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Abstract

Dynamic evaluation of language models
(LMs) adapts model parameters at test time
using gradient information from previous to-
kens and substantially improves LM perfor-
mance. However, it requires over 3x more
compute than standard inference. We present
Fast Weight Layers (FWLs), a neural com-
ponent that provides the benefits of dynamic
evaluation much more efficiently by express-
ing gradient updates as linear attention. A key
improvement over dynamic evaluation is that
FWLs can also be applied at training time so
the model learns to make good use of gradi-
ent updates. FWLs can easily be added on top
of existing transformer models, require rela-
tively little extra compute or memory to run,
and significantly improve language modeling
perplexity.

1 Introduction

A key challenge in language modeling is repre-
senting the contextual information from previous
tokens. Transformer language models use atten-
tion to pass along this information, but constantly
referring back to the previous text is a cogni-
tively implausible model of working memory. An
appealing alternative is using fast weight neural
networks (Hinton and Plaut, 1987; Schmidhuber,
1992). Inspired by short-term plasticity in the
brain, these models have parameters that change
on-the-fly based on input data (previous tokens
for LMs) in addition to standard “slow” weights
learned during training. Fast weights have proven
successful for supervised (Ba et al., 2016a), rein-
forcement (Munkhdalai et al., 2019), and few-shot
(Munkhdalai and Yu, 2017) learning.

Dynamic evaluation (Mikolov et al., 2010;
Krause et al., 2018) uses a variant of fast weights
to improve language models at inference time. Af-
ter scoring (or generating) a chunk of text, dy-
namic evaluation applies a gradient update to the

model coming from the LM loss over that chunk
before continuing. Intuitively, this process im-
proves performance because an update that makes
the model better at predicting previous tokens
will likely also make it better at predicting fu-
ture ones. Dynamic evaluation substantially im-
proves LM perplexity, but has numerous draw-
backs. It requires an extra forward and backward
pass through the model to compute the gradients,
and the sequential gradient updates over chunks
cannot be parallelized. Furthermore, it is very
memory intensive because a separate copy of the
evolving model weights has to be stored for each
example in a minibatch. Lastly, dynamic evalua-
tion is only used at test-time, so the model does
not learn to make good use of gradient updates.

We present Fast Weight Layers (FWLs), a neu-
ral component that provides the benefits of dy-
namic evaluation with none of these downsides.
They can be added to any LM without requiring
changes to the training or evaluation loop. Like
dynamic evaluation, FWLs also update their pa-
rameters using gradient information from previous
tokens, but FWLs employ three key ideas to im-
prove efficiency. First, FWLs are added on top of
the transformer after the last attention layer, which
avoids having to backpropagate through the whole
transformer and circumvents the complexities of
backpropagation through time. Secondly, FWLs
compute gradients in parallel rather than recur-
rently. Lastly, FWLs leverage the property that
gradient matrices are rank one to compute their
outputs efficiently.

Crucially, the efficient design means FWLs can
be used at training time so the model learns to
obtain beneficial updates from previous gradients.
Another benefit is that while dynamic evaluation
needs hyperparameter search to find a good step
size for the gradient update, FWLs can instead
learn the step size. Training FWLs can be viewed
as applying gradient-based meta-learning (Finn
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Figure 1: Dynamic evaluation (left) recurrently processes chunks of text and applies the gradient updates to model
weights. FWLs (right) compute the gradients in parallel and for only a small subset of model parameters, greatly
increasing efficiency. The improved speed allows FWLs to be used at train time, making them more effective.

et al., 2017) to language modeling, where the sup-
port set contains tokens seen so far and the query
set contains future tokens, a perspective which
helps explain some of the behaviors of FWLs.

FWLs scale well to long sequences and are
complementary to existing long-text generation
methods such as sparse attention (Child et al.,
2019) or recurrent processing (Dai et al., 2019).
We evaluate FWLs at language modeling on the
WikiText-103 dataset (Merity et al., 2017). They
substantially improve perplexities over strong
baselines; for example lowering Transformer-XL’s
perplexity from 18.1 to 16.6. This gain is com-
parable to the one from dynamic evaluation, but
FWLs add less than 20% compute overhead to
the model compared to the over 200% of dynamic
evaluation. Ablations show FWLs achieve supe-
rior compute vs perplexity trade-offs compared to
alternative fast weight methods. We also analyze
how FWLs improve results and find they are espe-
cially effective at modeling rare tokens, repeated
tokens, and long documents.

2 Method

Our models first run a transformer decoder (or
other left-to-right neural network) over an input
sequence [x1, ..., xT ], yielding vector representa-
tions [h1, ..., hT ]. FWLs use a learned function
fθ with parameters θ to further process the text.
These parameters (and the transformer’s parame-
ters) are “slow” weights learned during training.
We chose to use a hidden layer, projection layer,
and LayerNorm (Ba et al., 2016b) for fθ, which
worked well in initial experiments:

fθ(ht) = LayerNorm(ReLU2(htU + a)W + b)

The FWL’s output can be passed into a prediction
layer such as an output softmax:

Lt = CE(softmax(fθ(ht)E + c), xt+1)

where E is an embedding matrix, c is a bias vec-
tor, and CE denotes cross-entropy loss. FWLs also
work with adaptive softmax layers (Grave et al.,
2017), such as the one used by Transformer-XL.

In addition to the slow weights, an FWL also
employs “fast” weights that let it adapt to contex-
tual information. First, the FWL does a forward
and backward pass over the input sequence with
its slow weights θ to obtain a gradient ∇θLt from
each position t. Importantly, these T gradients can
be computed in a single backwards pass because
Lt depends only on ht. If we added attention or
other temporal dependence to the FWL, backprop-
agation through time would instead only compute
the summed gradient

∑T
t=1∇θLt. This limitation

is why dynamic evaluation has to process the in-
put in chunks, which means the model does not get
updates from recent tokens within the same chunk;
FWLs do not have this drawback.

The FWL then does a second forward pass us-
ing evolving fast weights θ′. The fast weights are
initialized with the slow weights θ. Conceptually,
the second pass processes the sequence in a left-
to-right order, although we will show this can be
parallelized in practice.1 For each position t, it
re-runs the FWL and output softmax on ht, but
now using θ′ instead of θ to produce a new loss
L′t. Then the FWL updates its fast weights as
θ′ ← θ′ − α ◦ ∇θLt where α consists of learned
step sizes. We learn a separate step size for each
weight matrix/vector in the FWL, which performs
slightly better than having one global step size.

1Generating with a LM is inherently recurrent, but FWLs
avoid recurrence when training the model or scoring text.
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Although we tried more sophisticated update rules
such as one based on Adam, they did not outper-
form this simpler one in initial experiments. An
overview of FWLs is shown in Figure 1.

Efficient Fast Weight Computation. We will
now show how the FWL outputs can be computed
without needing to store the T gradients of L1:T in
memory (which would have prohibitive memory
requirements) or recurrently computing θ′ (which
would be slow on modern accelerators). We will
illustrate this for the second matrix-multiply in fθ;
other parts of the FWL can be computed analo-
gously. We use vt to denote the input, ot to denote
the output, and the ′ symbol to differentiate activa-
tions in the second (fast weight) forward pass from
those in the first (slow weight) pass.

The slow weight output at position t is simply
ot = vtW . The fast weight output at position t is

o′t = v′t(W − αW
∑

i<t

∇WLi) (1)

where the weight matrix W has been updated by
the t− 1 previous gradients.

Computing (1) naively is infeasible because it
requires storing all T gradient matrices in mem-
ory. As an alternative, we develop a more effi-
cient method by taking advantage of the observa-
tion that the gradient is equal to the outer product
of the input and the upstream gradient: ∇WLi =
vTi ∇oiLi (from the chain rule; see for example
Appendix D of Mitchell et al. (2022) a derivation).
Therefore we can rewrite (1) as

o′t = v′tW − αW
∑

i<t

v′tv
T
i ∇oiLi (2)

The first term is just a regular matrix-multiply and
can be computed easily. Interestingly, the sum in
the second term can be interpreted as linear atten-
tion (i.e., without a softmax) using query v′t, keys
vi, and values ∇oiLi. The partial sum up to t cor-
responds to causal masking in the attention.

Computing the FWL output using (2) means we
only need to store gradient vectors∇oiLi in mem-
ory (which is no worse than storing model activa-
tions) rather than gradient matrices ∇WLi. It also
can be computed fully in parallel using causal at-
tention. However, naive attention scales quadrat-
ically with sequence length, which is an obsta-
cle for applying (2) to long documents. Luckily,
because the attention is linear, there exist more

efficient methods for computing it. In particu-
lar, we use the mixed chunk attention method
from Hua et al. (2022), which improves efficiency
through breaking the document into chunks while
still computing the attention scores exactly.

Viewing the fast weight output as linear atten-
tion makes it clearer how FWLs work. For each
previous position i, the error signal ∇oiLi is the
direction for adjusting the output oi to lower the
loss, and the attention score v′tv

T
i measures the

similarity between position i and the current po-
sition. This means FWLs adjust the current output
in a way that mimics the loss-reducing directions
of similar past positions.

Computing fast weights for vectors (e.g. bi-
ases or LayerNorm weights) rather than matri-
ces is simpler because the gradients require less
memory. For example, the fast weight output
after adding the bias term b to ot is o′t + b −
αb

∑
i<t∇bLi. This can be computed in paral-

lel for all t using the cumsum operation over the
matrix of gradients [∇bL1, ...,∇bLT ], which can
be obtained using standard backpropagation and
stored in memory.

The parallelized FWL updates are not usable
during generation, which inherently has to pro-
duce one token at a time. Instead the model at each
step (1) samples x̂t from its output distribution us-
ing the current weights θ′, (2) computes the gra-
dient ∇θL̂t of the slow weights predicting x̂t, and
(3) updates the fast weights as θ′ ← θ′−α◦∇θL̂t.
This process is still relatively efficient because the
additional backward/forward passes are only ap-
plied to the FWL, not the whole transformer.

FWL gradient updates may first seem strange
in that the model is “training” on test sequences
during perplexity evaluation or on its own out-
puts during generation. We would like to em-
phasize that this way of conditioning on previ-
ous tokens is just as valid as standard transformer
LMs attending over gold-standard tokens (from
teacher forcing) or their own generated tokens
(during sampling). Indeed, (2) shows that FWLs
can be viewed as adding another attention layer
to the model, but with a pre-specified function
computing the values (the gradient) rather than a
learned matrix-multiply. Empirically, we did not
find FWLs to produce degenerate repetitive out-
puts (Holtzman et al., 2020) more than baselines.

Training. Training jointly optimizes the trans-
former, softmax, and FWL parameters, as well
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as the step sizes α, to minimize the combined
loss

∑T
t=1 L′t over training sequences. We com-

pute second-order gradients for the FWL parame-
ters, backpropagating through the gradient updates
∇θLt. Intuitively, this means that in addition to
learning to expect the gradient update and adapt
quickly, the model also learns to produce effec-
tive gradient updates. While second-order gradi-
ents are expensive to compute for some models,
they are not for FWLs because there is no back-
propagation through time for the FWL parameters.

Runtime. FWLs add relatively modest compute
and memory overhead to the model. In our ex-
periments, FWLs add <30% overhead in FLOPs
and <20% in wall clock time to both sparse trans-
formers and Transformer-XL when scoring text
perplexity. The majority of this extra compute
comes from the two extra passes through the out-
put layer (the backward pass and fast weight pass),
although using an adaptive softmax somewhat al-
leviates this cost. In contrast, dynamic evalua-
tion adds over 200% extra compute due to need-
ing an extra backward and forward pass through
the whole transformer.

Connection to Meta-Learning. FWLs can be
viewed as applying gradient-based meta-learning
to LMs. Specifically, language modeling is treated
as a few-shot learning task where the support set
contains the tokens seen so far and the query set
contains the next token. The FWL training is es-
sentially using MAML (Finn et al., 2017), where
there is a single inner loop optimization step over
the support set that adapts the model parameters
using a gradient update. This connection helps ex-
plain a surprising property of FWLs: although it
applies the fast weight gradient update to only a
small subset of the network, it performs compara-
bly to dynamic evaluation, which updates all trans-
former parameters. Raghu et al. (2020) show that
MAML works just as well when the inner-loop up-
date is only applied to the last layer of the network,
which is similar to how FWLs only update a few
weights on top of the transformer.

Connection to Fast Weight Programmers
(FWPs). FWPs use a slow-weight neural net-
work to generate fast weights for another net
(Schmidhuber, 1992; Irie et al., 2021). Schlag
et al. (2021) show that FWPs can be viewed as
transformers with linear attention, similar to the
linear attention FWLs employ. However, FWLs

Method PPL Tok/s

Compressive Transformer 17.1 –
Routing Transformer 15.8 –
kNN-LM 15.8 –

Transformer XL 18.1 1575
Transformer XL + Dynamic Eval 16.4 510

Transformer XL + FWL (ours) 16.6 1340

Table 1: Test set WikiText-103 perplexities and infer-
ence speeds (on one V100 GPU).

use gradient information to provide the update
rather than generating the update from a network.

3 Experiments

We experiment on WikiText-103 (Merity et al.,
2017), a standard benchmark for language mod-
eling consisting of approximately 100M tokens
from English Wikipedia. We report perplexity us-
ing the standard tokenization and splits. We con-
sider two baseline models: the sparse local at-
tention transformer from Roy et al. (2021) and
Transformer-XL (Dai et al., 2019). The sparse
transformer model has 12 layers with 768 hidden
units (121M parameters). For Transformer-XL,
we use the large model (257M parameters).

Transformer-XL processes the text recurrently:
at each step it trains on one chunk while attend-
ing over but not backpropagating into a previous
chunk.2 We use an analogous trick with FWLs
to efficiently use them with the recurrent model:
we keep a running fast weight update ∆θ from
the tokens in previous chunks and similarly don’t
backpropagate into this update. More specifically,
when processing a chunk of text [xS , xS+1, ..., xT ]
the fast weight output ot is

o′t = v′t(W − αW∆W − αW
∑t

i=S
∇WLi)

∆W ← γW∆W + stopgrad(
∑T

i=S
∇WLi)

where γW is a learned decay factor. To reduce the
training cost, we add the FWLs on top of the pub-
licly released pre-trained Transformer-XL model
and then fine-tune for 20K steps rather than train-
ing it from scratch.

Main Results. Table 1 shows the results on
the WikiText-103 test set. FWLs improve

2Unfortunately, this recurrence means we lose the paral-
lelism advantage of FWLs, although the other benefits over
dynamic evaluation remain.
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Figure 2: Per-token negative-log-likelihood improvements over the baseline. FWLs most improve LMs on long
documents, rare tokens, and tokens repeated multiple times in the text. As the WikiText-103 dev set is small, we
use a sparse transformer trained on 2/3 of the train set and evaluated on the other 1/3 to produce more robust results.

Transformer-XL by 1.5 perplexity points. This
gain is comparable to the improvement from dy-
namic evaluation obtained by Krause et al. (2019),
but FWLs are about 3x faster to run. While re-
cent methods such as Routing Transformer (Roy
et al., 2021) and KNN-LM (Khandelwal et al.,
2020) achieve better perplexity, they are not di-
rectly comparable because they use different base
models; we expect FWLs could also be combined
with them to improve results.

Ablations. We compare different variants of
FWLs in Table 2. First we consider only train-
ing the slow weights of the FWL (i.e., using Lt
instead of L′t), but then applying the fast weight
update at test time.3 This method essentially ap-
plies dynamic evaluation to only a few layers of
the network. While not performing as well as full
dynamic evaluation, it still provides a sizable im-
provement given the small number of updated pa-
rameters and much faster inference speed. The re-
maining gap to dynamic evaluation is closed when
the FWL is used during training so that the model
learns to benefit from the previous gradients.

One hypothesis for the benefit of FWLs is that it
biases the model towards copying seen tokens. To
test this, we train a much simpler version of FWLs
where only the bias term of the output softmax has
fast weights applied. We found this did not sig-
nificantly improve results, perhaps because atten-
tion is sufficient for the model to do this kind of
copying, suggesting that FWLs are learning more
complicated updates than just biasing the model
towards repeating seen tokens.

Where do FWLs help? Figure 2 shows which
tokens are better predicted by a FWL-augmented
model. First, we find improvements are larger

3We use a global step size that is tuned on the dev set.

Method PPL Sparse PPL XL

No FWLs 25.1 17.3
FWLs 22.4 15.9
Test-time only 24.1 16.7
Bias Only 25.0 17.3
Dynamic Evaluation 22.4 15.8

Table 2: Dev set WikiText-103 perplexities for various
ablations on Sparse transformer and Transformer-XL.

for tokens toward the end of input, implying that
FWLs help models make use of long contexts and
work best on long documents. Intuitively, more
previous tokens will provide a better gradient esti-
mate, similar to how meta-learning methods ben-
efit for a larger support set. Next, we find FWLs
help most on rare tokens, perhaps because they re-
quire better modeling of long contexts to predict.
Lastly, we find FWLs actually make the model
slightly worse at predicting a token the first time it
appears in a text, but help when the token has oc-
curred previously (a net gain because around 70%
of tokens in WikiText-103 are repeats).

4 Conclusion

Fast Weight Layers provide the benefits of dy-
namic evaluation at a fraction of the compute cost
and memory usage. They can easily be added
to existing language models and yield strong re-
sults on language modeling benchmarks. Apply-
ing FWLs to few-shot learning tasks is one in-
teresting future direction: doing one (or perhaps
a small number) of gradient updates on few-shot
examples might offer a nice middle ground in-
context learning where the model parameters are
fixed and full fine-tuning. Indeed, Yoshida and
Gimpel (2021) show that hidden state optimiza-
tion, a method closely related to dynamic evalua-
tion, can improve few-shot LM performance.
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5 Limitations

FWLs can be viewed as an inductive bias en-
couraging the model to adapt to previous tokens.
As an inductive bias, their value may be lim-
ited for larger models trained on larger datasets.
While our experiments show FWLs improve mod-
els with hundreds of millions of parameters, ini-
tial experiments with bigger models suggest that
their benefit decreases as models get larger, and
we think it is unlikely that an add-on like a FWL
will substantially improve models of the scale of
GPT-3 (Brown et al., 2020). Furthermore, we have
shown that using FWLs at training time makes
them more effective, but this has a disadvantage
as well. FWLs can’t be directly applied to already-
trained transformer language models the way dy-
namic evaluation can: some fine-tuning with the
fast weight layer added is required. Lastly, while
we have shown FWLs improve LM perplexity, we
have not evaluated FWLs at other text generation
tasks, which we leave for future work.
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