
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 10671–10682
December 7-11, 2022 ©2022 Association for Computational Linguistics

The “Problem” of Human Label Variation:
On Ground Truth in Data, Modeling and Evaluation

Barbara Plank
Center for Information and Language Processing (CIS), MaiNLP lab, LMU Munich, Germany

Munich Center for Machine Learning (MCML), Munich, Germany
b.plank@lmu.de

Abstract

Human variation in labeling is often consid-
ered noise. Annotation projects for machine
learning (ML) aim at minimizing human la-
bel variation, with the assumption to maximize
data quality and in turn optimize and maxi-
mize machine learning metrics. However, this
conventional practice assumes that there ex-
ists a ground truth, and neglects that there ex-
ists genuine human variation in labeling due
to disagreement, subjectivity in annotation or
multiple plausible answers. In this position pa-
per, we argue that this big open problem of hu-
man label variation persists and critically needs
more attention to move our field forward. This
is because human label variation impacts all
stages of the ML pipeline: data, modeling and
evaluation. However, few works consider all of
these dimensions jointly; and existing research
is fragmented. We reconcile different previ-
ously proposed notions of human label varia-
tion, provide a repository of publicly-available
datasets with un-aggregated labels, depict ap-
proaches proposed so far, identify gaps and
suggest ways forward. As datasets are becom-
ing increasingly available, we hope that this
synthesized view on the “problem” will lead
to an open discussion on possible strategies to
devise fundamentally new directions.

1 Introduction

In Natural Language Processing (NLP) much
progress today is driven by fine-tuning large pre-
trained language models using an annotated dataset,
assumed to be representative for a target language
task of interest (Schlangen, 2021). This is analo-
gously so in Machine Learning (ML) and Computer
Vision (CV), where the target tasks differ, yet the
conceptual pipeline remains the same: data, mod-
eling, evaluation. Despite the importance of anno-
tated data—as it fuels all steps in this pipeline—a
crucial assumption of today’s learning systems is
to rely on a single gold label per instance. The gold

Figure 1: We propose the term human label variation to
capture the fact that inherent disagreement in annotation
can be due to genuine disagreement, subjectivity or
simply because two (or more) views are plausible.

label is obtained by aggregation (e.g. majority vote)
of labels crucially provided by humans.

The assumption of a ground truth (and taking
the majority vote or the ‘mode’ of the human judge-
ment distribution) makes sense when humans in-
volved in labeling highly agree on the answer to
the questions, such as “Does this image contain a
bird?”, “Is ‘learn’ a verb?”, “What is the capital
of Italy?". However, this assumption often does
not make sense—especially when language is in-
volved. For example, on questions determining a
word sense, questions such as “Is this comment
toxic?” or questions involving understanding indi-
rect answers to polar questions like “Q: Hey. Every-
thing ok?” “A: I’m just mad at my agent” (see more
examples in Figure 2). While some disagreement
is due to human labeling errors (cf. Figure 1 arrow
to the left and § 3), an increasing body of work has
shown that irreconcilable variation between annota-
tions is plausible and abundant (Plank et al., 2014b;
Aroyo and Welty, 2015; Pavlick and Kwiatkowski,
2019; Uma et al., 2021b) (illustrated in Figure 1).
The observed variation can indeed be disagreement
due to difficult cases, subjectivity or cases where
multiple answers are plausible (cf. § 2). We argue
that human label variation (HLV) provides rich in-
formation that should not be discarded. Critically,
to rely on a ground truth means we tacitly agree to
continue: i) to create datasets that encode a single
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ground truth, ii) to develop models that are opti-
mized towards a single preferred output, and iii) to
evaluate models against a single ground truth. By
continuing to do so, we might ask ourselves if we
are climbing the right hill–or whether continuing
to model a single ground truth hampers progress.

In this position paper, we argue that neglecting
variation in labeling is problematic, as it impacts
all steps of the pipeline. Traditionally, this varia-
tion has been considered a problem. We underline
emerging works that instead believe this issue to
be an opportunity. In fact, we believe it is essen-
tial to take human label variation into account for
progress. Human labels are bound to be scarce yet
at the same time critical as they provide human in-
terpretations and values. Therefore, embracing it is
necessary for human-facing NLP, i.e., technology
which is by and for humans; inclusive and reliable.
However, the research landscape is fragmented,
and approaches often focus on either steps of the
pipeline. Therefore, in this paper we focus on the
three core aspects of the pipeline: data, modeling
and evaluation. In particular, i) we distill some of
the on-going discussions in disparate (sub-)fields
and propose a unified term; ii) we present and work
out suggestions for each for the future; and iii) we
provide a comprehensive repository of publicly-
available data sets that allow studying human label
variation, and invite the community to contribute.

2 Data and Human Label Variation

High-quality data is essential for any empirical sci-
entific inquiry and has to satisfy the requirements of
validity and reliability (Krippendorff, 2018; Puste-
jovsky and Stubbs, 2012; Schlangen, 2021). How-
ever, for almost all tasks in NLP and CV irreconcil-
able disagreement between annotators has been ob-
served (Uma et al., 2021b). In light of this, the orig-
inal definition of data reliability is questionable—it
assumes labels follow a given standard. We might
ask which standard?

Human annotations are needed to ground and
make sense of language, images, speech etc. How-
ever, labelling data is difficult, particularly when
dealing with an object of study as complex as lan-
guage. Take the illustration in Figure 2 as example.
While categories exist, their boundaries are fluid,
or simply multiple options are plausible.

Disagreement or variation? We define human
label variation (HLV) as plausible variation in an-
notation, see Figure 1, to reconcile different no-

Figure 2: Hard cases. Image from (Uma et al., 2021b).

tions found in the literature (discussed next). We
prefer ‘variation’, because ‘disagreement’ implies
that two (or more) views involved cannot all hold.
In contrast, errors are annotation differences, due
to amongst others attention slips. Crucially, HLV

assumes humans usually provide their best judge-
ments, and variation emerges due to, e.g., ambi-
guity of the instance, uncertainty of the annotator,
genuine disagreement, or simply the fact that mul-
tiple options are correct. Aggregation obfuscates
this real-world complexity.

HLV has been studied in CV, where it is dubbed
human uncertainty (Peterson et al., 2019), as well
as in human-computer interaction (HCI) as dis-
agreement or contested labels (Gordon et al., 2021).
In NLP, variation has been acknowledged as anno-
tator disagreement already in early works on re-
solving disagreement (Poesio and Artstein, 2005),
particularly in pragmatics and discourse (de Marn-
effe et al., 2012; Webber and Joshi, 2012; Das et al.,
2017). HLV in NLP is discussed both from the lin-
guistic side as hard cases (Zeman, 2010; Plank
et al., 2014b), difficult linguistic cases (Manning,
2011), as judgements which are not always cat-
egorical (de Marneffe et al., 2012), inherent dis-
agreement (Pavlick and Kwiatkowski, 2019; Da-
vani et al., 2022) and justified and informative
disagreement (Sommerauer et al., 2020). Vari-
ation in NLP is also discussed in connection to
subjectivity, e.g., as a range of reasonable inter-
pretations (CrowdTruth) (Aroyo and Welty, 2015),
as one or many beliefs (Rottger et al., 2022), the
social dimensions of annotators like their demo-
graphic (Sap et al., 2019; Larimore et al., 2021;
Sap et al., 2022) and cultural backgrounds (Her-
shcovich et al., 2022), often discussed more gen-
erally as different perceptions in data perspec-
tivisim (Basile et al., 2021a; Wich et al., 2021).
Moreover, there is work that acknowledges that
multiple plausible answers are correct, such as
works on the collective human opinion (Nie et al.,
2020) influenced by seminal work that looks at
the human judgement distribution (Pavlick and
Kwiatkowski, 2019) who found plausible varia-
tion in at least 20% of their data. Earlier work on
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veridicality also made this point (de Marneffe et al.,
2012). The fact that multiple plausible annotations
exist has also been put forward as a range of ac-
ceptable annotations (Palomaki et al., 2018). The
known variation in annotation for subjective tasks
is at least a decade old (Alm, 2011). They suggest
that in the absence of a real ‘ground truth’, accept-
ability may be a more useful concept than ‘right’
and ‘wrong’. Capturing the HLV, instead of the
global majority, aligns with this viewpoint.

Open issues and our suggestions To make
progress, we need to i) collect and release
annotator-level (un-aggregated) labels, ii) docu-
ment dataset creation, and iii) include as much
meta-data as possible. In particular, we urge
the community to release annotator-level (un-
aggregated) labels–even if only for a small subset
of the data–and thus we echo Basile et al. (2021b)
and Prabhakaran et al. (2021) (also in Denton et al.
(2021)) who independently raised this point as well.

As a concrete starting point, we provide a com-
prehensive overview of existing datasets with mul-
tiple annotations in the appendix, which we release
as a github repository to encourage uptake. More-
over, if possible to release responsibly, besides mak-
ing data statements of datasets available (Bender
and Friedman, 2018), we encourage the commu-
nity to include annotator-level background infor-
mation (Prabhakaran et al., 2021) and document
the annotation process (Geiger et al., 2020). In
general, we believe there is high value in releasing
any meta-data available (ideally on the instance
level, e.g. source, time of document, annotator ids,
annotation completion time etc). For example, in a
recent study we created a new relation extraction
corpus with instance-level flags of annotator uncer-
tainty proving valuable for evaluation (Bassignana
and Plank, 2022). Similarly, we asked the annotator
to provide free-text rationales of relations, which
recently was also put forward in Borin (2022), re-
ferring to earlier work on collecting annotator ra-
tionals during annotation (McDonnell et al., 2016).

We believe that the more, richer datasets be-
come available, the more insights can be generated
into the capabilities of models and their limitations.
New algorithms may emerge capable of learning
from fewer but richer sources. On a related line,
collecting multiple annotations calls for research
in estimating data quality and revisiting agreement
measures; e.g., new measures for multiple-labels
were recently proposed (Marchal et al., 2022).

3 Modeling and Human Label Variation

There is a growing literature on methods on how
to deal with HLV in learning. We categorize them
into two camps: those that resolve variation, and
those that embrace it. We will draw connections
to surveys and the emerging literature, and discuss
adoption of methods as well as gaps.

The first big camp of research aims at resolving
human label variation and includes: 1) Aggrega-
tion and 2) Filtering. It considers HLV as “prob-
lematic” or “noisy”. Consequently, a single (ag-
gregated) label is obtained with presumably high
agreement as the ground truth. Aggregation is per-
formed via majority voting or probabilistic aggre-
gation methods, see Paun et al. (2022) for a survey
and seminal works (Dawid and Skene, 1979; Qing
et al., 2014; Artstein and Poesio, 2008). Aggrega-
tion is still the most widely-adopted solution for the
problem today. However, aggregation by definition
allows only one belief/label/category. This is very
limiting, as often it is not just about disagreement
or matter of subjectivity, but multiple options being
plausible. Filtering methods are advocated by some
with the idea to remove data instances with low
agreement (Reidsma and Carletta, 2008; Reidsma
and op den Akker, 2008; Beigman Klebanov et al.,
2008; Beigman and Beigman-Klebanov, 2009).
However, only using high-agreement instances can
yield worse performance (Jamison and Gurevych,
2015) and it wastes data.

The second camp of research instead aims at
embracing human label variation. Two broad di-
rections include: 3) Learning from un-aggregated
labels (directly), or 4) Enriching gold with human
label variation. With regard to learning from un-
aggregated labels, methods of varying complex-
ity exist, from model-agnostic methods such as
repeated labeling (Sheng et al., 2008) used by
e.g. de Marneffe et al. (2012), to architecture-
specific choices, e.g., adding a crowd layer (Ro-
drigues and Pereira, 2018), learning from soft la-
bels (Peterson et al., 2019) and more; see the
survey of Uma et al. (2021b). So far learn-
ing from un-aggregated labels directly has shown
greater promise in classification tasks in CV than
in NLP (Uma et al., 2021b) (evidence is scarce, see
open issues). Within NLP, a more studied direction
is currently to enrich the gold label with human
label variation, i.e., to learn from both the gold
and the un-aggregated labels. Methods in this cate-
gory can be seen as part of the broader set of well-

10673



Figure 3: NLP Resource papers per publication year,
counting publicly-available datasets released with hu-
man label variation (multiple annotator-labels per in-
stance), cf. details in Table 1 in the Appendix.

known regularization methods in ML, and for NLP
include e.g., cost-sensitive loss weighting (Plank
et al., 2014a), variants of multi-task learning (Cohn
and Specia, 2013; Fornaciari et al., 2021; Davani
et al., 2022), or sequential fine-tuning (Lalor et al.,
2017). These methods further differ in how they
use un-aggregated labels, i.e., as confusion matri-
ces estimated from a small sample (Plank et al.,
2014a), as annotator-level auxiliary tasks requiring
the full data with multiple labels (Cohn and Specia,
2013; Davani et al., 2022), or as single “soft-label”
auxiliary task that captures the per-instance human
label distribution (Fornaciari et al., 2021).

Open issues and our suggestions Undoubtedly,
there is increasing interest in studying methods to
learn with human label variation (see Figure 3 for
our analysis of research papers). However, exist-
ing research is fragmented across (sub)-disciplines.
We identify at least three diverse areas within NLP,
with little to no overlap (as shown in Table 1 in
the Appendix), focusing respectively on: subjec-
tivity (Basile et al., 2021a) (pdai.info, SemEval
23), natural language inference (NLI) (Pavlick and
Kwiatkowski, 2019; Nie et al., 2020), and both
NLP and CV (JAIR & SemEval 21). To the best
of our knowledge, only the latter work and shared
task so far bridges across disciplines (Uma et al.,
2021b,a). Still, they focus on complementary NLP
tasks to the two previous initiatives. It is thus an
open issue to see whether tasks might need to have
specific properties to be suitable for one kind of
method over another. A comprehensive evalua-
tion is lacking. Studying transferability of methods
across problems is another interesting open issue.

Learning from HLV heavily depends on data la-
beled with multiple annotators. In some settings,
it might be difficult to obtain sizeable amounts of
such data (however, as seen in Section 2, more
datasets are emerging). Regarding learning, Lalor
et al. (2017) find that even small amounts of data

can be helpful in a sequential fine-tuning setup, as
also early work indicates (Plank et al., 2014a). An
open challenge is to find the right balance between
the amount of data collected and the number of an-
notators. Overall, we hypothesize that the richness
of information captured by human label variation
has the potential to reduce data size requirements
(possibly fewer instances but with more informa-
tion captured in the human label distribution). It
remains an open issue to connect with emerging
works on learning with different amounts of anno-
tation (Zhang et al., 2021), which can also lead to
novel architectures.

A related important challenge is to tease apart er-
rors from signal (e.g. Reidsma and Carletta, 2008;
Gordon et al., 2021). Work on annotation error
detection exists, cf. the very recent survey by Klie
et al. (2022) or Zhang and de Marneffe (2021). It
is though largely overlooked. This calls further for
theoretical work on the notion of an what consti-
tutes an error versus a hard case (Manning, 2011;
Webber and Joshi, 2012; Plank et al., 2014b). This
bears connections to emerging work in HCI, in
particular social computing (Gordon et al., 2021,
2022), who look at the perception of system errors
by humans, see also Section 4, and earlier work
in HCI on crowdsourcing that allows for some er-
rors (Krishna et al., 2016).

While embracing human label variation helps
to regularize learning, the connection to a broader
range of ML methods such as noise labeling or
calibration remains highly relevant and a source of
further inspiration (Goldberger and Ben-Reuven,
2016; Han et al., 2018b,a; Meister et al., 2020).
There are some initial studies that compare hu-
man disagreement with model confidence (Davani
et al., 2022). Overall, interest in calibration meth-
ods (Naeini et al., 2015; Guo et al., 2017) is increas-
ing (Desai and Durrett, 2020; Kong et al., 2020;
Jiang et al., 2021) to counter overconfidence of
neural classifiers (Meister et al., 2020). In con-
temporary work to this, we show that measuring
calibration to human majority given inherent dis-
agreements is theoretically and empirically prob-
lematic (Baan et al., 2022). As a first step, we
propose instance-level measures of calibration that
better capture the human label distribution. In fu-
ture, it remains to be seen how to best use human
label variation to make systems more trustworthy.

Finally, there is relevant interesting work that
more deeply looks at data during learning. In NLP,
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recent seminal work by Swayamdipta et al. (2020)
proposes data maps to investigate the behavior of a
model on individual instances during training (train-
ing dynamics). They show that training a system
on ambiguous instances identified via data maps
helps to generalizes better in out-of-distribution
evaluation (Swayamdipta et al., 2020). Building
on top of this work, Zhang and Plank (2021) show
that the instances at the boundary of hard and am-
biguous cases derived from small data maps aids
active learning. This is further evidence that human
uncertainty in labeling is beneficial for learning. It
remains to be seen whether training dynamics can
yield novel architectures for learning from HLV.

4 Evaluation and Human Label Variation

Evaluation is of critical importance in empirical
research fields such as ML, NLP and CV. It helps
to choose one system over another, and to measure
progress. However, current evaluation practices
typically use accuracy against a gold standard. In
many tasks this common practice is severely flawed.
It obfuscates the truth about the state of ML models.
It leaves a large gap between in-vitro and in-vivo
evaluation. HCI research has shown that metrics
are not aligned with reality; audits of algorithms’
performance have uncovered very poor results in
practice, and that this disconnect is indicative of a
larger disconnect on how ML and HCI researchers
evaluate their work (Gordon et al., 2021). We be-
lieve this is an important take-away for NLP. We
too often focus on single metrics, single compo-
nents of the pipeline, in other words, on myopic
in-vitro experimentation.

Open issues and our suggestions Despite the
increasing body of literature on methods for learn-
ing with HLV, a majority of the papers introducing
new methods strikingly evaluate against hard labels
(gold labels) (e.g. Rodrigues and Pereira, 2018; For-
naciari et al., 2021). If we want to take human label
variation seriously, we need to shift our attention to
evaluation that goes beyond hard labels (accuracy).
As accuracy of all models can be high (at times),
looking at only one metric (and, in fact a single—
argmax—prediction) gives no indication on how
reasonable a model is, yet alone how confident and
trustworthy it is.

Research in ML, CV and NLP has started to in-
centivize hard and soft label evaluation. Soft labels
compare the human label distribution to model out-
puts. Proposed soft metrics include: cross entropy,

to capture how well the model captures humans’ as-
sessment not just of the top label, which is used in
both CV (Peterson et al., 2019) and NLP (Pavlick
and Kwiatkowski, 2019); entropy correlation pro-
posed by Uma et al. (2020), to compute Pear-
son’s correlation between instance-level entropy
scores of human soft labels and model predictions;
Kullback-Leibler divergence-based evaluation (Nie
et al., 2020) (either KL or Jensen-Shannon). Others
instead started to evaluate against individual anno-
tators (Resnick et al., 2021; Davani et al., 2022),
measure F1 scores against data splits by differ-
ent annotator agreement levels (Leonardelli et al.,
2021; Damgaard et al., 2021), data splits based on
annotator clustering (Basile et al., 2021a), data
splits based on item difficulty based on entropy of
the label distribution and semantic distance (Jolly
et al., 2021), and data splits based on annotator
uncertainty flags (Bassignana and Plank, 2022).
Analogously as in Section 3, it is an open issue to
see whether tasks might need to have specific prop-
erties to be more suitable for one kind of evaluation
over another. In general, we need better evaluation
practices (besides soft and hard evaluation), par-
ticularly in light of the complexity of human label
variation—and the reasons it arises, which might
be due to uncertainty, background, task complexity,
intra-coder reliability etc; see Basile et al. (2021b)
and in particular Jiang and de Marneffe (2022) for
a discussion on disagreement sources; the latter
recently developed a taxonomy for disagreement
in natural language inference data.

5 Conclusions

In this paper, we outline that human label vari-
ation impacts all steps of the traditional ML
pipeline, and is an opportunity, not a problem.
To move forward, we argue for a more compre-
hensive treatment of HLV, which considers all
steps, to enable innovation: data, modeling and
evaluation. To do so, and truly move beyond the
current in-vitro setups, we need an open, inter-
disciplinary discussion. We hope to contribute
to this discussion, and stipulate research with
the released repository: https://github.com/
mainlp/awesome-human-label-variation.1

1The repository contains the datasets in Appendix 1 as
a starting point. This is, to the best of our knowledge, the
most comprehensive list of datasets with un-aggregated labels
available today. We encourage readers to contribute. They are
further invited to join the SemEval 2023 shared task LeWiDi:
https://le-wi-di.github.io/
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Limitations

This position paper tries to be succinct while aim-
ing at synthesizing a very broad notion—human
label variation—that affects all steps dealing with
learning from annotated data. Therefore, this po-
sition paper is necessarily incomplete, as is the
dataset repository that is provided. However, we
hope that the repository and paper will lead to an
open discussion and community uptake, as this is
a big open issue and necessitates a broader, inter-
disciplinary treatment.

Ethics Statement

Modeling human label variation is connected to
social bias, as annotator backgrounds influence an-
notations and consequently both machine learning
and evaluation. Therefore it is important to be
aware of possible social implications of some of
the technologies discussed here. Inevitably there
is potential for dual use, as amplifying the voice
of some might harm others. However, there are
social opportunities, as modeling human label vari-
ation allows to include the voices of more groups,
and even the very underrepresented. In a world
where the majority view dominates, these would
otherwise be left behind.
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https://github.com/mainlp/CrossRE

(Dumitrache et al., 2019) Frame Disambiguation https://github.com/CrowdTruth/
FrameDisambiguation

(Snow et al., 2008) RTE (recognizing textual entailment; 800
hypothesis-premise pairs) collected by (Dagan
et al., 2005), re-annotated; includes further
datasets on temporal ordering, WSD, word
similarity and affective text

https://sites.google.com/site/
nlpannotations/

✓

(Pavlick and Kwiatkowski,
2019)

NLI (natural language inference) inherent dis-
agreement dataset, approx. 500 RTE instances
from (Dagan et al., 2005) re-annotated by 50
annotators

https://github.com/epavlick/
NLI-variation-data

(Nie et al., 2020) ChaosNLI, large NLI dataset re-annotated by
100 annotators

https://github.com/easonnie/
ChaosNLI

(Demszky et al., 2020) GoEmotions: reddit comments annotated for
27 emotion categories or neutral

https://github.com/
google-research/google-research/
tree/master/goemotions

✓

(Ferracane et al., 2021) Subjective discourse: conversation acts and
intents

https://github.com/elisaF/
subjective_discourse

(Damgaard et al., 2021) Understanding indirect answers to polar ques-
tions

https://github.com/friendsQIA/
Friends_QIA

(de Marneffe et al., 2019) CommitmentBank: 8 annotations indicating
the extent to which the speakers are committed
to the truth of the embedded clause

https://github.com/mcdm/
CommitmentBank

(Kennedy et al., 2020) Hate speech detection https://huggingface.co/
datasets/ucberkeley-dlab/
measuring-hate-speech

✓ ✓

(Dinu et al., 2021) Pejorative words dataset https://nlp.unibuc.ro/resources or
http://pdai.info/

✓

(Leonardelli et al., 2021) MultiDomain Agreement, Offensive language
detection on Twitter, 5 offensive/non-offensive
labels; also part of LeWiDi SemEval23

https://github.com/dhfbk/
annotators-agreement-dataset/

✓ ✓

(Cercas Curry et al., 2021) ConvAbuse, abusive language towards three
conversational AI systems; also part of
LeWiDi SemEval23

https://github.com/amandacurry/
convabuse

✓ ✓

(Liu et al., 2016) Work and Well-being Job-related Tweets, 5
annotators

https://github.com/Homan-Lab/pldl_
data

✓

(Simpson et al., 2019) Humour: pairwise funniness judgements https://zenodo.org/record/5130737 ✓
(Akhtar et al., 2021) HS-brexit; New LeWiDi-23 shared tast dataset

on Abusive Language on Brexit and annotated
for hate speech (HS), aggressiveness and of-
fensiveness, 6 annotators

https://le-wi-di.github.io/ ✓ ✓

(Almanea and Poesio,
2022)

ArMIS; New LeWiDi-23 shared tast dataset
on Arabic tweets annotated for misogyny de-
tection

https://le-wi-di.github.io/ ✓

CV
(Rodrigues and Pereira,
2018)

LabelMe: Image classification dataset with 8
categories, re-annotated

http://fprodrigues.com/
/publications/deep-crowds/

✓ ✓

(Peterson et al., 2019) Cifar10H: Image classification with 10 cate-
gories, re-annotated

//github.com/jcpeterson/cifar-10h ✓ ✓

(Cheplygina and Pluim,
2018)

Medical lesion classification challenge, 6 an-
notators each

https://figshare.com/s/
5cbbce14647b66286544

Table 1: Overview of publicly-available datasets with HLV data (see repository for updates and to contribute:
https://github.com/mainlp/awesome-human-label-variation). ✓: whether the source was used in broader
empirical evaluations, e.g., the JAIR survey on learning from disagreement (Uma et al., 2021b), is listed on pdai.
info (Basile et al., 2021a) (as of June, 2022), is part of the SemEval 2021 task on learning from disagreement (Uma
et al., 2021a), is used in a TACL paper on learning beyond majority vote (Davani et al., 2022), is used in the SemEval
2023 shared task on Learning With Disagreement LeWiDi https://le-wi-di.github.io/.
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