multiplicative interactions to learn entity and rela-
tion embeddings; the non-bilinear model TuckER
(Balažević et al., 2019) utilizes the tucker decom-
position (Malik and Becker, 2018) to build the con-
nection between different knowledge graph triples.
Although performance has been achieved incremen-
tally, these approaches in their original form are
unable to learn embeddings for unseen relations.
This is due to the fact that they learn entities and
relation embeddings using the topological struc-
ture of the KG. We refer the reader to the work by
(Rossi et al., 2021) for further background on such
methods.

2.2 Zero-shot Link Prediction
The zero-shot link prediction (Qin et al., 2020) is
a new task that aims to predict unseen relations
between entities by using auxiliary information
to bridge the gap between seen and unseen rela-
tions. Qin et al. (2020) uses textual information
of the relation as auxiliary information and applies
a Zero-Shot Generative Adversarial Network (ZS-
GAN) to learn the unseen relation embedding for
the task. An Ontology-enhanced Zero-Shot Learn-
ing (OntoZSL) (Geng et al., 2021) obtains struc-
tural information of relations from the ontology and
combines it with the textual descriptions of the re-
lations for zero-shot learning. Despite the success,
these textual descriptions are typically not present
in knowledge graphs and therefore these methods
rely on external sources to collect such data. This
makes it labor-intensive and time-consuming to ob-
tain the most representative descriptions of entities
and relations.

2.3 Character-level Information for Zero-shot
Learning

An emerging trend is to use the character-level
information of the raw text in zero-shot learn-
ing. Byt5 (Xue et al., 2021) is one of such mod-
els that uses a language model T5 (Raffel et al.,

2499

2019) to process byte or character sequences. Char-
former (Tay et al., 2021) improves upon Byt5 by
introducing a gradient-based subword tokenization
module to learn the character information. Our
proposed model is somewhat aligned with these
models in the sense that we consider the char-
acter information in the text. However, we con-
sider the process of how words are formed. That
is, being considered as a sequential combination
of characters/n-grams or a hierarchical structure,
whereby different n-grams aggregate up to a com-
plete word. We model this structure, referred to
as a n-gram graph structure, using a self-attention
based Transformer (Vaswani et al., 2017) due to its
success in graph learning (Ahmad et al., 2021; Cai
and Lam, 2020; Lyu et al., 2021; Yao et al., 2020).

3 Problem Statement

A Knowledge Graph (KG) is defined as a graph
G = (R, E), where E denotes a set of entities and
R denotes the set of relations among these entities.
In a KG, the entities and relations are usually orga-
nized as facts and each fact is defined as a triplet
(h, r, t) where h, t ∈ E and r ∈ R denote the head
entity, tail entity and the relation between the two
entities, respectively.

In the zero-shot link prediction problem, we as-
sume that there are two disjoint relation sets in the
KG, a seen relation set Rs and an unseen relation
set Ru, where Rs ∩ Ru = ∅. We are given a
training set Ds = {(h, rs, t)|h, t ∈ E , rs ∈ Rs}
in which the facts are involved with observed rela-
tions rs ∈ Rs. Meanwhile, we define the test set
as Du = {(h, ru, t, C(h,ru))|h, t ∈ E , C(h,ru) ⊆
E , ru ∈ Ru}, where t is the ground-truth tail entity
and C(h,ru) denotes a candidate set corresponding
to a query (h, ru). Given a query (h, ru), the ob-
jective of zero-shot link prediction is to find the
ground-truth tail entity t from the candidate set
C(h,ru).

4 HNZSLP

Figure 1 gives an overview of our HNZSLP frame-
work, which consists of three major parts: (1) Hier-
archical N-gram Graph Constructor constructs a hi-
erarchical n-gram graph from each relation surface
name, where the n-gram graph can be further de-
composed into an adjoin graph and compositional
graph to simplify the learning of the relation rep-
resentation; (2) GramTransformer constructs the
relation representation by modeling over the ad-

join and compositional graphs; (3) KG Embedding
Learning Module combines the embeddings of the
head entity and relation to predict the tail entity and
update the embeddings.

4.1 Hierarchical N-gram Graph Constructor

Node Construction For each word token in the
relation surface name, we first collect all possible
n-grams, where n is valued from 1 up to the maxi-
mum gram size M of a word. For example, M = 3
for the relation has in Figure 1. All n-grams are
treated as nodes in the hierarchical n-gram graph.
Suppose the relation surface name contains multi-
ple words, the n-grams of each word are composed
into a unified n-gram graph. For each hierarchical
n-gram graph, we denote all its nodes as a sequence
X = {x1, x2, · · · , xb}, where b = M(M+1)

2 . Let
X = {x1,x2, · · · ,xb} be the corresponding node
embeddings for the graph.

Edge Construction We define two types of
edges among n-grams in the hierarchical n-gram
graph: adjoin edge and compositional edge. The
adjoin edge implies that two n-grams at the same
hierarchical level are neighbors, e.g., the edge be-
tween nodes “h” and “a” in Figure 1. The com-
positional edge implies that the n-gram node at a
higher-level (i.e., a superior node) is a composi-
tion of the adjacent n-gram nodes at the immediate
lower-level, e.g., the edge between node “h” and
“ha”, and “a” and “ha” in Figure 1. According
to the two edge types, we can decompose the n-
gram graph into the adjoin graph and compositional
graph, as shown in Figure 1.

For the adjoin and compositional edges, we first
define their textual definitions based on Wikidata,4

and calculate their embeddings using Sentence-
BERT (Reimers and Gurevych, 2019). For later
use, we define the embeddings of the adjoin and
compositional edges as ra ∈ Rd and rc ∈ Rd,
respectively.

Note that some surface names of the relations
may be a long sequence of words, which may result
in a large set of nodes in the n-gram graph, making
it hard to process. To boost the graph construction
process, we reduce the number of nodes in the
hierarchical n-gram graph using two strategies (see
details in Appendix Section 9.1).

2500

f(eh , S, et)

S

et eh

t1

t2

t3

...

0.8

0.7

0.06

tail score

a

h s

ha

as

has

t4

t5

0.09

0.2

 Hierarchical N-gram Graph

e.g. relation: has

Entity

Embedding

Matrix

triple:

Look up embedding

Look up embedding

a

h s

ha

as

has

GramTransformer
Adjoin Graph

Compositional Graph

ha as

ah s

has

rh t, ,

Figure 1: Overview of HNZSLP, we take a relation has as an example. In the adjoin Graph, the green line denotes
the adjoin relationship. In the compositional Graph, the red line indicates the compositional relationship. In these
two graphs, different color depths represent different attention weights. The node in the adjoin graph and the
compositional graph is called neighbor node and superior node separately.

.

Adjoin Attention
Matrix

+ + + + + +
h r a r s r ha r as r has r

+ + + + +
h r a r s r ha r as r has r

Composition
Attention Matrix

Node embedding
+

Position embedding

Node embedding
+

Position embedding

+*Ma
Node

embedding
matrix

**Mc

a
h s

ha

as

has

a
h s

ha

as

has

μ μ

Figure 2: Overview of the relation enhanced mask atten-
tion used in the GramTransformer. Ma and Mc are the
mask matrix that models the relationship among nodes
in the adjoin and compositional graphs, respectively. µ
is the softmax function. The green rectangle refers to
the embedding ra ∈ Rd. The red rectangle refers to the
embedding rc ∈ Rd.

4.2 GramTransformer

We propose a GramTransformer to efficiently ex-
tract hierarchical n-gram features. The difference
between the standard Transformer and our Gram-
Transformer is the attention calculation, as shown
in Figure 2. The most important characteristic
of the GramTransformer is that it can encode the
neighbor node and superior node information while
taking the edge information in the adjoin and com-
positional graphs into account. In this way, a node
can directly learn the information from different

4https://www.wikidata.org/wiki/Wikidata:Main_Page

neighborhoods. These operations are achieved
by our proposed relation enhanced mask attention
mechanism. Specifically, we decompose the origi-
nal n-gram graph into the adjoin graph and compo-
sitional graph based on adjoin edge and composi-
tional edge. We then initialize the node embeddings
in each subgraph as the sum of the node embed-
ding, edge embedding ra (or rc), and position 5

embedding (Vaswani et al., 2017). Next, the initial-
ized subgraph elements with mask matrix is used
to learn the attention matrix, highlighting the rele-
vant features of the n-gram graph. Multiple layers
of relation enhanced mask attention networks are
stacked to calculate the final node representation.
At each layer, a node vector is updated based on
neighbor nodes and associated edge types. The
nodes’ vectors at the last layer is considered as the
final n-gram graph representation.

4.2.1 N-gram Graph Encoder

Our graph encoder aims to transform an input n-
gram graph into a set of node embeddings. To
calculate the node information in our graph, the
central problem is how to calculate the node vectors
based on the different subgraphs (adjoin graph or
compositional graph). To this end, we propose a re-
lation enhanced mask attention mechanism, which
is an extension of the self-attention mechanism to
relate the different nodes across the subgraphs.

To maintain the graph structure information, our

5for the position about nodes, please refer Appendix Sec-
tion 9.1

2501

idea is to introduce the explicit edge information
and incorporate it into the subgraph attention score
computation. We introduce the mask matrix to
model the relationship among nodes in each sub-
graph. Recall, for the standard self-attention, an
L-layer Transformer takes X as input and produces
the latent representation Hl = (hl

1,h
l
2...,h

l
b) of

relations. To enhance the semantic representation
of the input, multi-head self-attention is used in
each Transformer Layer. Specifically, the output of
(l − 1)th Transformer layer is projected to a query
matrix Ql and a set of key-value (Kl,Vl) pairs,

Ql = Hl−1Wq
l ,Kl = Hl−1Wk

l ,Vl = Xl−1Wv
l

where Wq
l ,W

k
l ,W

v
l ∈ Rdmodel×dk denote the

learnable weight matrices. dmodel is the model
dimension, dk is the head dimension. The output
of a self-attention head H

l is calculated by:

H
l
= µ(

QlK
T
l√

dk
)Vl (1)

where µ denotes the softmax function. The
self-attention learns the implicit relationships be-
tween nodes in the hierarchical n-gram graph.

4.2.2 Relation Enhanced Mask Attention
As our n-gram graph consists of adjoin graph and
compositional graph, we respectively compute the
attention head as follows,

Qa
l = Ka

l = Va
l = Ql + ra (2)

Qc
l = Kc

l = Vc
l = Ql + rc (3)

H̃l = [µ(
Qa

l (K
a
l)

T
√
dk

) + µ(
Qc

l (K
c
l)

T
√
dk

)]Vl (4)

where we split the node embedding Ql into
neighbor node embedding Qa

l and superior node
embedding Qc

l . Then we compute the attention
score based on the embeddings of the nodes and
edges in the subgraph. In Eq.4, the first term rep-
resents the node weight calculated from its adjoin
neighbors. The second term represents the node
weight calculated using the compositional edge
information. In comparison, our model can cal-
culate the node embedding respectively based on
the different edge types, it can compute the node
embedding more precisely than the standard mask
self-attention which does not consider the edge
type. The comparative experiment is in our Section
6.2.

To denote the node connection in subgraphs, the
central idea is to incorporate the mask matrix into
the attention matrix of self-attention, which can im-
pose the structure of the n-gram graph and reassign
the attention weight for each relation.

We denote the mask matrix M ∈ Rm×m, where
Mij ∈ [0, 1] denotes the connection between node
at position i and j in the input n-gram node list. 1
denotes there is a connection between two nodes.
So our proposed attention strategy can be redefined
as,

Hl = [µ(
Qa

l (K
a
l)

T
√
dk

)Ma + µ(
Qc

l (K
c
l)

T
√
dk

)Mc]Vl

(5)

where Ma indicates the relationship among nodes
in the adjoin graph, Mc indicates the relationship
among nodes in the compositional graph. Hence,
for an input n-gram graph, our graph encoder mod-
ule produces the attention head Hl which is fed to
subsequent layers of the GramTransformer to out-
put the node representations hl

1,h
l
2...,h

l
b. We then

apply a mean pooling over these representations
to obtain the relation embedding S of the surface
name.

4.3 Embedding Learning Module
We randomly initialize entity embedding matrix
E ∈ R|E|×de , where each row vector is the em-
bedding of an entity and de is the dimension of
the entity embedding. In a triplet (h, r, t), we de-
fine eh and et as the embedding of the head entity
and tail entity retrieved from the embedding matrix
E. Given the entity embeddings eh and et, and
the relation embedding S computed by our pro-
posed GramTransformer, we then define a scoring
function f(·) that assigns a score η to each triple
(h, r, t),

η = f(eh,S, et) (6)

where the scoring function f can be replaced by any
knowledge graph embedding model, e.g., TransE,
DistMult. The model is trained with cross-entropy
loss.

During the inference process, the trained
HNZSLP scores each candidate tail entity t

′ ∈
C(h,ru) given the query (h, ru). Let Su be the em-
bedding of ru computed by GramTrasformer, the
entity with the highest score in the candidate entity
set is selected as the predicted tail entity:

t∗ = argmax
t′∈C(h,ru)

f(eh,Su, et′) (7)

2502

where t∗ refers to the predicted tail entity.

5 Experiments

We validate HNZSLP by comparing HNZSLP’s
performance with several recent works, including
ZSGAN (Qin et al., 2020) and OntoZSL (Geng
et al., 2021). ZSGAN exploits the generated de-
scription embeddings of unseen relations to pre-
dict the tail entity while OntoZSL introduces the
ontology strategy in the task. Following Geng
et al. (2021), we further compare with the baselines
ZSL-TransE and ZSL-DistMult that use Word2vec
(Vinyals and Le, 2015), and respectively employ
TransE (Bordes et al., 2013) and DisMult (Yang
et al., 2014) as KGE models for zero-shot link pre-
diction. For a fair comparison, we exclude the
results of (Wang et al., 2021) as this approach does
not show the results in our used datasets. We use
four commonly used metrics, mean reciprocal rank-
ing (MRR), hits@10, hits@5, hits@1, and evaluate
on two benchmark datasets, including NELL-ZS
and Wikidata-ZS (Wiki-ZS) proposed by Qin et al.
(2020). A summary of dataset statistics is given in
Table 1.

Dataset # Entities # Triples # Train/ # Dev/ # Test

NELL-ZS 65,567 188,392 139/ 10/ 32

Wiki-ZS 605,812 724,967 469/ 20/ 48

Table 1: Datasets Statistics, column 4 refers to the num-
ber of relations in the different set.

5.1 Implementation details

On NELL-ZS (or Wiki-ZS), each word in the sur-
face name of relation is set to 13-gram (or 15-gram)
and the number of nodes in the n-gram graph is set
to 90 (or 70). Each node in the n-gram graph is
randomly initialized with a 200-dim embedding.
The GramTransformer contains one multi-head
attention block with three attention heads and a
200-dim feed-forward layer. The dropout rate in
the multi-head attention and feed-forward layer is
set to 0.5. Entities are also randomly initialized
with 200-dim embeddings. During training, we use
Adam (Kingma and Ba, 2014) as the optimizer and
a Cross-entropy is used as the loss function with a
learning rate of 0.0005. We use label smoothing to
prevent the model from becoming over-confident.
All embeddings are fine-tuned during training.

5.2 Main Results

Evaluation results are shown in Table 2. Results
are the average over 5 runs. We find that our ap-
proach outperforms all previous methods on the
different KGE models. With TransE and DistMult,
our model achieves hits@1 scores of 0.222 and
0.216 respectively on NELL-ZS, outperforming
the previous best-performing network OntoZSL by
a margin of 0.05 and 0.028. With DistMult, we
also find that our model achieves the best perfor-
mance on hits@1, but slightly underperforms the
best-performing network OntoZSL on NELL-ZS.
It is worth noting that OntoZSL utilizes external
ontology resources, thus, they present an additional
advantage over ours that do not consider external
knowledge. In real applications, ontology is not al-
ways available, which limits the scalability of their
method. On Wiki-ZS, our model also sets a new
hits@1 score. Particularly, for TransE, we improve
over the state-of-the-art OntoZSL by about 0.081
points. Similar performance is achieved on other
metrics for the different KGE models. These results
indicate that sufficient information is contained in
the relation surface name to achieve zero-shot link
prediction, and our proposed method is effective, it
can utilize the n-gram graph to transfer the knowl-
edge between seen relation and unseen relation is
effective.

6 More Analysis

In order to further explore the effectiveness of our
framework, we perform a series of analyses based
on different characteristics of our model. First, we
explore the effectiveness of our proposed Gram-
Transformer with two latest works that learn text
information from the character level or byte level.
The contribution of our model components can also
be learned from ablated models. So we propose two
model variants to help us validate the advantages
of the n-gram graph information and GramTrans-
former. Next, we explore the performance of our
model with a different number of nodes in the n-
gram graph. In the last, we did a comparison with
the method which applies the language model in
this task.

For more experiments about the HNZSLP perfor-
mance in the OOV problem, the impact of different
node selection strategies, please refer to Appendix
Sections 9.2, 9.3.

2503

NELL-ZS Wiki-ZS

KGE model Method MRR hits@10 hits@5 hits@1 MRR hits@10 hits@5 hits@1

TransE

ZSL-TransE(Qin et al., 2020) 0.097 0.203 0.147 0.043 0.053 0.119 0.081 0.018

OntoZSL(Geng et al., 2021) 0.250 0.399 0.327 0.172 0.184 0.265 0.215 0.138

ZSGAN(Qin et al., 2020) 0.234 0.373 0.304 0.160 0.177 0.258 0.207 0.131

HNZSLP 0.289 0.413 0.359 0.222 0.252 0.307 0.281 0.219

DistMult

ZSL-DistMult(Qin et al., 2020) 0.235 0.326 0.284 0.185 0.189 0.236 0.210 0.161

OntoZSL(Geng et al., 2021) 0.256 0.385 0.318 0.188 0.211 0.289 0.238 0.167

ZSGAN(Qin et al., 2020) 0.249 0.376 0.306 0.183 0.207 0.284 0.235 0.164

HNZSLP 0.276 0.383 0.333 0.216 0.232 0.279 0.254 0.204

Table 2: Zero-shot link prediction results in NELL-ZS and Wiki-ZS. The baseline results were obtained from (Geng
et al., 2021). The KGE models in the first column correspond to f(.) in equation 6.

NELL-ZS Wiki-ZS

KGE model Method MRR hits@10 hits@5 hits@1 MRR hits@10 hits@5 hits@1

TransE

ZSL-ByT5 ▽ 0.103 0.173 0.129 0.064 0.110 0.193 0.134 0.064

ZSL-CharFormer ▽ 0.269 0.383 0.337 0.202 0.170 0.236 0.201 0.132

OntoZSL(Geng et al., 2021) 0.250 0.399 0.327 0.172 0.184 0.265 0.215 0.138

HNZSLP-WNG ◦ 0.278 0.409 0.350 0.203 0.231 0.273 0.262 0.194

HNZSLP-WG ◦ 0.244 0.382 0.322 0.173 0.232 0.284 0.258 0.199

HNZSLP 0.289 0.413 0.359 0.222 0.252 0.307 0.281 0.219

DistMult

ZSL-ByT5 ▽ 0.233 0.382 0.317 0.150 0.196 0.255 0.232 0.160

ZSL-CharFormer ▽ 0.251 0.380 0.320 0.183 0.205 0.270 0.251 0.153

OntoZSL(Geng et al., 2021) 0.256 0.385 0.318 0.188 0.211 0.289 0.238 0.167

HNZSLP-WNG ◦ 0.274 0.381 0.330 0.195 0.178 0.208 0.192 0.157

HNZSLP-WG ◦ 0.259 0.372 0.321 0.195 0.221 0.264 0.242 0.197

HNZSLP 0.276 0.383 0.333 0.216 0.232 0.279 0.254 0.204

Table 3: The performance of HNZSLP with different character/byte learning models (denote as ▽) and its variants
(denote as ◦). WNG refers to without n-gram graph, WG refers to without GramTransformer.

6.1 Comparison with Character/Byte Models

To evaluate the effectiveness of our proposed Gram-
Transformer, we explore two state-of-the-art meth-
ods for character/byte level learning, including
CharFormer (Tay et al., 2021) and ByT5 (Xue
et al., 2021) to calculate the relation surface name
embedding S (as shown in (6)) at the charac-
ter or byte level, respectively. Accordingly, we
propose ZSL-CharFormer and ZSL-ByT5 for
ZSLP using the same experimental setup as our
method for a fair comparison with our method.
Table 3 shows the performance comparison. On
the dataset NELL-ZS, our model can achieve the
hits@1 score of 0.222, outperforming the best
model ZSL-CharFormer by a large margin of 0.02
hits@1 score using the TransE KGE model. On
the dataset Wiki-ZS, our model also outperforms
the best model ZSL-CharFormer by an impressive
margin of 0.087 on the same TransE KGE model.

The advantages of our model are also verified by
MRR, hits@10, and hits@5. Otherwise, the model
performance under different KGE models also is
compared.

In CharFormer, Tay et al. (2021) lists a fixed
number of subword blocks and uses an attention-
based method to choose the best subword at each
character position. By utilizing the stride window
to get the subwords, this work ignores the seman-
tic information of other subwords outside the win-
dow. Meanwhile, in our work, we propose to use
n-gram to help calculate the relation information.
Our approach is much more conducive to preserve
semantic information as it considers the effective
modeling of rare words or OOV words. Again, our
results demonstrate that the hierarchical n-gram
graph information is important to express the se-
mantic information of the relation.

2504

6.2 Ablation Experiments
The contribution of our model components can also
be learned from ablated models. We introduce two
ablated models of HNZSLP, (1) HNZSLP-WNG
uses a traditional Transformer to learn the informa-
tion of relation surface name from the 1-gram level;
(2) HNZSLP-WG uses the standard self-attention
to learn the information of n-gram graph, instead of
our proposed GramTransformer that incorporates
different sub-graph information. We find that the
performance of HNZSLP degrades as we remove
important model components. Specifically, both
HNZSLP-WNG and HNZSLP-WG perform poorly
when compared to HNZSLP, indicating the impor-
tance of modeling the information of the n-gram
graph.

6.3 Impact of Node Number

Nell-ZS No. n l T (min) L

1 13 30 18 0.1

2 13 70 37 0.5

3 13 90 45 0.63

4 13 110 66 0.74

Wiki-ZS No. n l T (min) L

1 15 30 32 0.15

2 15 70 46 0.63

3 15 90 48 0.78

4 15 110 52 0.89

Table 4: Different node number setting, L rate denotes
that there are %L relations that can cover the whole
nodes in the n-gram graph. T refers to the training time.

In our proposed model, there are two kinds of
parameters controlling the size of the n-gram graph.
one is the gram number n, and the other is the node
number l in the n-gram graph. In HNZSLP, we treat
these two parameters with the same importance.
For the n parameter, we use the maximum word
length about the seen relation set as the gram num-
ber. In NELL-ZS, n = 13, in Wiki-ZS, n = 15. If
the word length is smaller than the maximum word
length, the gram number is its word length.

The performance of our models differs in terms
of accuracy and training time under the nodes with
different numbers. To investigate the influence of
different node sizes, we conduct experiments using
HNZSLP with different parameter settings which
are shown in Table 4. We set the batch size to 32
both in NELL-ZS and Wiki-ZS. The training epoch
in NELL-ZS is 80, and the training epoch in Wiki-
ZS is 70. Other configurations are the same for
HNZSLP with different node number settings. We

Figure 3: Mrr and hits@1 results on the dataset NELL-
ZS and Wiki-ZS with different node numbers

list the training time of each running on GPU. The
GPU computations were run on a single Nvidia
TITAN RTX. In this section, we experiment with
the models under the node number up to 110 for a
relation, the KGE model is TransE.

From Figure 3, we can find that, under the fixed
setting of gram number n, HNZSLP with more
nodes achieves higher accuracy, for example, in
the dataset NELL-ZS, the hits@1 results with node
number 90 are higher than the hits@1 results with
node number 30 and 70. This situation indicates
that extending the node number is effective. How-
ever, the performance of our model about No.4
(NELL-ZS, n=13, l=110) cannot reach the one of
No.3 (NELL-ZS,n=13, l=90) and No.2 (NELL-
ZS,n=13, l=70), despite they have the same gram
length 13. Our experimental experience suggests
that it is not necessary to utilize the whole n-gram
graph in HNZSLP, let alone that using the whole
n-gram graph may significantly increase the com-
putational cost. In practice, we should choose a
suitable number of nodes to build the n-gram graph.
However, it is difficult to set appropriate node num-
bers because there are no systematic methods. We
thus set the node numbers by experimental experi-
ence. In future work, we will design a more effi-
cient approach to solve this problem and balance
the trade-off between the hits@1, hits@5, hits@10,
mrr results, and efficiency.

6.4 Comparison with Different Language
Models

To quantitatively evaluate the effect of HNZSLP,
we compare the performance of HNZSLP against
two models which are based on the latest work
about the language model in the zero-shot link pre-
diction task, and all based on the BERTbase model

2505

0.208
0.245

0.289

0.381 0.395
0.413

0.289
0.331 0.359

0.118
0.157

0.222

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45

ST
AR

KG
E‐
BE

RT

H
N
ZS
LP

ST
AR

KG
E‐
BE

RT

H
N
ZS
LP

ST
AR

KG
E‐
BE

RT

H
N
ZS
LP

ST
AR

KG
E‐
BE

RT

H
N
ZS
LP

Mrr hits@10 hits@5 hits@1

Figure 4: The model performance with different zero
shot link prediction methods based on the language
model.

6. These experiments are conducted with the test
set of NELL-ZS. They are described below:

• KGE-BERT. We use BERT (Devlin et al.,
2018) to calculate the relation embedding S in
eq.6. The KGE score function f(.) (TransE)
is utilized to predict the tail entity. We refer
to this model as KGE-BERT.

• STAR. STAR (Wang et al., 2021) is the first
work to explore the ability of language models
in zero-shot link prediction by using the textu-
ral information of entity and relation. In this
work, the authors use structured knowledge
information and textual information of entity
and relation to infer the tail entity. Moreover,
they develop a self-adaptive ensemble scheme
to improve the model performance by incor-
porating the triple scores.

We perform a detailed comparative study on dif-
ferent zero-shot language models to examine their
impact on knowledge transfer from seen relation
to unseen relation under the KGE framework. Fig-
ure 4 presents the results with a comparison to
KGE-BERT and STAR.

Figure 4 shows that our model can achieve a
hits@1 score of 0.214, outperforming the model
KGE-BERT which uses the language model to
learn the relation information by a large margin
of 0.025 hits@1 scores. For the latest work which
uses the language model to infer the tail entity,
our model can outperform STAR by a margin of
0.096 hits@1 scores. The advantages of HNZSLP
are also verified by metrics MRR, hits@10, and
hits@5.

In KGE-BERT, we use the language model to
learn the relational textual information, but this
way ignores the importance of n-gram graph infor-
mation. In the model STAR, the authors use the

6https://huggingface.co/bert-base-uncased

language model to enhance the inference ability
of link prediction, they combine the textual infor-
mation of the head entity and relation by a spe-
cial token [SEP] and then build the triple score
with learned tail entity information by the language
model. Unfortunately, this model cannot be used
to solve the out-of-vocabulary problem for the cur-
rent word, though the language model can use its
previous knowledge. More importantly, the n-gram
graph information is also an important source to
improve the performance of tail entity inference.

7 Conclusion

In this paper, we propose a novel ZSL framework
HNZSLP for link prediction. Specifically, we
proposed a GramTransformer to learn the n-gram
graph information of the relation surface name and
utilize the KGE model to infer the tail entity. Exper-
imental results show that our framework achieves
consistent improvements over various baselines in
two ZSLP datasets. As the GramTransformer can
be considered as a text representation method, in
the future, we intend to explore its effectiveness on
other NLP tasks including text classification.

8 Limitations

When the surface name of relations is too long,
it means the scale of our build n-gram graph is
large, this way will influence the efficiency of graph
computation. In our work, we just proposed two
strategies to select the fixed number of nodes, this
way ignores the semantic information about the
nodes which are not selected. So in the future, we
will design a novel strategy to dynamically select
the node, and consider the computational problem
at the same time.

Acknowledgements

We would like to thank the anonymous reviewers
for their comments and suggestions, which helped
improve the quality of this paper. We also thank
Prof.Richong Zhang from Beihang University for
the inspiration of this topic. SM and NA are sup-
ported by a Leverhulme Trust Research Project
Grant (No. RPG-2020-148).

References
Wasi Uddin Ahmad, Nanyun Peng, and Kai-Wei Chang.

2021. Gate: Graph attention transformer encoder
for cross-lingual relation and event extraction. In

2506

The Thirty-Fifth AAAI Conference on Artificial Intel-
ligence (AAAI-21).

Ivana Balažević, Carl Allen, and Timothy M
Hospedales. 2019. Tucker: Tensor factorization
for knowledge graph completion. arXiv preprint
arXiv:1901.09590.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of
data, pages 1247–1250.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. Advances in neural information pro-
cessing systems, 26.

Deng Cai and Wai Lam. 2020. Graph transformer for
graph-to-sequence learning. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7464–7471.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Yuxia Geng, Jiaoyan Chen, Zhuo Chen, Jeff Z Pan,
Zhiquan Ye, Zonggang Yuan, Yantao Jia, and Huajun
Chen. 2021. Ontozsl: Ontology-enhanced zero-shot
learning. In Proceedings of the Web Conference 2021,
pages 3325–3336.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Boer Lyu, Lu Chen, Su Zhu, and Kai Yu. 2021. Let:
Linguistic knowledge enhanced graph transformer
for chinese short text matching. arXiv preprint
arXiv:2102.12671.

Osman Asif Malik and Stephen Becker. 2018. Low-rank
tucker decomposition of large tensors using tensors-
ketch. Advances in neural information processing
systems, 31:10096–10106.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Pengda Qin, Xin Wang, Wenhu Chen, Chunyun Zhang,
Weiran Xu, and William Yang Wang. 2020. Gen-
erative adversarial zero-shot relational learning for
knowledge graphs. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages
8673–8680.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Andrea Rossi, Denilson Barbosa, Donatella Firmani,
Antonio Matinata, and Paolo Merialdo. 2021. Knowl-
edge graph embedding for link prediction: A com-
parative analysis. ACM Transactions on Knowledge
Discovery from Data (TKDD), 15(2):1–49.

Flávio Arthur O Santos, Thiago Dias Bispo, Hen-
drik Teixeira Macedo, and Cleber Zanchettin. 2021.
Morphological skip-gram: Replacing fasttext char-
acters n-gram with morphological knowledge. In-
teligencia Artificial, 24(67):1–17.

Yi Tay, Vinh Q Tran, Sebastian Ruder, Jai Gupta,
Hyung Won Chung, Dara Bahri, Zhen Qin, Si-
mon Baumgartner, Cong Yu, and Donald Metzler.
2021. Charformer: Fast character transformers via
gradient-based subword tokenization. arXiv preprint
arXiv:2106.12672.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869.

Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou, Ying
Wang, and Yi Chang. 2021. Structure-augmented
text representation learning for efficient knowledge
graph completion. In Proceedings of the Web Confer-
ence 2021, pages 1737–1748.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2021. Byt5: Towards a token-free
future with pre-trained byte-to-byte models. arXiv
preprint arXiv:2105.13626.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2014. Embedding entities and relations
for learning and inference in knowledge bases. arXiv
preprint arXiv:1412.6575.

Shaowei Yao, Tianming Wang, and Xiaojun Wan.
2020. Heterogeneous graph transformer for graph-
to-sequence learning. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7145–7154.

2507

a part ofInput:

Connect the n-gram graph

a p a r t

pa ar rt

par art

part

o f

of

a p a r t

pa ar rt

par art

part

o f

of

Step1

Step2

.

Figure 5: The building progress of n-gram graph about
relation "a part of"
.

9 Appendix

9.1 Hierarchical N-gram Graph Building and
Node Selection

Strategy node order

Strategy1 (a|p,a,r,t,pa,ar,rt,par,art,part|o,f,of|)

Strategy2 (a,p,a,r,t,o,f | pa,ar,rt,of | par,art| part)

Table 5: Node order of relation "a part of"

In our work, the n-gram graph from the word
level is called the word n-gram graph, and the n-
gram graph from the relation level is called the
relational n-gram graph (the surface name of the
relation contains more than one word). When the
surface name of the relation contains more than
one word, there are two challenges that need to be
solved. The first challenge is how to connect the
word n-gram graph to the relation n-grams graph.
For the second challenge, when the length of a
word is big or the number of words in a relation is
big (such as relation "concept: agricultural product
growing in state or province" in NELL), the rela-
tional n-gram graph will become very big, it is hard
for the machine to progress this graph.

To solve the first issue, we connect each word
n-gram graph by our proposed two relations. There
are two steps in the building of a relational n-gram
graph. Firstly, we split the relation by the space,
and build the n-gram for each word. In the sec-
ond step, we connect each word n-gram graph by
relation adjoint and compositional. As shown in
Figure.5, for the n-gram graph of first word "a", it
appears in the n-gram graph of "part", so it also
connects to "p" and "r".

For the second issue, in the relational n-gram
graph, we should consider the node order in the
first, this way can make sure the word does not

lose its internal order information, the node order
of the n-gram graph of the word "part" should be
"p,a,r,t,pa,ar,...", the order "p,pa,a,ar,r,t,..." is wrong.
After that, for considering the run effectiveness and
GPU memory, we select the fixed number of nodes
from left to right based on the order. Based on the
above discussion, we propose two strategies to help
order the node. As shown in Table 5.

In Strategy1, for each word n-gram graph, we
rank the node position based on the n in n-gram,
the position of all 1-gram nodes all come before
the 2-gram nodes. So, in the first, we list the 1-
gram nodes of relation "a part of", in the second,
we list the 2-gram nodes,.. In Strategy2, we list all
n-grams nodes for each word and then concatenate
these nodes together.

9.2 Out-of-Vocabulary

Strategy MRR hits@10 hits@5 hits@1

KGE-word 0.273 0.396 0.347 0.202

HNZSLP 0.289 0.413 0.359 0.222

Table 6: The model performance about the evaluation
of out-of-vocabulary problem in NELL-ZS

By analyzing the dataset of zero-shot link pre-
diction, we found some words in unseen relation
are not in the seen relation set, this issue will re-
duce the performance of tail entity inference. To
evaluate the effectiveness of our model, we pro-
pose a compared model KGE-word which directly
uses the traditional transformer to learn the word
information in the surface name of the relation and
then uses the KGE model TransE to infer the tail
entity. The results are shown in Table 6. By com-
paring with HNZSLP, we can see that using the
n-gram graph is better than the way which uses the
word information to calculate the relation informa-
tion. Our n-gram graph can capture the information
at different granularities, which is helpful for the
knowledge transfer between the seen relation and
unseen relation.

9.3 Node Selection Strategies

Strategy MRR hits@10 hits@5 hits@1

strategy1 0.282 0.403 0.350 0.216

strategy2 0.289 0.413 0.359 0.222

Table 7: The performance of HNZSLP in NELL-ZS
with different Node order strategies

In this section, we evaluate the performance of

2508

different node order strategies. For a fair compari-
son, we set 13-gram, the maximum node number
is 90, the epoch of training is 80, and the KGE
model is transE. In Table 7, the results show that
the performance of strategy2 is better than strat-
egy1, which shows that the lower grams are more
important than the higher grams.

2509

