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Abstract
Recent work on non-autoregressive neural ma-
chine translation (NAT) that leverages align-
ment information to explicitly reduce the
modality of target distribution has reported
comparable performance with counterparts that
tackle multi-modality problem by implicitly
modeling dependencies. Effectiveness in han-
dling alignment is vital for models that fol-
low this approach, where a token reordering
mechanism is typically involved and plays a
vital role. We review the reordering capability
of the respective mechanisms in recent NAT
models, and our experimental results show that
their performance is sub-optimal. We propose
to learn a non-autoregressive language model
(NALM) based on transformer which can be
combined with Viterbi decoding to achieve
better reordering performance. We evaluate
the proposed NALM using the PTB dataset
where sentences with words permuted in dif-
ferent ways are expected to have their order-
ing recovered. Our empirical results show that
the proposed method can outperform the state-
of-the-art reordering mechanisms under dif-
ferent word permutation settings, with a 2-27
BLEU improvement, suggesting high potential
for word alignment in NAT.

1 Introduction

Non-autoregressive neural machine translation
(NAT) (Gu et al., 2018) takes advantage of the
parallel architecture of transformer (Vaswani et al.,
2017) to alleviate the translation latency issue in
neural machine translation (NMT), achieving sig-
nificant speed-up. Yet it suffers from the multi-
modality problem, where a target token could be a
result of different possible translations. Word order
errors are often resulted as compared to the autore-
gressive counterparts (Du et al., 2021), arising from
the lack of dependency amongst target tokens in
NAT models.

Some recently proposed NAT models can
achieve comparable performance to autoregres-

sive models. This can be attributed to various ap-
proaches that reduce the dependency in handling
word order errors via word alignment mechanisms
(Gu and Kong, 2021). In particular, latent variables
and alignments have been adopted for implicitly
modelling the dependencies among the target to-
kens (Song et al., 2021). While the latent align-
ment approach assumes monotonic alignment be-
tween the source and target language pair when
handling token shifts in the output space (Gu and
Kong, 2021), explicit modality reduction methods
(Zhou et al., 2020; Shu et al., 2020; Ran et al.,
2021; Song et al., 2021) on the other hand sought
to directly align the source and target language pair.
Despite some previous work being sub-optimal, re-
cent work in this direction achieves state-of-the-art
(sota) results rivaling that of implicit dependency
modeling methods.

Establishing explicit alignment between tokens
in parallel sentences of source and target languages
typically involves fertility prediction and token re-
ordering prediction. In this paper, we focus on
the latter and argue that improving the reordering
performance can contribute greatly towards the per-
formance of NAT models. With the sole excep-
tion of Shu et al., 2020, architectural design of the
aforementioned NAT models includes a reorder-
ing sub-module as a key component. We therefore
set forward to review in detail the capabilities of
the various reordering mechanisms proposed in the
NAT models. We then propose a novel way to
achieve the reordering prediction by learning a non-
autoregressive language model (NALM) based on
transformer with Viterbi decoding (Viterbi, 1967)
combined.

We evaluated the reordering sub-modules ex-
tracted from the various NAT models and variants
of our proposed NALM using the PTB dataset
(Marcus et al., 1993) where sentences with words
permuted in different ways are expected to have
their ordering recovered. In particular, we adopt
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different degrees of permutation to mimic various
levels of monotonicity (or reordering difficulty)
between the source and target sentences. Our ex-
perimental results show that the proposed NALM
achieves significant and consistent improvement
compared to the reordering sub-modules extracted
from explicit modality reductionist NAT models in
all word permutation settings. Our experiment also
advances the sota performance of the word reorder-
ing task in low beam setting and achieves compara-
ble performance with autoregressive models even
in high beam setting (b=64) while maintaining a
constant time complexity.

2 Non-autoregressive Language
Modelling

In this section, we will first provide the formulation
of the word reordering task and then present our
proposed solution by taking a non-autoregressive
language modelling approach.

2.1 Problem definition
The word reordering problem is formulated as:

P (Y |Y ′) = P (y0, y1, ..., yT |yπ(0), yπ(1), ..., yπ(T ))
(1)

where Y ′ = yπ(0), yπ(1), ..., yπ(T ) is a permutation
of Y . We first follow the previous word reordering
work (Hasler et al., 2017), in which we remove the
permutation information and learn to recover the
order of sequence Y from the corresponding bag
of words {Y }. The formulation is thus revised as:

P (Y |{Y }) = P (y0, y1, ..., yT |{y0, y1, ..., yT })
(2)

where {y0, y1, ..., yT } denotes a set of Y . This can
be approximated as:

P (Y |{Y }) =
T∏

t=1

P (yt|yt−1, {Y }) (3)

so that each token’s probability is now conditioned
to the token immediately preceding it as well as to
the entire bag of tokens in the sequence.

2.2 NALM
The training setup of a standard transformer de-
coder in NMT naturally conforms to the above
formulation, as it learns the conditional probability
P (yt|yt−1, X). Since our model does not involve
translating from X to Y , the inter-attention layer
can thus be removed and the decoder becomes a

standard transformer encoder. However we still
need to include bag of words {Y } into our model-
ing. This can be achieved by replacing the causal
attention with full attention and removing the po-
sition embedding of the input in the model. We
further replace the output layer with a pointer net-
work to constraint the output space to only the
tokens (including repetition) within the concerned
sequence. The entire model is thus formulated as:

H = transformer(bos⊕ Y )

O = H · (Y ⊕ eos)
(4)

where bos and eos refer to the beginning and the
end of sentence tokens respectively. O is the output
of the pointer network. We train the model by
minimizing the cross entropy.

In the pointer network, we utilize the input
sequence as the vocabulary and output a non-
normalized matrix which can yield a probability
matrix via softmax (see Figure 1(e) and 1(f)). This
output probability matrix can be viewed as a trellis
containing the transition probabilities of each input
token to the rest of its neighbours. The optimal
path that traverses this trellis would guarantee the
most probable sequence of transitions using the
well-known Viterbi algorithm (Viterbi, 1967).

2.3 NALM-pos

The NALM learns a probability distribution of se-
quences which essentially allows its reconstruction
by considering the input as a bag of tokens. Yet,
modeling the underlying permutation mechanism
between sequences and their permutations could
also be useful for achieving better reordering. In
order to capture the mechanism as well, we extend
NALM with position information. Our extended
model NALM-pos learns the following probabili-
ties:

P (Y |Y ′) =
T∏

t=1

P (yt|y′t, Y ′) (5)

The advantage of P (Y |Y ′) over P (Y |{Y }) is that
it retains certain ordering information of the se-
quence albeit permutation from the ground truth
order. When much of the permutation order resem-
bles the ground truth order, retaining such position
information will significantly reduces the complex-
ity of the learning task. In NAT, the reordering
sub-module receives a transformed source sentence
as input, which generally still follows source word
order. The target of the sub-module on the other
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(a) ReorderNAT-r (Ran et al., 2021) (b) SNAT-r (Shu et al., 2020) (c) Distortion-r (Zhou et al., 2020)

(d) AligNART-r (Song et al., 2021) (e) NALM (f) NALM-pos

Figure 1: Architectures of the reordering components adopted in the existing works and our proposed models. For
example, ReorderNAT-r denotes the reordering mechanism in ReorderNAT.

hand follows the target word order. Yet, these word
orders are often shared between languages. The
more similar these orders are, the more monotonic
the two languages are. Even in less monotonic
language pair such as JA-EN, orders are shared to
some extent. This further accounts for the impor-
tance of incorporating position information.

3 Experimental Setup

We use the English Penn Treebank data (Marcus
et al., 1993) in our evaluation, preprocessed (in
various ways) as described in the section.

3.1 Data and evaluation
Following Hasler et al., 2017, we conduct exper-
iments on the data preprocessed as in Schmaltz
et al., 2016 for fair comparison.1 This dataset is
fully shuffled on the token level, and we refer it as
ptb2016. We further create 3 datasets based on the
preprocessed data to simulate reordering data that
would more likely be encountered in NAT align-
ment. They simulate reordering data of varying
difficulty. We start by ngramizing the sentences to
simulate phrases commonly found in phrase-based
statistical machine translation. We argue that the
different ordering between parallel sentences of
two languages involves predominantly movement

1We thank the authors for help to reproduce their results.

of these phrases (local orderings), and therefore per-
muting these ngrams will provide datasets which re-
semble better the challenges faced in real alignment
during NAT. We employ two methods in permut-
ing these ngrams, either by randomly permuting a
percentage of them (0.4 and 0.6), or by adjacently
displace-and-combine pairs of ngrams recurrently
based on a preset probability (0.5). We refer them
as the r04, r06 and d05 datasets respectively. We
use quadgram with backoff during ngramization
and ngrams with count above 2.

3.2 Model settings

For all the models, we follow the trans-
former_base_v3 hparams set as defined in ten-
sor2tensor (Vaswani et al., 2018). We train the
model with a total of 100k steps with a batch size of
65, 536. Evaluation is done via the t2t-bleu script
and we report case sensitive BLEU scores as well
as METEOR scores. Following Schmaltz et al.,
2016, we use a vocabulary of 16, 161 including
two different unk tokens.

We report model parameter size in Table 1
for reference and include short and long sam-
ples of reordering results in Tables 4 and 5
for comparison. We use 2 GTX 1080 ti for
model training in all our experiments and the
multistep function provided in tensor2tensor was
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used to overcome the memory problem posted
in training. Our source code is available at
https://github.com/colmantse/NALM.git

Model No. of parameters
ReorderNAT-r 27,177,472

SNAT-r 31,902,208
AligNART-r 37,418,496
Distortion-r 28,354,688

NALM 27,177,472
NALM-pos 27,177,472

Table 1: Models’ parameter size.

3.3 Benchmark models

We describe the reordering modules extracted from
the existing NAT models involved in the evalua-
tion as follow. We apply the Hungarian algorithm
(Kuhn, 1955) to the output matrix for all the re-
ordering modules to obtain the final order of the
permuted sequence.

ReorderNAT-r
The reordering module of ReorderNAT (Ran et al.,
2021) is a transformer decoder which we replace
with an encoder given the monolingual setting of
the word reordering task, otherwise unchanged.

SNAT-r
The SNAT (Shu et al., 2020) is an explicit modality
reductionist model. Its alignment mechanism is
achieved via latent regularization to the model’s
transformer decoder. We replace the decoder with
an encoder as suitable for word reordering task and
upon it implement the regularization.

Distortion-r
The distortion model (Zhou et al., 2020) makes
use of a distortion predictor to predict alignment
by taking encoder output as input. We retain their
encoder and distortion predictor for the word re-
ordering task, with the fertility predictor and the
decoder removed. In their work, they tried both ab-
solute position and relative position information in
their distortion predictor. We only experiment with
the relative position distortion predictor because of
its superior performance as reported.

AligNART-r
AligNART (Song et al., 2021) is currently the sota
method using the explicit NAT approach. Its per-
formance is also comparable to the sota in the field

Model BLEU Model BLEU
AR (beam=5) NAR
n-gram* 23.3 ReorderNAT-r 15.21
RNNLM* 24.5 SNAT-r 17.03
bag2seq* 33.4 AligNART-r 7.54
AttM* 34.89 Distortion-r 7.47
Transformer 34.14 NALM 35.86

NALM-pos 31.16

Table 2: BLEU scores for the word-ordering task on the
ptb2016 dataset. Other than AttM, whose performance
is reported from Tao et al., 2021, all previous works
(indicated by *) are reported from Hasler et al., 2017.
Autoregressive (AR) models are listed on the left while
non-autoregressive (NAR) models are listed on the right.

of NAT. For adaptation to the reordering task, we
remove the decoder as well as the duplication pre-
dictor and the grouping predictor in the aligner,
leaving only the permutation predictor. We use a
6-layer encoder to fit the task setting. We train
the adapted model only by minimizing the KL-
divergence, i.e. the permutation predictor loss in
the original work.2

4 Results

4.1 Word reordering on the Penn Treebank

Table 2 shows that NALM can outperform all other
reordering mechanisms adapted from the existing
NAT models by at least 8 BLEU. It furthermore sur-
passes the transformer baseline (b=5) by 1 BLEU.
Since this paper aims to study reordering mech-
anism in NAT, we do not include baseline trans-
former’s performance in higher beam settings, as
the lengthy decoding time would defeat the purpose
of fast and efficient NAT approaches. However
even when pitched against past works with higher
beam settings (e.g., b=64), NALM still compares. 3

Amongst the benchmark models, Song et al., 2021
fails to converge during training while Zhou et al.,
2020 fails to recover any meaningful ordering even
when fully trained. The disappointing performance
of the adapted reordering mechanisms can be at-
tributed to their deficiency in recovering sequences
from random ordering, and suggesting a heavy re-
liance on shared local orderings between the input
and output sequences. Notably, the performance of
NALM-pos is not as good as that of NALM. This
illustrates that reordering models clearly expect

2We thank the authors for help on the reimplementation.
3bag2seq (b=64) was 36.2, 0.34 BLEU higher than ours.
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the aforementioned shared local orderings. When
the said ordering information is removed, posi-
tional information, considered by NALM-pos and
all adapted models, would only confuse learning
and hamper performance.

4.2 On different degrees of permutation

The previous experiment assumes that input is shuf-
fled at the token level. To evaluate on ordering
tasks that better reflect real reordering situations in
NAT alignment, we further conduct testing on r04,
r06 and d05 datasets which permute the dataset at
n-gram level. Table 3 shows that NALM-pos’s per-
formance leads all other adapted reordering mech-
anisms by at least 11 BLEU. According to the ex-
perimental results, the more permuted the data, the
poorer the performance of all the models, except
NALM, which is invariant to input permutation. In-
terestingly, this simple design already outperforms
all other adapted mechanisms for all datasets by
2-10 BLEU, showing great versatility in all set-
tings of word permutation. After augmenting it
with positional information, NALM-pos advances
performance further by 7-15 BLEU. We also report
METEOR score in this experiment, and it more or
less reflects the same trend as in BLEU.

We note that adapted reordering mechanism of
the sota NAT model does not perform well when
it stands alone, suggesting the need of further in-
vestigation. As for Zhou et al., 2020, upon closer
inspection, we find that their reordering mechanism
simply learns to copy. This also explains its poor
performance in the first experiment, as it simply
copied the random input permutation which score
terribly against the ground truth sequence.

5 Conclusion

In this paper, we review reordering mechanisms
of NAT models that directly model alignment us-
ing various settings of word permutation. We pro-
pose a non-autoregressive language model which
outperforms in low-beam and competes with in
higher-beam setting sota autoregressive models.
Our extended model further achieves significant im-
provement over all adapted NAT reordering mech-
anisms in datasets of varying difficulty that reason-
ably resemble the reordering task encountered in
NAT alignment. Performance of existing reorder-
ing mechanisms in NAT models vary according to
our experiment results, implying that more effort
would be required in this area.

Dataset Model BLEU METEOR
ReorderNAT-r 31.98 81.5
SNAT-r 33.53 82.9

r04 AligNART-r 23.97 75.9
NALM 35.86 83.6
NALM-pos 50.96 89.8
ReorderNAT-r 20.46 73.0
SNAT-r 24.11 76.6

r06 AligNART-r 29.48 78.4
NALM 35.86 83.6
NALM-pos 42.87 86.8
ReorderNAT-r 23.71 76.3
SNAT-r 25.89 78.3

d05 AligNART-r 20.52 72.8
NALM 35.86 83.6
NALM-pos 46.78 88.1

Table 3: BLEU and METEOR scores for the word re-
ordering task on the r04, r06, and d05 datasets. Sample
results are also provided in Tables 4 and 5 in appendix
A. Note that Distortion-r is removed from the table as it
learns only to copy from the input permutation.

6 Limitations

We acknowledge that our experiment is a simplifi-
cation to the real reordering problem in NAT align-
ment. Results can only partially reflect the capa-
bility of concerned models in optimal conditions.
A better experiment would be to include also sub-
word vocabularies in bilingual settings, with super-
vised reordering data. We leave this to our future
work.

References
Cunxiao Du, Zhaopeng Tu, and Jing Jiang. 2021. Order-

agnostic cross entropy for non-autoregressive ma-
chine translation. In Proceedings of the 38th Inter-
national Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research,
pages 2849–2859. PMLR.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.
Li, and Richard Socher. 2018. Non-autoregressive
neural machine translation. In 6th International Con-
ference on Learning Representations, ICLR 2018,
Vancouver, Canada, April 30-May 3, 2018, Confer-
ence Track Proceedings.

Jiatao Gu and Xiang Kong. 2021. Fully non-
autoregressive neural machine translation: Tricks of
the trade. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
120–133, Online. Association for Computational Lin-
guistics.

2331

https://proceedings.mlr.press/v139/du21c.html
https://proceedings.mlr.press/v139/du21c.html
https://proceedings.mlr.press/v139/du21c.html
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11


Eva Hasler, Felix Stahlberg, Marcus Tomalin, Adrià
de Gispert, and Bill Byrne. 2017. A comparison
of neural models for word ordering. In Proceed-
ings of the 10th International Conference on Natural
Language Generation, pages 208–212, Santiago de
Compostela, Spain. Association for Computational
Linguistics.

Harold W. Kuhn. 1955. The Hungarian Method for
the Assignment Problem. Naval Research Logistics
Quarterly, 2(1–2):83–97.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Qiu Ran, Yankai Lin, Peng Li, and Jie Zhou. 2021.
Guiding non-autoregressive neural machine transla-
tion decoding with reordering information. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
35(15):13727–13735.

Allen Schmaltz, Alexander M. Rush, and Stuart Shieber.
2016. Word ordering without syntax. In Proceedings
of the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2319–2324, Austin,
Texas. Association for Computational Linguistics.

Raphael Shu, Jason Lee, Hideki Nakayama, and
Kyunghyun Cho. 2020. Latent-variable non-
autoregressive neural machine translation with deter-
ministic inference using a delta posterior. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
34(05):8846–8853.

Jongyoon Song, Sungwon Kim, and Sungroh Yoon.
2021. AligNART: Non-autoregressive neural ma-
chine translation by jointly learning to estimate align-
ment and translate. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1–14, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Chongyang Tao, Shen Gao, Juntao Li, Yansong Feng,
Dongyan Zhao, and Rui Yan. 2021. Learning to
organize a bag of words into sentences with neural
networks: An empirical study. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1682–1691,
Online. Association for Computational Linguistics.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Fran-
cois Chollet, Aidan N. Gomez, Stephan Gouws, Llion
Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki Parmar,
Ryan Sepassi, Noam Shazeer, and Jakob Uszkoreit.
2018. Tensor2tensor for neural machine translation.
CoRR, abs/1803.07416.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

A. Viterbi. 1967. Error bounds for convolutional
codes and an asymptotically optimum decoding al-
gorithm. IEEE Transactions on Information Theory,
13(2):260–269.

Long Zhou, Jiajun Zhang, Yang Zhao, and Chengqing
Zong. 2020. Non-autoregressive neural machine
translation with distortion model. In Natural Lan-
guage Processing and Chinese Computing, pages
403–415, Cham. Springer International Publishing.

2332

https://doi.org/10.18653/v1/W17-3531
https://doi.org/10.18653/v1/W17-3531
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://ojs.aaai.org/index.php/AAAI/article/view/17618
https://ojs.aaai.org/index.php/AAAI/article/view/17618
https://doi.org/10.18653/v1/D16-1255
https://doi.org/10.1609/aaai.v34i05.6413
https://doi.org/10.1609/aaai.v34i05.6413
https://doi.org/10.1609/aaai.v34i05.6413
https://doi.org/10.18653/v1/2021.emnlp-main.1
https://doi.org/10.18653/v1/2021.emnlp-main.1
https://doi.org/10.18653/v1/2021.emnlp-main.1
https://doi.org/10.18653/v1/2021.naacl-main.134
https://doi.org/10.18653/v1/2021.naacl-main.134
https://doi.org/10.18653/v1/2021.naacl-main.134
http://arxiv.org/abs/1803.07416
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.1109/TIT.1967.1054010


A Appendix

Ground Truth Then he jumped into the market : “ I spent $ N million in the last half-hour . ”
Input permutation Then into the market jumped : he “ I spent $ N million . ” in the last half-hour

ReorderNAT-r Then the he : jumped market into “ I spent $ half-hour N million in ” last . the
SNAT-r Then he market jumped into : the “ I spent $ N million . in the last half-hour ”

AligNART-r Then into the : jumped he market “ I spent $ N million half-hour ” in the last .
Distortion-r Then into the market jumped : he “ I spent $ N million . ” in the last half-hour

NALM jumped into the market : Then he “ I spent $ N million in the last half-hour . ”
NALM-pos Then he jumped into the market : “ I spent $ N million in the last half-hour . ”

Table 4: Short samples from the r06 dataset.

Ground Truth “ The last crash taught institutional investors that they have to be long-term
holders , and that they ca n’t react to short-term events , good or bad , ” said
Stephen L. UNK , senior vice president for the pension consultants Wilshire
Associates in Santa Monica , Calif .

Input permutation that “ The last crash , ” said Stephen that L. have to be long-term holders , and
pension they ca n’t react to short-term events , good or Wilshire Associates in
taught UNK , senior vice president for the they consultants bad institutional
investors Santa Monica , Calif .

ReorderNAT-r “ The last , Santa crash , Stephen that said L. react that to have long-term holders ,
pension they and they ca n’t short-term to be events or good Wilshire Associates
in , taught bad senior vice president UNK consultants institutional investors for
the Monica , ” Calif .

SNAT-r “ The last , L. said bad investors that Stephen that have be react to long-term
crash , holders and they ca n’t short-term , pension they events good or Wilshire
Associates in UNK , senior taught vice president for the consultants , ” to
institutional Santa Monica Calif .

AligNART-r that that “ The last , crash , said pension Stephen L. to to the Associates be
consultants long-term n’t react ca short-term have events , investors or Wilshire
good holders taught UNK in , , senior ” president they they for bad institutional
and Santa Monica vice Calif .

Distortion-r that “ The last crash , ” said Stephen that L. have to be long-term holders , and
pension they ca n’t react to short-term events , good or Wilshire Associates in
taught UNK , senior vice president for the they consultants bad institutional
investors Santa Monica , Calif .

NALM events for that they ca n’t react to the long-term and that they have good institu-
tional investors last , senior vice president , Calif . ” said Stephen L. UNK , in
short-term holders , or bad Santa Monica , “ The consultants Associates taught
to be pension crash Wilshire

NALM-pos have to be long-term holders , and pension that “ The last crash , ” said Stephen L.
UNK , senior vice president for the consultants ca n’t react to short-term events ,
or bad institutional investors , Calif . Associates in Santa Monica Wilshire that
they taught they good

Table 5: Long samples from the r04 dataset.
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