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Abstract

In a practical real-world scenario, the long-
standing goal is that a universal multilingual
translation model can be incrementally updated
when new language pairs arrive. Specifically,
the initial vocabulary only covers some of the
words in new languages, which hurts the trans-
lation quality for incremental learning. Al-
though existing approaches attempt to address
this issue by replacing the original vocabu-
lary with a rebuilt vocabulary or construct-
ing independent language-specific vocabular-
ies, these methods can not meet the following
three demands simultaneously: (1) High trans-
lation quality for original and incremental lan-
guages, (2) low cost for model training, (3)
low time overhead for preprocessing. In this
work, we propose an entropy-based vocabulary
substitution (EVS) method that just needs to
walk through new language pairs for incre-
mental learning in a large-scale multilingual
data updating while remaining the size of the
vocabulary. Our method has access to learn
new knowledge from updated training samples
incrementally while keeping high translation
quality for original language pairs, alleviating
the issue of catastrophic forgetting. Results of
experiments show that EVS can achieve better
performance and save excess overhead for in-
cremental learning in the multilingual machine
translation task.1

1 Introduction

Multilingual neural machine translation (NMT)
aims at performing multi-directional translation
with a single model. Due to its effectiveness and ef-
ficiency, it has attracted intensive attention in recent

∗Corresponding authors: Peng Li (lipeng@air.tsinghua.
edu.cn) and Yang Liu (liuyang2011@tsinghua.edu.cn)

1https://github.com/koukaiu/evs

years (Firat et al., 2016; Johnson et al., 2017; Gu
et al., 2018; Wenzek et al., 2021; Goyal et al., 2022).
Typically, a multilingual NMT system is trained
on a multilingual parallel corpus covering all the
interested language pairs. As a result, the work
of preparing and optimizing the characteristics of
the training corpus makes it cumbersome and time-
consuming to extend an existing multilingual NMT
system to support new language pairs (Dabre et al.,
2020).

The stream of data evolves over time by adding
new language pairs in the real-world scenario. Due
to the high-cost of GPU resources, an efficient
way is to incrementally train the initial transla-
tion model, instead of training the model from
scratch every time when the new language pairs
arrive (Neubig and Hu, 2018; Lakew et al., 2018;
Chronopoulou et al., 2020; Garcia et al., 2021). In-
cremental learning is a potential solution, which
allows neural models to learn new knowledge from
updated training samples while inheriting the origi-
nal knowledge (Kirkpatrick et al., 2017; De Lange
et al., 2019; Yin et al., 2022). Therefore, the high-
cost of incorporating new languages in multilingual
NMT models can be alleviated with the incremen-
tal training paradigm.

The main challenge in incremental learning
is catastrophic forgetting (French, 1993). More-
over, an inevitable part of the incremental learning
paradigm for multilingual NMT is how to deal with
vocabulary (Dabre et al., 2020; Garcia et al., 2021).
A certain amount of the “out-of-vocabulary (OOV)”
tokens (<UNK>) will appear in the incremental
training samples if we directly utilize the initial
vocabulary. This situation will hurt the translation
performance naturally (Zhang et al., 2022).

Previous approaches (Chronopoulou et al., 2020;
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Garcia et al., 2021) attempt to address this problem
by replacing the initial vocabulary with a new vo-
cabulary. However, these methods suffer from the
following two challenges in a further complicated
scenario: (1) Excessive time cost in preprocessing,
and (2) More OOV tokens on original language
pairs. In particular, the former is due to the re-
built processing of vocabularies with the standard
Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
or Sentencepiece Model (SPM) (Kudo and Richard-
son, 2018) procedures on the sum of the initial and
incremental training data. And the latter is due to
the diversity between the incremental and original
languages (Tan et al., 2019).

Another intuitive and simple scheme for vocab-
ularies is to expand the embedding layers of orig-
inal NMT models directly (Lakew et al., 2018).
However, growing tokens lead to representation
sparsity, which may hurt neural translation model
learning (Sennrich and Zhang, 2019; Ding et al.,
2019). More importantly, as the data continues to
be updated rapidly, the embedding size will grow
uncontrollably. Both the memory and time over-
head increase relentlessly and it is not a sustainable
strategy.

In this work, considering the diversity of lan-
guages, we construct a further complicated and
comprehensive setting for incremental learning in
multilingual NMT. Due to the dissimilar scripts
and diverse language branches, there is a little to-
ken overlap (about a quarter) between the original
and rebuilt vocabularies. To alleviate this issue, we
propose an entropy-based vocabulary substitution
(EVS) method to retain the learned knowledge
from the original translation model with minimiz-
ing the case of <UNK> tokens in texts and is suit-
able for multilingual translation settings. Moreover,
our proposed method maintains the same embed-
ding size with the original vocabulary for incremen-
tal learning, and does not expand the size of the
initial model to keep the memory and time costs of
NMT models.

To sum up, our contributions are as follows:

• We propose an entropy-based vocabulary sub-
stitution method to alleviate the issue of low
token overlap between the initial vocabulary
and the rebuilt vocabulary.

• Our method can retain the previously-learned
knowledge from the original translation model
and learn new knowledge from updated train-
ing samples incrementally.

• Experiments show that our method can retain
the translation performance on original lan-
guage pairs while achieving high translation
qualities for new incremental language pairs
without the excess overhead.

2 Related Work

Past works develop a universal translation model
to provide high-quality translation service between
any pair of languages (Firat et al., 2016; Johnson
et al., 2017; Gu et al., 2018). They leverage knowl-
edge transfer techniques to train neural translation
models on a set of languages. The shared knowl-
edge enables the set of languages to help each other
(Dong et al., 2015; Firat et al., 2016; Zoph and
Knight, 2016). While these approaches are trained
on initially selecting a set of languages. The multi-
lingual models need to be retrained when incorpo-
rating new languages or data.

Previous approaches study how to adapt a ma-
chine translation model to new languages from an
updated stream of data timely (Zoph and Knight,
2016; Lakew et al., 2019) by incremental learn-
ing. Neubig and Hu (2018) presents two strategies
that can rapidly adapt the translation model to new
low-resourced languages. And some approaches
attempt to improve the translation qualities of pre-
trained multilingual machine translation models,
which incorporate new data (Bapna and Firat, 2019;
Tang et al., 2020). Escolano et al. (2021) leverages
the language-specific encoders and decoders to in-
crementally extend a neural translation model from
bilingualism to multilingualism.

However, the situation is further complicated,
in which the vocabulary needs to be updated in
order to avoid the issue of OOV tokens. Lakew
et al. (2018) extends the initial model to adapt new
languages by a dynamic vocabulary. Chronopoulou
et al. (2020) rebuilds a vocabulary from the sum of
initial and updated training data with the standard
BPE or SPM procedures.

Garcia et al. (2021) constructs an additional vo-
cabulary to replace the initial vocabulary with the
same setting of the initial procedure from a new
language. However, the translation quality will de-
crease dramatically for original languages if the
rate of token overlap is low between the initial
and additional vocabulary. It is not suitable for
the situation where the incremental languages are
not related to the original languages. Different
from previous works, our proposed method utilizes
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an entropy-based vocabulary substitution strategy
with the minimum-cost reconstruction to alleviate
the issue of low token overlap. The method can ef-
fectively adapt to large-scale updated training data
by incremental learning, without the superfluous
time and memory overhead.

3 Background

Multilingual NMT utilizes a single encoder-
decoder model to handle different translation direc-
tions by jointly training on the multilingual parallel
dataset. To achieve better translation performance
in multilingual training, we share the embeddings
for the encoder and decoder embedding layers. To
indicate the target language, a prepending language
token is appended to each source sentence (Johnson
et al., 2017). Formally, given the source sentence
x′ = (x1, x2, ..., xI), the modified source sentence
is represented as x = (li, x1, x2, ..., xI). li repre-
sents the target language. And its target sentence
is represented as y = (y1, y2, ..., yJ). A sequence
of word embeddings e(x) is fed into the encoder
component. The probability of a target sentence is
given by:

p(y|x; θ) =
J∏

j=1

p(yi|y<j,x; θ) (1)

where θ is a set of trainable parameters, y<j are the
generated words before the j-th step. To optimize
the trainable parameters θ, the training objective
for the multilingual NMT translation model is to
maximize the log-likelihood L with the parallel
training corpora P = {Dli}Li=1:

LP(θ) =
∑

Dli∈P

∑

(x,y)∈Dli

log p(y|x; θ) (2)

where D is the parallel training set on only one
language pair, L represents the available number
of language pairs.

4 Approach

In this work, we aim to leverage vocabulary sub-
stitution strategies to incrementally update the ini-
tial model when new language pairs arrive. The
previously-learned knowledge can be retained with
the token overlap between the initial vocabulary
and a new vocabulary, alleviating the issue of catas-
trophic forgetting. As a result, we present a variant
scheme for incremental learning in multilingual

Figure 1: The variant scheme for incremental learning in
multilingual NMT. The blue box represents the entropy-
based vocabulary substitution method.

machine translation, as shown in Figure 1, where
the substitution method does not change the size
of the initial vocabulary. Moreover, to improve the
efficiency and practicability of vocabulary substitu-
tion methods in the real-world scenario, our method
alleviates the issue of excessive time cost in pre-
processing. The subsequent subsections introduce
the definition of incremental learning in the multi-
lingual machine translation task and discuss how
to alleviate the new challenge in the complicated
setting.

4.1 Problem Formulation

As the stream of data is frequently being updated,
the number of language pairs L should be updated
and changed with time in the real-world scenario.
Therefore, it raises a new requirement for the multi-
lingual NMT task, which allows the original NMT
model to support new language pairs while retain-
ing the translation quality for original language
pairs. Formally, an initial multilingual NMT model
MP , originally trained on first selecting a set
of language pairs LP = {1, 2, ..., L}. The scope
is to extend MP to solve the multilingual NMT
task on a set of new languages LQ /∈ LP , with
LQ = {1, 2, ...,K}. And the optimization objec-
tive of the multilingual NMT model for incremental
learning is given by:

LP∪Q(θ) =
∑

Dl̂i∈P∪Q

∑

(x,y)∈Dl̂i

log p(y|x; θ) (3)
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Algorithm 1: Entropy-Based Vocabulary
Substitution
Input: Training corpora on all language

pairs D, an initial vocabulary VN ,
an incremental vocabulary VM

1 Merge vocabulary V = VN ∪ VM ;
2 Filter V → VS using Eq.4 on D ;
3 Initialize cost = [][0,1,2,...,m] ;
4 Initialize record = [][0,1,2,...,m] ;
5 //Loop all unduplicated words in the D ;
6 while t is OOV do
7 for r ← 0 to m do
8 min_cost = cost[t][r] ;
9 for l← 0 to r do

10 s = t[l : r] ;
11 if s in VS then
12 c = 0 ;
13 if l − 1 ≥ 0 then
14 c =cost[t][l − 1] ;

15 if min_cost = c then
16 min_cost = c ;
17 cost[t][r]= min_cost ;
18 record[r]= l ;

19 Replace t with t∗ by the record matrix

20 Rebuild the training data D → DS

where Q is the updated parallel training corpora
and Q = {DKi}Ki=1, K represents the number of
the updated language pairs for incremental learn-
ing. The initial number of language pairs L in-
creases by K and the combination of the initial
and incremental training corpora is represented by
N ∪M = {Dl̂i}L̂i=1.

4.2 Entropy-Based Vocabulary Substitution

Adopting the direct expansion method for vocabu-
laries, one suffers from the risk which increases the
difficulty and time-cost of model training. More-
over, a sustainable strategy is to fix the size of
vocabulary in the real-world scenario. Due to the
limited size of vocabulary, it is beneficial to retain
essential words and cover as many languages as
possible. To this end, we propose an entropy-based
vocabulary substitution method, which consists of
two components. In particular, we construct an
entropy-based vocabulary filter to keep the fixed
size of the merged vocabulary for incremental learn-
ing in multilingual machine translation and adopts

a substitution strategy with the minimum-cost to
address the challenge of OOV tokens.

Entropy-Based Vocabulary Filter. Figure 1 il-
lustrates the process of vocabulary substitution and
there will be some more subwords in the merged vo-
cabulary that do not overlap the initial one. As the
data continues to be updated rapidly, the merged
vocabulary size will grow uncontrollably. Both the
memory and time overhead increase relentlessly.
Thus we construct a vocabulary filter to fix the
size of the merged vocabulary. The filter adopts an
entropy-based word importance score to determine
whether the subword is retained. Information en-
tropy can be used as a measure of the complexity of
a system. We employ this thought to calculate the
complexity of a token in the multilingual scenario.
Formally, the entropy-based score represents the
mean information content of subwords in the paral-
lel corpora of different language pairs. In particular,
the entropy-based score is calculated as:

H(w) = − 1

mw

∑

l̂i∈L̂
fl̂i(w) log fl̂i(w) (4)

where fl̂i(w) presents the relative frequency of to-
ken w from the training corpus on the current lan-
guage l̂i, mw is the length of the current token,
L̂ represents all the available number of language
pairs, i.e., the sum number of initial and incremen-
tal language pairs. The entropy-based score repre-
sents the complexity of tokens in the multilingual
corpus. Discarding the tokens with higher scores
increases the chaos of the vocabulary, which makes
the translation model difficult to train. While dis-
carding the tokens with lower scores decreases the
diversity of the vocabulary, which causes the prob-
lem of OOV tokens. Thus, to balance the stability
and diversity of the rebuilt vocabulary, we choose
the words from both ends of the score list. Specifi-
cally, as an extreme case, if tokens only appear in
one language, the entropy-based score of this token
is zero. It indicates that they are irreplaceable in
their corresponding language. And we rerank the
score list that considers tokens with a value of zero
first.

Minimum-Cost Substitution. The Algorithm 1
also introduces a substitution strategy via a
minimum-cost path. As some tokens are discarded
by the entropy-based word importance score, these
tokens in corpora will be transferred into the
<UNK> token. It is detrimental to train neural
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translation models. Therefore, we propose a token
substitution strategy to reconstruct the discarded
tokens. A directed graph is constructed to represent
all the paths that make up the discarded tokens. The
nodes on the graph are reserved tokens in the rebuilt
vocabulary. We need to search for the minimum-
cost path which can recover the discarded tokens.
To reduce the time-cost of searching, we imple-
ment the minimum-cost path using the dynamic
programming algorithm. The tokens are further
fine-grained segmented with a minimum number
of subwords. This method not only addresses the
problem of OOV tokens but also maintains a rela-
tively short sentence length, which is beneficial to
model optimization.

5 Experiments

5.1 Datasets

To examine the translation quality for original and
incremental language pairs, we conduct experi-
ments on a popular multilingual machine trans-
lation benchmark (WMT-14) (Zhang et al., 2020)
as original languages and provide 7 additional lan-
guages considered for incremental adaption2. We
provide the statistics and details of datasets for orig-
inal and incremental languages in Appendix A.

Language Choice We further make a compli-
cated setting, compared with previous works for
adapting translation models to new languages. Past
works typically explore the situation of related lan-
guages that belong to similar language branches
or scripts to original languages. The initial model
allows access to data coming from 14 languages.
The 7 incremental languages are diverse with re-
spect to scripts and language branches, as shown
in Appendix A.2. And both the original and incre-
mental data come WMT training sets for reliable
quality.

5.2 Implementation Details

Baselines. For evaluation convincing and future
reproducibility, we re-implement a vanilla Trans-
formers (Vaswani et al., 2017) for original lan-
guages as the initial model. Then we compare
our proposed methods with three intuitive vocabu-
lary substitution baselines for incremental learning.
Either original and incremental datasets learn the
shared BPE model of 64k tokens using the Senten-

2https://www.statmt.org/

cepiece library3.

Unadapted: We build the vocabulary with the
standard BPE procedure from the initial parallel
training samples. And the multilingual translation
model is incrementally trained with the unaltered
vocabulary when new language pairs arrive.

Adapted (Garcia et al., 2021): We build a sup-
plementary vocabulary with the standard BPE pro-
cedure from only the updated parallel training sam-
ples when new language pairs arrive. Then the
original vocabulary is replaced with the supple-
mentary vocabulary. The embeddings for subword
tokens are reused in the intersection and the origi-
nal translation model is incrementally trained after
vocabulary adaptation.

Frequency-Based: The original vocabulary com-
bines with the supplementary vocabulary to form
an entire vocabulary. To keep the embedding size
of translation models, the entire vocabulary needs
to be truncated. And the frequency of words is an
important factor to consider which word should be
remained (Sennrich et al., 2016). Therefore, the
truncation is based on the frequency of words in all
data from high to low.

Training Setup. We implement our experiments
using the open-source toolkit fairseq4 (Ott et al.,
2019) which is an advanced neural network library.
For a fair comparison, we use Transformers as the
basis of multilingual NMT models and follow the
configuration of Transformer-Big (Vaswani et al.,
2017). We provide more details on the model train-
ing in Appendix B.

Evaluation. We evaluate the translation quality
of models by the detokenized SacreBLEU score
(Post, 2018)5. We report the average ∆BLEU on
each of three (Low/Med/High) groups for original
languages (WMT-14) to indicate the degradation
situation of each model. And we also report aver-
age BLEU scores on both original and incremental
languages to show the overall performance of each
method. We utilize beam search decoding with a
beam size of 4 and a length penalty of 1.0.

3https://github.com/google/sentencepiece
4https://github.com/pytorch/fairseq
5Signature: nrefs:1 | eff:no | tok:13a | smooth:exp |

version:2.1.0. English-Chinese: nrefs:1 | eff:no | tok:zh |
smooth:exp | version:2.1.0. English-Japanese: nrefs:1 | eff:no
| tok:ja-mecab | smooth:exp | version:2.1.0.
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Method
Original Lang-Pairs (∆BLEU) Incremental Lang-Pairs (BLEU)

LOW MED. HIGH AVG. Ja-En Pl-En Km-En Is-En Ps-En Ha-En Ta-En AVG.

Unadapted 1.04 0.16 0.33 0.56 18.74 31.44 8.36 32.84 15.13 15.89 19.73 20.32
Adapted -6.87 -11.04 -20.54 -13.09 18.94 31.05 11.45 33.22 14.39 15.58 19.93 20.66
Frequency-Based 0.46 0.02 0.09 0.22 12.98 21.78 4.08 23.97 8.59 11.50 12.85 13.68
EVS (Ours) 1.04 -0.08 -0.13 0.34 19.00 31.66 11.48 32.91 15.38 16.17 20.14 20.96

Table 1: Results on WMT-14 (original) and incremental languages for xx-to-English. Note that ∆BLEU for original
languages (WMT-14) represents the changes in performance of each method compared with the initial model. The
highest score for incremental language pairs is highlighted in bold.

Method
Original Lang-Pairs (∆BLEU) Incremental Lang-Pairs (BLEU)

LOW MED. HIGH AVG. En-Ja En-Pl En-Is En-Ps En-Ha En-Ta AVG.

Unadapted -0.24 -0.40 -0.39 -0.33 12.91 26.64 20.04 4.62 13.30 9.48 14.50
Adapted -12.68 -19.05 -24.24 -21.00 13.18 26.88 20.73 3.89 13.01 10.49 14.69
Frequency-Based -0.87 -0.68 -0.41 -0.65 8.38 9.56 8.03 1.15 5.62 1.43 5.70
EVS (Ours) -0.12 -0.47 -0.45 -0.32 13.14 26.96 20.17 5.20 13.54 9.57 14.76

Table 2: Results for the English-to-xx. The highest score for incremental language pairs is highlighted in bold.

5.3 Results

Main Results.

As shown in Table 1 and Table 2, our proposed
method obtains a better translation quality for both
En-xx and xx-En directions in most incremental
language pairs, compared with several vocabulary
substitution baselines. And considering perfor-
mance for all language pairs, our method achieves
the state-of-the-art performance with respect to the
average BLEU scores (27.14 average BLEU on
xx-En and 21.32 average BLEU on En-xx). Al-
though the average performance with vocabulary
unadapted scheme (Unadapted) is also competitive,
this is due to the better performance on original
language pairs. The translation qualities of the
vocabulary unadapted scheme are worse than our
method for both En-xx and xx-En directions in all
incremental language pairs, especially in km→en
and en→ps translation directions.

We examine the translation quality using dif-
ferent vocabulary substitution methods for both
original and incremental language pairs. The result
shows the adapted substitution scheme performs
poorly for original language pairs, suffering from
catastrophic forgetting. And the frequency-based
vocabulary substitution method only shows compet-
itive performance for original language pairs. Due
to the different scales of training data among trans-
lation directions, the subwords with low frequency
will be discarded by the frequency-based method.
However, these subwords may play an important

role in the low-resource scenario. Comparing to the
above baselines with vocabulary substitution adap-
tation, our method achieves better performance for
both original and incremental language pairs simul-
taneously, showing that the entropy-based vocabu-
lary substitution method is effective for incremental
learning in multilingual machine translation.

Degradation on Vocabulary Substitution.

To measure the issue of catastrophic forgetting for
vocabulary substitution methods, we investigate
the translation quality of when the vocabulary is
modified. The results of degradation are shown
in Figure 2. The baseline is that the initial multi-
lingual translation model is trained incrementally
with the original vocabulary. Minor degradation
has occurred using vocabulary substitution meth-
ods in some of the original languages. In particular,
the degradation is more pronounced on English-to-
many translation direction. And the results show
that the similarity may not be necessarily related to
the performance of progress or degradation directly.
The performance on Estonian (et) drops slightly,
while the performance on Finnish (fi) improves.
For another group of similar language, the results
on German and French are both positive. Our pro-
posed method significantly alleviates the issue of
degradation compared with the other vocabulary
substitution methods. Notably, our approach even
outperforms the unadapted vocabulary on multiple
translation directions and does not incur degrada-
tion from the vocabulary substitution.
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Figure 2: Measuring degradation in BLEU after vocabulary substitution methods. The grey dashed line represents
the performance without vocabulary substitution. The curves represent the BLEU scores with incremental scheme.

Method Scheme
Original Lang-Pairs Incremental Lang-Pairs

xx→En xx←En xx→En xx←En

Unadapted
from-scratch 30.29 23.80 20.07 14.50
incremental 30.61 (+0.32) 24.44 (+0.64) 20.38 (+0.31) 14.50 (+0.00)

Adapted
from-scratch 16.61 3.62 20.39 14.65
incremental 16.96 (+0.35) 3.78 (+0.16) 20.66 (+0.27) 14.69 (+0.04)

EVS (Ours)
from-scratch 29.87 23.63 20.65 14.56
incremental 30.38 (+0.51) 24.35 (+0.78) 20.96 (+0.31) 14.76 (+0.20)

Table 3: Results on the original and incremental language pairs with different training schemes. The values in
parentheses represent the changes in performance between incremental learning and the model trained from scratch.
The highest score is highlighted in bold.

Incremental Learning and Training from
Scratch.

As shown in Table 3, we investigate the benefits
of incremental learning when multiple new lan-
guages arrive simultaneously, compared with mul-
tilingual machine translation models trained from
scratch. The results show that the incremental
learning scheme has a positive effect on transla-
tion qualities for all language pairs. In particu-
lar, comparing to the other vocabulary substitu-
tion methods, the incremental learning scheme
based on our proposed method achieves the greatest
progress (up to +0.52/+0.78 for original language
pairs on xx-to-En/En-to-xx translation direction;
up to +0.31/+0.29 for incremental language pairs
on xx-to-En/En-to-xx translation direction). Due to
the limitations of tokens coverage for original lan-
guages, our method incurs a slight decline on the
translation quality for the original languages, com-
pared with the unadapted vocabulary method. The
overall performance of our method is competitive.
More importantly, our proposed method has access

to learn new knowledge from updated training sam-
ples incrementally while inheriting the originally
learned knowledge, alleviating the issue of catas-
trophic forgetting. It is more efficient to utilize
incremental learning based on our proposed vo-
cabulary substitution strategy than the multilingual
machine translation model trained from scratch.

5.4 More Comparisons

We investigate the time and memory overhead of
our method, compared with the following stronger
incremental strategies based on vocabularies.

Oracle (Chronopoulou et al., 2020): A new vo-
cabulary is rebuilt with the standard BPE procedure
from all available training data. The overlap tokens
between the new dictionary and the original dictio-
nary inherit previously-learned knowledge.

Expansion (Lakew et al., 2018): we combine
the original vocabulary (VP ) and the incremen-
tal vocabulary (VQ) to form an entire vocabulary
V = VP ∪ VQ. The embeddings of the initial
translation model are expanded to the size of the
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Method Model Size↓ Avg.(BLEU)↑ Time Overhead

En←xx En→xx Preprocess (hours)↓ Training (hours)↓ Inference (tokens/s)↑
Oracle 243.49M 27.14 21.51 14.71 57.31 1780.01
Expansion 279.54M 26.99 21.68 5.02 82.77 1577.53
EVS (Ours) 243.27M 27.14 21.32 5.12 53.05 1787.62

Table 4: Time and memory overhead of vocabulary adaptations. "Inference" indicates the average speed of all
languages for English-to-xx directions at inference. The optimal value is highlighted in bold.

No. Filter Reconstruction Original Lang-Pairs Incremental Lang-Pairs

1 Frequency FMM 29.74 19.64
2 Frequency Minimum-Cost (ours) 30.06 20.07
3 Entropy (ours) FMM 29.76 20.57
4 Entropy (ours) Minimum-Cost (ours) 30.39 20.96

Table 5: Results on different substitution strategies for xx-to-English.

entire vocabulary (V) and are initialized with the
Gaussian distribution.

As shown in Table 4, our proposed method is
more efficient and practical than the other strong
baselines in the following three aspects: (1) No
additional parameter expansion, (2) minimum time
overhead on the procedure of preprocessing, train-
ing, and inference, (3) negligible performance de-
crease. As the data continues to be updated rapidly,
the embedding size will grow uncontrollably us-
ing the Expansion method. It is not sustainable in
the oracle setup, because the standard BPE proce-
dure is time-consuming on large-scale data. On
the contrary, our method is flexible and sustainable
without excess overhead for incremental learning
in the multilingual machine translation task.

5.5 Ablation Study

This paper proposes an entropy-based technique
for vocabulary adaptation, which consists of the vo-
cabulary filter and the minimum-cost substitution.
The technique can alleviate the issues in increment
of languages. While there are several potential
techniques to serve a similar purpose, e.g., the for-
mer max matching (FMM) algorithm (Cheng et al.,
1999) and frequency filter (inspired by (Sennrich
et al., 2016)). As shown in Table 5, we adopt differ-
ent combinations of these two techniques and our
proposed techniques to show the effectiveness of
our method.

The results show that the entropy-based vocabu-
lary filter and the minimum-cost strategy achieve
better performance on both original and incremen-
tal language pairs. Specifically, the entropy-based
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Figure 3: Loss curves of the training and validation
process with different vocabulary substitution methods
on the xx-to-English translation direction.

50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
3.4

3.5

3.6

3.7

3.8

3.9
Training Loss

50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
3.7

3.8

3.9

4.0

4.1

4.2
Valid Loss

Trained from scratch
Continual Learning

Figure 4: Loss curves of the updated translation model
trained from scratch and incremental learning with our
method on the xx-to-English translation direction.

filter has a positive effect on the incremental lan-
guages according to the comparison between 1 and
3. The minimum-cost has a positive effect on the
original languages between 1 and 2.

6 Analysis

Convergence of Models. We examine the con-
vergence process of the translation model which is
trained by different methods. We first depict the
loss curves of the training and validation process
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Method
Km→En Hi→En

OOV (%) BLEU OOV (%) BLEU

Unadapted 1.7 8.4 0.0 26.4
Adapted 0.0 11.5 40.8 13.5
Frequency-Based 17.0 4.1 0.2 25.4
EVS (Ours) 0.0 11.5 0.0 26.6

Table 6: Results on Hindi-to-English and Khmer-to-
English, where Hindi is the initial language and Khmer
is the incremental language. The OOV rate is counted
based on the training corpus.

with different vocabulary substitution methods on
the xx-to-English translation direction, as shown in
Figure 3. Comparing to the other vocabulary substi-
tution methods, our proposed method achieves the
minimum loss and can better incrementally train
the initial model. In particular, The loss value falls
the most sharply in the first 100K steps with our
method. This trend indicates that our method also
outperforms the other baselines with limited train-
ing time.

In addition, we investigate the loss curves of the
incremental translation model with our method to
analyze the effect of different learning schemes.
Figure 4 plots the results. We find that the incre-
mental learning scheme provides better optimiza-
tion than the model trained from scratch based on
our method because some parameters of the incre-
mental model do not need to be optimized from
scratch. It implies that our method can retain the
previously-learned knowledge from the original
translation model and learn new knowledge from
updated training samples incrementally.

Effects of OOV Rate. As shown in Table 6, we
investigate the effect of the OOV rate on both one
initial language pair and one incremental language
pair. The OOV rate may hint at the translation per-
formance before model training. The results show
that the method with a lower OOV rate achieves
higher translation qualities on all language pairs.
In particular, the average OOV rate decreases to
0% by our method.

Effects of Token Overlap. We investigate the
situation with a lower token overlap compared with
previous methods. And some of the incremental
languages have a very low rate of token overlap
with the original languages, which is a crucial fac-
tor to influence the translation qualities. We col-
lect that the rate of token overlap is less than 20%
between the incremental languages and the origi-
nal languages, as shown in Figure 5. Specifically,

Figure 5: Low rate of token overlap between the original
and incremental languages.

there is only 3.7% of tokens overlap between Tamil
and the group of old languages (Pashto is 2.4%,
Khmer is 0.3%). The results show that our method
achieves better performance on these languages
(Ta, Km and Ps) in Table 1 and Table 2. And our
methods

7 Conclusion

In this work, we propose an entropy-based vocab-
ulary substitution (EVS) method for incremental
learning in multilingual machine translation. And
we adopt the incremental learning scheme to learn
new knowledge from updated training samples
while keeping high translation quality for original
language pairs, alleviating the issue of catastrophic
forgetting. It is more efficient to utilize incremen-
tal learning based on the proposed method than
the model trained from scratch. Experimental re-
sults demonstrate that the proposed method can
also outperform several stronger baselines without
the excess time and memory overhead.

Limitations

Our proposed method attempts to extend an exist-
ing multilingual NMT system to support a group of
new language pairs with an acceptable expense. Be-
sides the advantages, our method has the following
limitations:

(1) Diversity of data. We just utilize the paral-
lel data in this work, not monolingual data. The
monolingual data is more readily available than
high-quality parallel data. It is necessary to investi-
gate the effect of monolingual data for incremental
learning in multilingual NMT.

(2) Only the English-Centric translation di-
rection. The translation directions are English-
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Centric for both the initial and incremental lan-
guages. However, a universal multilingual trans-
lation model needs to provide high performance
on non-English-centric translation direction in the
real-world scenario.

(3) The gap between the practical real-world
scenario and our experimental setting. Due to the
limited time and the lack of parallel datasets. We
only consider 7 incremental language pairs. More-
over, the multilingual NMT model just takes one
round of incremental learning, which is different
from the situation of constant data updating in the
real-world scenario.

The limitations come mainly from the scarcity of
data. The in-house data is sensitive, which causes
the difference between the real-world scenario and
the setting of this work. The incremental learn-
ing for the multilingual NMT task is still in its
infancy. The definition of this task is vague and
further studies will be beneficial. In the future, we
will alleviate the above mentioned limitations grad-
ually and further improve the practicability of the
NMT system in the real-world scenario.
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A Dataset Details

We conduct experiments on a popular multilin-
gual machine translation benchmark (WMT-14),
followed by (Zhang et al., 2020) as original lan-
guages. And we gather 7 additional languages for
incremental learning from the WMT news transla-
tion track. We provide the statistics and of these
dataset used in this work. In addition, we intro-
duce the characteristics of languages to analyze
the linguistic diversity, as shown in Table 7 and
Table 8.

A.1 Data Statistics
As a common setting, we divide the groups of
the original and incremental languages into three
categories according to the volume of parallel
data: low resource (100k~1M), medium resource
(1M~10M), and high resource (>10M). For original
language pairs, Low resource: Hindi, Lithuanian,
Latvian, Romanian, and Turkish; Medium resource:
Finnish, German, and Estonian; High resource:
Czech, French, Russian, Chinese, and Spanish. For
incremental language pairs, Low resource: Hausa
and Tamil; Medium resource: Khmer, Icelandic,
and Pashto; High resource: Japanese and Polish.

A.2 Language Consideration
“Language family represents a group of languages
related through descent from a common ancestor,
called the proto-language of that family6 .” There
are various kinds of language families in the real-
world. The incremental languages belong to dif-
ferent language families and are large differences
in scripts, compared with the original languages.
In addition, the grammatical construction of lan-
guages and language branch are the consideration
factors7. The statistics and details of datasets for
original and incremental languages are shown in
Table 7.

B Model Details

For a fair comparsion, we implement Transformer-
Big in all our experiments, which consists of 6

6https://en.wikipedia.org/wiki/Languagefamily
7https://wit3.fbk.eu/

stacked encoder layers, 6 stacked decoder layers,
and 16 multi-attention heads. The dimensions of
hidden state dmodel and feed-forward dffn are 1024
and 4096 respectively. And we use the same learn-
ing schedule algorithm and setting with Vaswani
et al. (2017). The parameters of multilingual neu-
ral models are optimized using Adam optimizer
(Kingma and Ba, 2014). Moreover, we reset the
learning scheduler and optimizer for incremental
learning. To mitigate the imbalance in the multilin-
gual training data, we use the temperature-based
sampling scheme with a temperature of T = 5 to
balance the training data (Arivazhagan et al., 2019).
The total training steps are set to 500K with the
early stop strategy (patience is 10) and the batch
size is 4096 in the training procedure. We evalu-
ate training and inference speed for all models on
the same hardware configuration (8 NVIDIA A100
GPUs). We apply half-precision training for speed.
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Code Language Genus Family Order

cs Czech Slavic Indo-European SVO
de German Germanic Indo-European SVO
es Spanish Romance Indo-European SVO
et Estonian Finnic Uralic SVO
fi Finnish Finnic Uralic SVO
fr French Romance Indo-European SVO
hi Hindi Indic Indo-European SOV
lt Lithuanian Baltic Indo-European SVO
lv Latvian Baltic Indo-European SVO
ro Romanian Romance Indo-European SVO
ru Russian Slavic Indo-European SVO
tr Turkish Turkic Altaic SOV
zh Chinese Chinese Sino-Tibetan SVO

ha Hausa West Chadic Afro-Asiatic SVO
is Icelandic Germanic Indo-European SVO
ja Japanese Japanese Japanese SOV

km Central Khmer Khmer Austro-Asiatic SVO
pl Polish Slavic Indo-European SVO
ps Pashto Iranian Indo-European SOV
ta Tamil Southern Dravidian Dravidian SOV

Table 7: The characteristics of languages in our setting. The top half part represents the group of the original
languages. The second half represents the group of the incremental languages.
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Language Pair
Data Sources # Samples

Train Dev Test Train Dev Test

Cs-En WMT19 WMT17 WMT18 64,336,053 3,005 2,983
Fr-En WMT15 WMT13 WMT14 40,449,146 3,000 3,003
Ru-En WMT19 WMT18 WMT19 38,492,126 3,000 2,000
Zh-En WMT19 WMT18 WMT19 25,986,436 3,981 2,000
Es-En WMT13 WMT13 WMT13 15,182,374 3,004 3,000
Fi-En WMT19 WMT18 WMT19 6,587,448 3,000 1,996
De-En WMT14 WMT13 WMT14 4,508,785 3,000 3,003
Et-En WMT18 WMT18 WMT18 2,175,873 2,000 2,000
Lv-En WMT17 WMT17 WMT17 637,599 2,003 2,001
Lt-En WMT19 WMT19 WMT19 635,146 2,000 1,000
Ro-En WMT16 WMT16 WMT16 610,320 1,999 1,999
Hi-En WMT14 WMT14 WMT14 313,748 520 2,507
Tr-En WMT18 WMT17 WMT18 205,756 3,007 3,000

Ja-En WMT21 WMT20 WMT21 18,001,428 993 1,005
Pl-En WMT20 WMT20 WMT20 10,206,520 2,000 1,001
Km-En WMT20 WMT20 WMT20 4,459,608 2,309 2,320
Is-En WMT21 WMT21 WMT21 4,376,282 2,004 1,000
Ps-En WMT20 WMT20 WMT20 1,155,942 2,698 2,719
Ha-En WMT21 WMT21 WMT21 744,856 2,000 997
Ta-En WMT20 WMT20 WMT20 660,818 1,989 997

Table 8: The Statistics of train, dev, and test data for the original 14 languages (WMT-14) and the incremental 7
languages. The top half part represents the group of the original languages. The second half represents the group of
the incremental languages.

10550


