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Abstract

Transformers have been shown to be able to per-
form deductive reasoning on inputs containing
rules and statements written in English natural
language. However, it is unclear if these mod-
els indeed follow rigorous logical reasoning to
arrive at the prediction, or rely on spurious cor-
relation patterns in making decision. A strong
deductive reasoning model should consistently
understand the semantics of different logical
operators. To this end, we present ROBUSTLR,
a deductive reasoning-based diagnostic bench-
mark that evaluates the robustness of language
models to minimal logical edits in the inputs
and different logical equivalence conditions. In
our experiments with RoBERTa, T5, and GPT3,
we show that the models trained on deductive
reasoning datasets with various logical opera-
tions do not perform consistently on the RO-
BUSTLR test set, thus showing that the models
are not robust to our proposed logical pertur-
bations. Further, we observe that the models
find it especially hard to learn logical negation
operator. Our results demonstrate the shortcom-
ings of current language models in logical rea-
soning, and call for the development of better
inductive biases to teach the logical semantics
to language models. All the datasets and code
base have been made publicly available. 1

1 Introduction

Building systems that can automatically reason
over a given context to generate valid logical in-
ferences is a long pursued goal within the field
of AI (McCarthy, 1959; Rocktäschel and Riedel,
2017; Manhaeve et al., 2019). Recently, Clark et al.
(2020) have shown that language models (Liu et al.,
2019; Raffel et al., 2020) are able to emulate de-
ductive reasoning on a logical rulebase (theory)
containing rules and declarative statements written
in natural language. While this is impressive, it is
unclear if these models are able to perform logical

1https://github.com/INK-USC/RobustLR

Theory: Sam is tall. 
All tall people are 
kind.
Statement: Sam is kind.

Output: True

Theory: Sam is tall. All 
tall people are kind and 
smart.
Statement: Sam is smart.

Output: False

Figure 1: Overview of ROBUSTLR. We expect a strong de-
ductive reasoning model should be robust to logical variations
in the input. Here, the model fails to understand the logical
conjunction in second example and predicts the wrong entail-
ment of the statement.

reasoning robustly by understanding the semantics
of the logical operators and the different logical
conditions involving such operators.

Logical reasoning is an important skill required
in various NLP tasks such as NLI (Dagan et al.,
2006), Question Answering (Yang et al., 2018a),
Multi-turn Dialogue Reasoning (Cui et al., 2020),
etc. Models used to solve such tasks may use spuri-
ous patterns to reach to the predictions, rather than
following the intended logical reasoning process.
Additionally, these models might only understand
certain ways of expressing the inference knowledge
(e.g., rules) and not possess systematic generaliza-
tion (Gontier et al., 2020). Hence, it is important
to ensure that language models can consistently
use the logical operators when described in natural
language. Prior works (Gururangan et al., 2018;
Chen and Durrett, 2019; McCoy et al., 2019) have
found that models solving different reasoning tasks
tend to exploit spurious correlations between the
context/question and the label. But logical reason-
ing needs special considerations as there are very
well-defined relationships on how different logical
operators modify any given context. Hence, it is
important to understand if models use these logi-
cal relationships consistently to solve a task. To
the best of our knowledge, a study evaluating a
language model’s logical consistency on different
logical operations is currently missing.
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A key desirable property of a strong deductive
reasoning model is logical robustness. This is the
ability to make consistent predictions on inputs that
have some logical modifications. In Figure 1, we
show how the lack of logical robustness can lead
to wrong inferences in a model. Thus, to test this,
we develop ROBUSTLR, a diagnostic benchmark
for evaluating logical robustness across two main
aspects. First, we aim to evaluate how robust these
models are when tested on the three logical opera-
tors: conjunction (∧), disjunction (∨), and negation
(¬). Inspired by the idea of contrast sets (Gardner
et al., 2020), we design the Logical Contrast set,
where theories are minimally modified so that we
can test the model’s robustness across logical op-
erators. Examples of this are shown in Figure 3(b)
and 3(c). Next, we study the model’s ability of
reasoning consistently across logical paraphrases.
A logical paraphrase uses equivalence conditions
in logic to replace a rule with another equivalent
form, essentially rewriting the surface form of the
rule. This poses a different challenge than the more
common language paraphrases such as synonym
changes, voice modifications, style changes, etc.,
because the model needs to understand that the un-
derlying logical structure of the two paraphrased
sentences mean the same thing. An example of the
equivalence perturbation is shown in Figure 3(d).
Based on this, we design the Logical Equivalence
set containing three logical equivalences.

In this work, we study three language models:
RoBERTa (Liu et al., 2019), T5 (Raffel et al.,
2020), and GPT-3 (Brown et al., 2020). To test the
model performance on ROBUSTLR, we first fine-
tune them on deductive reasoning training datasets
containing the logical operators and then evalu-
ate on the ROBUSTLR test sets. Overall, we find
that language models (LMs) fine-tuned on different
deductive reasoning datasets are not sufficiently
robust to the Logical Contrast and Logical Equiv-
alence sets. Specifically, we find that models are
more inconsistent with logical negations in sen-
tences. We also find that using larger models such
as T5-11B improves the performance to an extent,
but they still perform worse compared to human
performance on ROBUSTLR. We show that it is
partly due to spurious correlations in the data and
the inherent difficulty of the task. Thus, we use
ROBUSTLR to demonstrate some key limitations
of the language models trained for deductive rea-
soning. We hope that this research will encourage

as a test bed to evaluate robustness of deductive
reasoning models.

2 Deductive Reasoning
In deductive reasoning, we predict whether a given
theory T supports a statement s or not. We de-
fine a theory T as a set of facts F = {f1, f2, . . . , fn}
and rules R = {r1, r2, . . . , rm} expressed in natural
language (See Figure 3 for an example). For a
given theory, a statement can be either provably
supported, provably unsupported (i.e., the negation
of the statement is provable), or not provable at all.
This is a 3-class classification problem, with the
labels True, False, and Unknown, respectively. In
this work, we focus on this task, where we expect
the model to correctly predict the entailment of a
statement for a given theory. In Figure 3(a), 3(c),
and 3(d), the statement is entailed by the theory,
leading to the label True while in Figure 3(b), the
statement is not provable given the facts and rules.
It can be proved by simply using fact f1 and rule
r1 to derive the statement. Formally, we define the
proof set of a statement s, denoted by G(T, s), as
the set of rules and facts that are required to obtain
the statement s from the theory.

3 Evaluating LMs for Logical Robustness
3.1 Logical Robustness
We consider a deductive reasoner (language model)
to be logically robust if the model behavior is con-
sistent across various logical perturbations, as illus-
trated in Figure 1. Specifically, we evaluate logical
robustness on two types of perturbations.

Logical contrastive edits Here, we test the
model’s ability to correctly capture the semantics
of different logical operators, when presented in
minimally edited contrast inputs. A contrast set
(Gardner et al., 2020) is one where the input is
changed minimally, but meaningfully, such that
there is (typically) some change in label. These
probes test the LM’s robustness to conjunction (∧),
disjunction (∨), and negation (¬).

Logical paraphrases Here, we evaluate whether
the model performs consistently when shown the
same input with different logical paraphrases. A
theory can be logically paraphrased by modifying
the rules using standard logical equivalence condi-
tions. 2 These probes evaluate the model’s consis-

2https://en.wikipedia.org/wiki/Logical_
equivalence
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f1: Charlie is tall.
f2: Erin is not the brother of Gary.
r1: If Charlie is tall or smart, then 
Gary is kind.
r2: Charlie is round if Gary is kind. 
statement: Charlie is not round.
label: False

f1: tall(Charlie)
f2: ¬brother(Erin, Gary)
r1: tall(Charlie) ∨ smart(Charlie) → 
kind(Gary)
r2: kind(Gary) → round(Charlie)
statement: ¬round(Charlie)
label: False

(a) Natural Language Form

(b) Logical Form

Figure 2: Logical Form of a Theory. (a) A theory in natural
language. (b). The corresponding logical form of the theory.
Refer to Section 3.2 for more details.

tency in solving logically equivalent theories, when
logical conditions are used to rewrite the input.

A strong deductive reasoning model should be
robust to both the minimally edited contrast inputs
and logical paraphrases. Overall, these evaluation
sets probe a deductive reasoning model to check
whether it indeed learns the semantics of the logical
operators and their underlying working principles.

3.2 Notations
In this work, we consider two predicate forms:
unary and binary. A unary predicate contains one
argument and is denoted by X(a). Similarly, a bi-
nary predicate is represented as X(a, b). Here, X
is the predicate relation and a, b are the variables.
An atomic predicate is defined as either a predi-
cate or the negation of the predicate (denoted as
¬X(a)). A complex predicate can contain multiple
predicates (or their negated forms) combined using
logical operators conjunction and disjunction.

Internally, we maintain a symbolic representa-
tion of these facts and rules, enabling us to later
create the different evaluation sets of ROBUSTLR.
A fact is symbolically represented by a predicate.
In this work, we consider all facts as atomic pred-
icates. A rule is symbolically represented by a
logical connection between predicates, separated
by the “implies that” logical symbol ( =⇒ ). Thus,
a rule can be defined as p =⇒ q, where the LHS
p and RHS q are atomic or complex predicates. If
both p and q consist of atomic predicates, then the
rule is called a simple rule. A compound rule is one
where p and/or q contain some complex predicates
connected by the conjunction or disjunction opera-
tor. An example of a natural language theory and
its corresponding logical form is shown in Figure 2.
Here, facts f1 and f2 are unary atomic and binary
predicates, respectively. Rule r1 is a compound

Modified Rule Facts Statement Label Group

p =⇒ q {p} q True BASE

p ∧ t =⇒ q {p} q Unknown CONJ

p ∧ t =⇒ q {p, t} q True CONJ

p ∧ t =⇒ q {p,¬t} q Unknown CONJ+NEG

p ∧ t =⇒ ¬q {p} q Unknown CONJ+NEG

p ∧ t =⇒ ¬q {p, t} q False CONJ+NEG

p ∧ t =⇒ ¬q {p,¬t} q Unknown CONJ+NEG

Table 1: Conjunction Contrast Perturbations. The min-
imal edits done to a base theory (first row) for testing the
conjunction and negation reasoning abilities. The group re-
flects the overall change in theory w.r.t. the base theory.

rule, with the LHS p of the rule being a complex
predicate. Rule r2 is a simple rule.

3.3 Logical Contrast Sets

In this evaluation set, we probe the ability of the
model to robustly understand the three different
logical operators (∧,∨,¬). For this, we develop
different contrast sets (Gardner et al., 2020) with
minimal editing of the theory, probing specific rea-
soning abilities of different operators. The key
intuition is to evaluate if the model is able to un-
derstand the minor changes in the theory brought
by the addition of logical operators, and predict the
change in label accordingly.

For a given theory T and statement s, we first
select a rule to be modified such that it is part of
the proof set G(T, s). This ensures that our per-
turbation would influence the model’s reasoning
process while predicting entailment of the state-
ment s. Next, we add an unseen predicate t to the
rule LHS p of one of the rules using conjunction
(∧) or disjunction (∨). In some further variants of
perturbations, we include the predicate t (or the
negated ¬t) as a fact in the theory, leading to dif-
ferent labels. Lastly, we also negate the rule RHS q
to introduce the logical negation (¬) perturbations.
Based on the logical operator in the perturbation,
we broadly divide the Logical Contrast set into
three types: Conjunction Contrast Set (C-CS), Dis-
junction Contrast Set (D-CS), and Negation Con-
trast Set (N-CS). Examples of these perturbations
are shown in Figure 3. The perturbations for C-CS
are listed in Table 1. Please refer to Appendix E
for the other perturbations. We categorize these
perturbations into groups based on the logical op-
erators involved in the perturbation with respect to
the base theory. E.g., the three groups for C-CS
are BASE, CONJ, CONJ+NEG, as shown in Table
1. If a model performs accurately on the Logical
Contrast set, we expect that the model understands
the semantics of the logical operators robustly.
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f1: Charlie is tall.
r1: Erin is kind, if Charlie is tall.
statement: Erin is kind.
Label: True

f1: Charlie is tall.
r1: Erin is kind, if Charlie 
is tall and round.
statement: Erin is kind.
Label: Unknown

(a) Original Theory
(b) Conjunction Perturbation

f1: Charlie is tall.
r1: Erin is kind, if Charlie is 
tall or round.
statement: Erin is kind.
Label: True

(c) Disjunction Perturbation

f1: Charlie is tall.
r1: If Erin is not kind, then 
Charlie is not tall.
statement: Erin is kind.
Label: True

(d) Contraposition Perturbation

Figure 3: Examples of perturbations in ROBUSTLR.
(a) An original theory contains facts, rules, a statement,
and the entailment label. The Logical Contrast set per-
turbations using conjunction and disjunction are shown
in bold in (b) and (c), respectively. In (d), we show one
of the Logical Equivalence perturbations where the rule
is paraphrased using logical contraposition. Please refer
to Sections 3.3 and 3.4 for more details.

Evaluation Protocol To evaluate the logical ro-
bustness to contrast perturbations, we first fine-
tune the language model on a deductive reasoning
dataset containing different combination of logical
operators. Then, we report the model performance
on these evaluation datasets as the weighted-F1
score from the Scikit-learn (Pedregosa et al., 2011).
The weighted-F1 score modifies the macro-F1 to
take any label imbalance into account. For instance,
we have label imbalance by design of the perturba-
tions in the Logical Contrast sets shown in Tables
1, 9, and 10. We use the model’s prediction for the
base theory and all its perturbations to compute the
F1-score at a theory level, and then average this
score across all theories in the evaluation set.

3.4 Logical Equivalence Sets

The Logical Equivalence set contain theories where
the underlying symbolic representation of a rule is
replaced by another representation that is logically
equivalent. The logical equivalent form of a rule
can be derived from standard logical equivalence
conditions, as defined below:

• Contrapositive: p =⇒ q ≡ ¬q =⇒ ¬p

• Distributive 1: (p =⇒ q)∧(p =⇒ r) ≡ p =⇒ (q∧r)

• Distributive 2: (p =⇒ q)∧(r =⇒ q) ≡ (p∨r) =⇒ q

Here p, q, r can be both atomic predicates or com-
plex predicates. Based on the above conditions, the
Logical Equivalence set is divided into three types:
Contrapositive Equivalence Set (C-ES), Distribu-
tive 1 Equivalence Set (D1-ES), and Distributive
2 Equivalence Set (D2-ES). For the (C-ES) set,
every rule ri in the theory T is replaced by the
logically equivalent form to create a new logically

equivalent theory T ′. An example of this pertur-
bation is shown in Figure 3 (d). Similarly, for the
D1-ES and D2-ES sets, a pair of rules in T are
merged according to the equivalence to create a
new theory T ′.

In both instances, the theory T ′ still has the same
label for a given statement, as the logical steps
required to solve the task remains the same. These
modifications are more challenging than traditional
surface-level paraphrases of the natural language
text, as it requires the model to understand the
equivalence of different symbolic representations.

Evaluation Protocol Similar to the Logical Con-
trast set evaluation, we finetune a language model
on a deductive reasoning dataset and report the
weighted-F1 score for the base theory and the cor-
responding logical paraphrase, averaged across all
theories in the evaluation set.

4 The ROBUSTLR Dataset

In this section, we describe details about the RO-
BUSTLR dataset domains, sampling, and filtering
procedure.

4.1 Dataset Domain

Facts The domains of the predicate relation X
and variable a in the unary predicate X(a) are the
simple English adjectives and the proper names,
respectively. Examples of this predicate form are
“green(Alex)”, “kind(John)”, etc. Each predicate is
associated to the English template sentence form
“{a} is {X}.”. For the binary predicate X(a, b),
we consider family relationships and proper names
as the domain of X and a respectively. Some ex-
amples of this predicate form are “daughter(Mary,
Gary)”,“father(Bob, John)”, etc. Each predicate is
associated with template sentences such as “{a} is
the {X} of {b}.”, “The {X} of {b} is {a}.”, etc.
Note that, currently, we do not enforce any gender
constraints on the names, thus allowing predicates
such as “daughter(Bob, Gary)”, which might be un-
likely based on the genders associated statistically
to names in English.

Rules For the rules, we follow the same do-
main as mentioned above for facts. We allow
rules containing unary predicates, binary predi-
cates, or a combination of both. Examples of some
simple rules consisting of atomic predicates are
“green(Alex) =⇒ daughter(Bob, Gary)”, “¬ fa-
ther(Bob, John) =⇒ kind(John)”, etc. Simi-
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larly, examples of some compound rules containing
complex predicates are “green(Alex) ∨ smart(Bob)
=⇒ daughter(Bob, Gary) ∧ ¬ kind(John)”, etc.
We note that, for the sake of keeping the theories
deterministic, we do not allow the disjunction oper-
ator in the RHS of a compound rule. A rule of the
form p =⇒ q is associated with templates such
as “If {p} then {q}.”, “{q} if {p}.”, etc., where the
p’s and q’s can be recursively resolved to their own
templates as defined in the predicates.

4.2 Dataset Sampling

For sampling the theories in ROBUSTLR, we use
a modified version of the Label-Priority sampling
(Zhang et al., 2022). The detailed algorithm is
described in Algorithm 1 in Appendix. At a high-
level, we sample different predicates from the set of
templates and assign the value 0 or 1 to them. After
that, we divide the predicate set into multiple levels.
This helps us in sampling theories with multi-hop
reasoning depths. After that, rules are derived by
connecting predicates with the same label between
two different levels. Finally, the predicates with
value 1 at the 0th level form the facts in the theory,
the connections denote the rules, and the predicates
in the last level denote some candidate statements.

4.3 Filtering Statistical Features

In a contemporary work, Zhang et al. (2022) find
that LMs are specifically prone to pick up any ex-
isting statistical features that can be present in the
training datasets. These are described as certain
statistic of an instance that has a strong correlation
with the label. Examples of statistical features are
#facts, #rules, #negation op, #facts with negation,
etc.

We introduce some changes in our sampling al-
gorithm to minimize the influence of such statisti-
cal features. We define a check to ensure that the
number of statements with the different labels are
similar for any given theory in the training dataset.
Since we have negations in the dataset, it allows us
to exactly control the True and False label distri-
bution per theory instance systematically. We con-
trol the Unknown label by oversampling theories
and discarding ones with skewed label distribution.
Please refer to Appendix D for more details.

5 Experimental Setup

Training Data Details We use four different
training datasets to fine-tune baselines, described

as follows: NOT: In this dataset, we allow nega-
tions in both facts and rules, but restrict to only
using simple rules. Note that it is not possible
to create a dataset without any operators (i.e., no
negation, conjunction, and disjunction) as it would
not be possible to have the False label in that
dataset. AND+NOT: Here, we restrict the connec-
tor for compound rules to AND (∧). As before, we
allow negations in facts and rules. OR+NOT: Similar
to AND+NOT, we restrict the connector of the com-
pound rules to OR (∨). We allow negations in facts
and rules as before. All: This dataset has all the
three logical operators (AND, OR, NOT) present.

The dataset All contains all the logical opera-
tors we consider in the Logical Contrast set. Thus,
instances from the All dataset cover all forms of
rules seen in these test sets. We aim to understand
the effect of these training datasets on the evalua-
tion sets by fine-tuning the model on each dataset
separately. Please refer to Appendix C for more
details on the training and evaluation data statistics.

Models and Experiment Details Following
prior works (Clark et al., 2020; Tafjord et al., 2021;
Sanyal et al., 2022), we evaluate the performance
of three language models: RoBERTa (Liu et al.,
2019), T5 (Raffel et al., 2020), and GPT-3 (Brown
et al., 2020). Specifically, we evaluate the model
checkpoints RoBERTa-Large, T5-Large, T5-3B,
T5-11B, and GPT-3. To evaluate a model, we first
fine-tune it on one of the training dataset mentioned
above, and then evaluate on the Logical Contrast
(Section 6.2) and Logical Equivalence (Section 6.3)
evaluation sets. For T5-11B, we only finetune it
on the All dataset due to compute constraints. For
GPT-3, we evaluate its performance on a subset
of the test sets using demonstrations. Please refer
to Appendix A for details on the input formats for
each model and Appendix B for the hyperparame-
ter settings and other implementation details.

6 Results

6.1 In-domain Performance

The performance of the LMs on the in-distribution
held-out data are shown in Table 3. We note that
the models are able to solve the in-distribution test
dataset almost perfectly in all cases. This either
means the model understands the logical reasoning
task perfectly (which is unlikely) or it learns some
spurious features to solve the task using shortcuts.
Now, we evaluate these models on our test sets to
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Data RoBERTa-Large T5-Large T5-3B

Avg C-CS D-CS N-CS Avg C-CS D-CS N-CS Avg C-CS D-CS N-CS

NOT 0.39 0.39 0.45 0.34 0.44 0.36 0.55 0.41 0.59 0.58 0.60 0.60
AND+NOT 0.52 0.56 0.53 0.48 0.47 0.43 0.55 0.42 0.57 0.58 0.57 0.55
OR+NOT 0.47 0.39 0.61 0.42 0.46 0.36 0.60 0.43 0.56 0.44 0.67 0.57
All 0.47 0.44 0.61 0.37 0.46 0.37 0.61 0.40 0.58 0.54 0.65 0.54

Table 2: Performance of RoBERTa-Large, T5-Large, and T5-3B on Logical Contrast sets. We report the weighted-
F1 score for each subset, and average that for the Avg column. Please refer to Section 6.2 for more details.

Training Dataset RoBERTa-Large T5-Large T5-3B T5-11B

NOT 1.00 1.00 0.98 -
AND+NOT 1.00 0.99 0.97 -
OR+NOT 1.00 0.99 0.97 -
All 1.00 0.99 0.92 0.94

Table 3: Performance of RoBERTa-Large, T5-Large,
T5-3B, and T5-11B on in-domain held-out set. Please
refer to Section 6.1 for more details.

check the logical robustness.

6.2 Performance on Logical Contrast set

Overall Result We finetune RoBERTa-Large,
T5-Large, and T5-3B models on different train-
ing datasets and evaluate them on the three types of
Logical Contrast set. The results are shown in Ta-
ble 2. Based on the Avg performance, we find that
the models perform significantly worse on the Log-
ical Contrast set, compared to the almost perfect
performance on the in-distribution test sets in Table
3. This shows that even after finetuning on the log-
ical deductive reasoning datasets, these models do
not learn the semantics of the logical operators in a
robust manner, but likely use spurious correlations.

Additionally, we find that on average, model per-
formance is similar for different training datasets,
except for NOT dataset. While this result seems a bit
surprising at first because we expect different train-
ing datasets to have varying effect on the perfor-
mance, but computing the performance breakdown
by perturbation type across different datasets re-
veals an interesting trend. We observe that training
on related operators as the perturbation in the eval-
uation subset usually leads to better performance.
For instance, we find that models trained on the
OR+NOT training data perform better on the D-CS
compared to when trained on NOT or AND+NOT train-
ing data. Taking RoBERTa-Large as an example,
we observe that its performance on D-CS is 0.61
when finetuned on OR+NOT and is apparently greater
than the performance on other contrast sets. A sim-
ilar trend is observed for C-CS. This is intuitive as
training on the related operators helps the model

0.00

0.25

0.50

0.75

1.00

BASE
CONJ

DISJ
NEG

CONJ + NEG

DISJ + NEG

RoBERTa-Large T5-Large T5-3B T5-11B

Figure 4: Performance comparison of RoBERTa-Large,
T5-Large, T5-3B, and T5-11B across different groups
of contrast perturbations. Negations are hardest to learn
across all settings. Refer to Section 6.2 for more details.

to understand the semantics of the logic relatively
better than just relying on having seen these at pre-
training time. This shows that the model indeed
requires some training data that is strongly aligned
with the operators being evaluated the test set.

Variation with logical operators Next, we want
to understand which among the three operators are
more challenging for the models to learn. To bet-
ter understand this, we evaluate the models after
finetuning on the All dataset and plot the model
performance for different perturbation groups in
Figure 4. These groups (defined in Section 3.3)
contain perturbations of a specific operator, as sug-
gested by their names. We find that the most chal-
lenging operator is negation. This is evident from
the lowest scores on the NEG perturbation group
among CONJ, DISJ, and NEG. Further, this is also
observed from the fact that performance generally
drops when negation perturbations are introduced
along with any other perturbations. For instance,
we see an average drop of around 25% between
DISJ and DISJ+NEG. This demonstrates that the
model not able to learn the negation semantics very
well. Lastly, we find that models find conjunction
relatively harder than disjunction. Please refer to
Appendix F for more details.
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Training Dataset RoBERTa-Large T5-Large T5-3B

Avg C-ES D1-ES D2-ES Avg C-ES D1-ES D2-ES Avg C-ES D1-ES D2-ES

NOT 0.81 0.79 0.91 0.74 0.88 0.76 0.90 0.97 0.70 0.78 0.79 0.54
AND+NOT 0.87 0.80 0.88 0.94 0.88 0.77 0.90 0.96 0.83 0.76 0.81 0.93
OR+NOT 0.87 0.78 0.87 0.95 0.86 0.76 0.86 0.97 0.86 0.77 0.82 0.98
All 0.89 0.79 0.93 0.94 0.89 0.77 0.93 0.98 0.84 0.72 0.83 0.98

Table 4: Performance of RoBERTa-Large, T5-Large, and T5-3B on Logical Equivalence sets. We report the
weighted-F1 score, and average that for the Avg column. Please refer to Section 6.3 for more details.

Models Logical Contrast Set Logical Equivalence Set

Avg C-CS D-CS N-CS Avg C-ES D1-ES D2-ES

From scratch 0.14 0.10 0.21 0.10 0.45 0.33 0.50 0.51
RoBERTa 0.47 0.44 0.61 0.37 0.76 0.40 0.93 0.94
T5-Large 0.46 0.37 0.61 0.40 0.89 0.77 0.93 0.98
T5-3B 0.58 0.54 0.65 0.54 0.84 0.72 0.83 0.98
T5-11B 3 0.61 0.57 0.67 0.58 0.83 0.76 0.76 0.97
GPT-3 4 0.36 0.34 0.50 0.25 0.67 0.36 0.78 0.87

human 0.88 0.87 0.94 0.84 0.91 0.81 0.97 0.96

Table 5: Comparisons between training a model from
scratch, finetuning a pre-trained checkpoint at scale
(RoBERTa, T5-Large, T5-3B, and T5-11B), using in-
context learning (GPT-3), and human performance,
on the Logical Contrast and Logical Equivalence sets.
Please refer to Sections 6.4 and 6.5 for more details.

6.3 Performance on Logical Equivalence set

Results on Contrapositive Equivalence Next,
we evaluate the fine-tuned LMs on the Logical
Equivalence sets. In Table 4, we observe that
the model performance degrades by approximately
20% for the C-ES, compared to the in-distribution
performance in Table 3. Contraposition involves
changing the rule into a format that has two nega-
tions, thus testing the limits of the model on un-
derstanding negations. From the experiments on
Logical Contrast sets, we know that negations are
not well understood by the model. Thus, these re-
sults reinforce our previous findings. We do not
find any significant changes in performance when
trained on different operators. Thus, we conclude
that, for this test set, it is not sufficient to just under-
stand the semantics of the logical operators, but it
rather requires a higher order understanding about
the interactions between the logical operators and
implications. Including such knowledge in deduc-
tive reasoning models is an interesting direction for
future works.

Results on Distributive Equivalence For D1-
ES and D2-ES test sets, we see a higher perfor-
mance compared to C-ES as these equivalence
conditions are relatively easier than the contrapo-

3Fintuned for two epochs on the All training set.
4Evaluated on 500 samples for each test subset.

sition rule. This is because the distributive rules
are similar to having compound rules in the dataset
(that is already present in AND+NOT, OR+NOT, and
All datasets). Between the two sets, we observe
that D1-ES is more challenging for the model.
This indicates that models find conjunction opera-
tor harder than the disjunction, similar to our ob-
servations from Figure 4. One reason for this can
be the strictness involved in the conjunction oper-
ation. A rule with conjunction is true only if the
individual parts are independently true.

6.4 Human Evaluation

To better understand the upper limit of ROBUSTLR
evaluation sets, we ask 3 Computer Science grad-
uate students to annotate 30 randomly sampled
theories from each subset of Logical Contrast and
Logical Equivalence sets. The results are shown in
the last row of Table 5. We find that humans are
significantly better than other baselines, perform-
ing around 27% higher on the Logical Contrast set
compared to T5-11B on average. Additionally, we
see similar trends that humans find negation based
perturbations (N-CS) hardest, followed by con-
junction (C-CS), and disjunction (D-CS). Please
refer to Appendix H for further details.

6.5 Analysis

Performance of Larger LMs Here we evaluate
the performance of some larger models on RO-
BUSTLR. The goal is to estimate the possible gains
with scaling to large LMs. For this, we finetune
a T5-11B using the All training dataset for two
epochs. Additionally, we evaluate GPT3 (Brown
et al., 2020) on a subset of 500 samples per test
set, using demonstration-based in-context learning.
The results are shown rows 5-6 in Table 5. We ob-
serve that increasing the model size from T5-Large
to T5-11B indeed leads to a significant performance
gain on most datasets. But it is still quite far com-
pared to human performance. This suggests that
scaling can potentially help with learning robust
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Figure 5: Average performance of RoBERTa-Large on
Logical Contrast and Logical Equivalence sets when
trained on varying amount of All dataset.
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Figure 6: Performance comparison of RoBERTa-Large,
T5-Large, T5-3B, and T5-11B for two variants of Logi-
cal Contrast sets: with and without distractors. Refer to
Section 6.5 for more details.

logical operations to an extent. Additionally, we
find that GPT-3 is not able to perform well on these
test sets. We hypothesize this is likely due to the
mismatch of the training distribution of the GPT-3
model, versus our synthetic datasets, as we do not
finetune the GPT-3 model on our training sets.

Effect of LM Pre-training In this part, we evalu-
ate the usefulness of using a pre-trained checkpoint
in our experiments, in comparison with training
a RoBERTa-Large architecture from scratch. We
train both RoBERTa-Large pre-trained checkpoint
and a similar model from scratch using the All
dataset, and evaluate on the ROBUSTLR sets. The
results are shown in rows 1-2 in Table 5. We ob-
serve a significant drop in performance, demon-
strating that knowledge learned during pre-training
is crucial for this task.

Effect of size of training data Next, in Figure
5, we plot the overall performance of RoBERTa-
Large model finetuned on a varying amount of All
training data. We observe that the model perfor-
mance increases with increasing amount of training
data, as expected, and then saturates at a fixed level.
This shows that there is no significant effect of us-
ing larger training datasets on model performance.
We use 50k training samples in all datasets.

all Dataset
Logical Contrast Set Logical Equivalence Set

Avg C-CS D-CS N-CS Avg C-ES D1-ES D2-ES

Original 0.47 0.44 0.61 0.37 0.89 0.79 0.93 0.94
w/o Unknown 0.83 0.83 0.77 0.90 0.86 0.72 0.87 1.00

Table 6: Performance of RoBERTa-Large checkpoint
when finetuned on a subset of the training dataset with-
out Unknown label. We observe that the performance is
still below the in-domain performances.

Effect of distractors We define distractors as the
facts and rules that are not part of the proof set
for a given theory and statement. Figure 6 depicts
the effect of distractors on the model performance,
when finetuned on the All dataset and evaluated
on the Logical Contrast set. We observe that the
performance generally improves (or stays similar)
on the variant without distractors. This shows that
retrieving the relevant facts and rules in the the-
ory from a given set of sentences is a non-trivial
challenge. Thus, performing both retrieval and en-
tailment prediction in a single model can lead to
some performance degradation.

Effect of Statistical Features In a contemporary
work, Zhang et al. (2022) claims that deductive
reasoning models inherently learn to use statistical
features in the training data such as #rules, #facts,
etc. Here, we demonstrate that it is not the com-
plete reason for failure using the following control
study. We finetune the RoBERTa-Large model on
a subset of the All dataset, where we restrict to
two labels: True and False, by filtering out the
Unknown label. In our sampling algorithm, we en-
sure that each theory has the exact same number of
True and False labeled statements in the training
set. Thus, it is not possible to learn any statistic
of the data, as the label distribution per theory is
exactly uniform 5. Next, we evaluate the model on
the ROBUSTLR evaluation sets, with the Unknown
label filtered in each set. The results are shown in
Table 6. We observe that, although the performance
on this reduced test set is improved, there is still
around 15% gap on average with respect to perfor-
mance on in-distribution data. This gap suggests
that the model is not able to learn the logical opera-
tors robustly, even without any scope of spurious
statistical features in the training set. Thus, this
shows that although spurious correlation can lead
to non-robust model behavior, it is not the sole rea-
son for failure of these deductive reasoning models.
This calls for the development of better inductive

5Zhang et al. (2022) do not consider negations in the theory,
and thus cannot ensure this property.
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biases to teach the logical semantics more robustly
to the language models.

7 Related Works

Reasoning in natural language has been a preva-
lent problem in NLP. There are multiple reasoning
datasets, studying different aspects of reasoning
over textual inputs. Natural Language Inference
(NLI) (Dagan et al., 2006) is a prominent dataset
that requires reasoning over text to answer if a state-
ment is entailed, contradicted, or neutral given a
hypothesis. HotpotQA (Yang et al., 2018b) tests
multi-hop reasoning abilities that require compar-
isons and inferring missing bridge between sen-
tences. CLUTRR (Sinha et al., 2019) tests whether
models can infer biological relationships between
entities in a context. RICA (Zhou et al., 2021)
requires the model to employ commonsense rea-
soning to answer questions based on a context.

Recently, there has been an increasing focus on
evaluating the logical reasoning abilities of LMs.
ReClor (Yu et al., 2020) and LogiQA (Liu et al.,
2021) are logical reasoning datasets derived from
examinations. RuleTaker (Clark et al., 2020) pro-
poses synthetic deductive reasoning datasets that
uses only the knowledge in the context. There are
very limited works that probe the logical reasoning
abilities of language models (LMs). FaiRR (Sanyal
et al., 2022) tests the robustness of logical reason-
ing models when the subjects and attributes in the
context are altered to out-of-distribution terms. In a
contemporary work, Zhang et al. (2022) show that
language models can learn to use statistical features
that can be present in deductive reasoning datasets.
To the best of our knowledge, ROBUSTLR is the
first dataset that tests how robust these LMs are to
different logical perturbations.

8 Conclusion

In this paper, we proposed ROBUSTLR, a diagnos-
tic benchmark to test the logical robustness of de-
ductive reasoning models. In ROBUSTLR, we pro-
pose two evaluation sets, Logical Contrast and Log-
ical Equivalence, each probing different logical rea-
soning abilities. Overall, we find that fine-tuning
LMs such as RoBERTa and T5 on deductive rea-
soning datasets is not sufficient to learn the seman-
tics of the logical operators conjunction, disjunc-
tion, and negation. Although well-aligned training
dataset improves model performance, the models
still find it challenging to understand negations,

both in Logical Contrast and Logical Equivalence
sets. We demonstrate some interesting shortcom-
ing of LMs designed for logical reasoning, that can
eventually enable building better reasoning models.

9 Limitation

A key limitation of the work is the synthetic nature
of the dataset. While it is ideal to explore more
natural theories, it makes the systematic logical
perturbation process very challenging. Thus, in
this work, we resort to using synthetic datasets, but
aim to bridge this gap in future works. Another lim-
itation is the complexity of the datasets we explore.
We use fairly simple logical rules and constructs
for ROBUSTLR. Some more complex forms of log-
ical reasoning-based theories can potentially reveal
even more limitations of deductive reasoning mod-
els. Another interesting aspect we do not explore in
this scope is potential techniques to improve these
models on deductive reasoning tasks. This might
involve trying different inductive biases in the form
of architectural designs, more specialized datasets,
etc.
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A Model implementation details

In this section, we describe the implementation
details of the language models used to evaluate
ROBUSTLR.

• RoBERTa-Large: Following Rule-
Taker (Clark et al., 2020), we use a
pre-trained RoBERTa-Large (Liu et al.,
2019) model to perform the classifica-
tion task. Specifically, we input in the
format [CLS] T [SEP ] s [SEP ] to the
RoBERTa-Large model, and extract the
[CLS] embedding to predict the label. The
schematics of the RoBERTa model input is
shown in Figure 7. Here, T is the theory
which is the concatenation of the facts and
rules, and s is the statement. We use Cross
Entropy loss to fine-tune the model on the
training dataset.

• T5-Large: Following ProofWriter (Tafjord
et al., 2021), we train a T5-Large (Raffel et al.,
2020) model for the deductive reasoning task.
For this, we add a prefix to the T5-Large’s in-
put and generate the output in a fixed format.
Specifically, we give the input in the format:
$answer$ ; $question$ = s ; $context$ =
T . Here, T is the theory which is the concate-
nation of the facts and rules, and s is the state-
ment. And the output is defined to be in for-
mat: $answer$ = True/False/Unknown.
The model is trained on the default language
modeling loss to match the output format. At
evaluation time, we match the output template
with the above description and generate the
model’s predicted label accordingly.

• T5-3B: Similar to T5-Large above, we use the
T5-3B checkpoint.

• T5-11B: Similar to T5-Large above, we use
the T5-11B checkpoint.

• GPT3: We use GPT-3 (Brown et al., 2020)
for model evaluation to check its performance
on our C-CS,D-CS,N-CS. Following (Sanh
et al., 2021), we experiment with all the
prompts for the NLI task and select a prompt
which performs the best on the evaluation
datasets. We experiment with inserting 3
demonstrations and 10 demonstrations before
the sentence and find that the performances
are nearly same. So, we finally use the prompt

Figure 7: Overview of the RoBERTa-Large model
- The context (containing the facts and rules) and the
statement are concatenated together as input and passed
into a RoBERTa-Large model. The model is trained on
cross entropy loss for a 3-class classification task.

named “based on the previous passage” which
will give the input in a format as shown below:

Input Template:
{{premise}} Based on the previous passage,

is it true that "{{hypothesis}}"? Yes or no?

Output Template:
{{ answer_choices[label] }}

Answer Choices Template:
Yes ||| Maybe ||| No

We use 3 demonstrations for each sample to
limit the total tokens evaluated using the Ope-
nAI GPT-3 API 6.

B Hyperparameter Details

Here we use RoBERTa-Large (Liu et al., 2019)and
T5-Large,T5-3B,T5-11B (Raffel et al., 2020) mod-
els for the 3-class deductive reasoning classifica-
tion task. Only use GPT-3 (Brown et al., 2020)
for evaluation. We train the pre-trained check-
points available in the Hugging Face (Wolf et al.,
2020) Transformers library. For RoBERTa-Large
model, we use AdamW (Loshchilov and Hutter,
2019) with learning rate 1e-5. For T5-Large T5-3B
and T5-11B, we use AdamW with learning rate
1e-4, adamw_epsilon 1e-6, warmup_ratio 1e-1,
weight_decay 1e-2. All these models are trained
with batch size 8 on Nvidia Quadro RTX 8000
GPUs. For RoBERTa-Large and T5-Large,training
a single task on one GPU costs nearly 8 hours on
average. For T5-3B and T5-11B, we use 4 GPUs to
train the model and averagely need 5 and 10 hours
for one epoch.

6https://openai.com/api/
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Training Dataset Train Dev Test

NOT 50000 10000 10000
AND+NOT 50000 10000 10000
OR+NOT 50000 10000 10000
All 50000 10000 10000

Table 7: Training dataset statistics. Please refer to
Section C for more details.

Evaluation Set Number of instances

C-CS 20000
D-CS 20000
N-CS 20000

C-ES 20000
D1-ES 20000
D2-ES 20000

Table 8: Evaluation dataset statistics. Refer to Section
C for more details.

C Dataset Statistics

In this section, we describe the training and evalua-
tion dataset statistics. We first train the model on
the datasets in Table 7. Each dataset comprises of
different types of logical operators to help us in un-
derstanding the effect of different logical operators.
Then we evaluate the trained models on evaluation
datasets mentioned in Table 8. For evaluation, we
test the model on two subsets of ROBUSTLR: Logi-
cal Contrast set and Logical Equivalence set. Each
set is further sub-categorized into three different
parts, based on the type of perturbations.

D Filtering Statistical Features

In Figure 8, we show the plots of the label distri-
bution for the following statistical features in the
input theory and statement: #rules, #facts, #facts
with negation, #rules with negation, #rules with
conjunction, #rules with disjunction, and #state-
ments with negations. We observe that there is no
significant bias between any of these features and
the task label. Additionally, we show the count his-
togram of the instances in blue. Overall, our dataset
filtering is able to remove some of the count-based
statistical features.

E Contrast Perturbations

Following Section 3.3, we show the conjunction,
disjunction, and negation contrast perturbations for
the case when base theory’s label is False in Tables
11, 12, and 13, respectively.

Modified Rule Facts Statement Label Group

p =⇒ q {p} q True BASE

p ∨ t =⇒ q {p} q True DISJ

p ∨ t =⇒ q {p, t} q True DISJ

p ∨ t =⇒ q {¬p,¬t} q Unknown DISJ+NEG

p ∨ t =⇒ ¬q {p} q False DISJ+NEG

p ∨ t =⇒ ¬q {p, t} q False DISJ+NEG

p ∨ t =⇒ ¬q {¬p,¬t} q Unknown DISJ+NEG

Table 9: Disjunction Contrast Perturbations. The minimal
edits done to a base theory (first row) for testing the disjunction
and negation reasoning abilities. The group reflects the overall
change in theory w.r.t. the base theory.

Modified Rule Facts Statement Label Group

p =⇒ q {p} q True BASE

p =⇒ ¬q {p} q False NEG

¬p =⇒ q {p} q Unknown NEG

¬p =⇒ ¬q {p} q Unknown NEG

Table 10: Negation Contrast Perturbations. The minimal
edits done to a base theory (first row) for testing the negation
reasoning abilities.

For the conjunction contrast set perturbations in
Table 1 and 11, the first row is a base theory which
is used to generate these contrast sets. In the next
set of triads, the rule is modified to have an unseen
predicate t in conjunction with the existing rule
LHS. Here t is a predicate that is not part of the
existing facts and inferences in the theory (hence,
referred to as unseen predicate). Additionally, we
add t (or ¬t) as part of the facts in the theory. This
lead to modification of the label as shown in rows
3-4. For the next set of triads, we modify the base
rule to have a negated rule RHS ¬q. The corre-
sponding label changes are shown in rows 5-7. In
Table 11, we assume the label of the statement is
False for the base theory in row 1. Similar perturba-
tions are possible for the label True, and is shown
in Table 1 in 3.3. We group these perturbations into
three classes as shown in Table 11: BASE, CONJ,
CONJ+NEG. These groups are based on which logi-
cal operator is the new addition with respect to the
base theory. If a model performs accurately on this
contrast set, we expect that the model understands
the semantics of conjunction and negation logical
operators reasonably well.

Similar to the C-CS above, we show the per-
turbations considered in the D-CS in Table 9 and
12, where the distractor is added to the rule LHS
using disjunction (∨). Lastly, we show the N-CS
perturbations in Tables 10 and 13, where negations
are added to the rule LHS and/or RHS.
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Modified Rule Facts Statement Label Group

p =⇒ ¬q {p} q False BASE

p ∧ t =⇒ ¬q {p} q Unknown CONJ

p ∧ t =⇒ ¬q {p, t} q False CONJ

p ∧ t =⇒ ¬q {p,¬t} q Unknown CONJ+NEG

p ∧ t =⇒ q {p} q Unknown CONJ+NEG

p ∧ t =⇒ q {p, t} q True CONJ+NEG

p ∧ t =⇒ q {p,¬t} q Unknown CONJ+NEG

Table 11: Conjunction Contrast Perturbations. These are
perturbations for testing conjunction and negation reasoning
abilities. First row is the base theory being perturbed. Please
refer to Appendix E for more details.

Modified Rule Facts Statement Label Group

p =⇒ q {p} q False BASE

p ∨ t =⇒ ¬q {p} q False DISJ

p ∨ t =⇒ ¬q {p, t} q False DISJ

p ∨ t =⇒ ¬q {¬p,¬t} q Unknown DISJ+NEG

p ∨ t =⇒ q {p} q True DISJ+NEG

p ∨ t =⇒ q {p, t} q True DISJ+NEG

p ∨ t =⇒ q {¬p,¬t} q Unknown DISJ+NEG

Table 12: Disjunction Contrast Perturbations. These are
perturbations for testing disjunction and negation reasoning
abilities. First row is the base theory being perturbed. Please
refer to Appendix E for more details.

F Logical Contrast set breakdown

In this section, we further discuss the performance
of the LMs on each group of the Logical Contrast
set. From Tables 14, 15 and 16 we can say that the
models generally perform worse when they need to
handle more complicated compound rules (CONJ +
NEG > CONJ > BASE (where > means harder)).
Additionally, we find that when we add more com-
pound rules in the training dataset, the performance
is generally better. Giving more complex rules can
lead to further drops in performance, as noted by
performance on the CONJ+NEG and DISJ+NEG.
Models trained on the dataset with aligned oper-
ators instead of All dataset is better e.g., model
trained on AND+NOT get best result at CONJ+NEG.

It is easy to see that model with larger amount of
parameters give more consistent and better result
at C-CS, D-CS, N-CS which means the model
learned more semantics of logic from language and
is more robust.

G Result breakdown by label

We report the performance for each label in Tables
17 to 22, for both the Logical Contrast and Logi-
cal Equivalence sets. We find that T5-3B model,
the largest model among the three models, get a
good result for Unknown while other two models
are not good at it. It shows that models with large
amount of parameters can better learn to predict the

Modified Rule Facts Statement Label Group

p =⇒ q {p} q False BASE

p =⇒ ¬q {p} q True NEG

¬p =⇒ q {p} q Unknown NEG

¬p =⇒ ¬q {p} q Unknown NEG

Table 13: Negation Contrast Perturbations. The minimal
edits done to a base theory (first row) for testing the negation
reasoning abilities.

Unknown label, which is relatively harder than the
other two labels. Also, we find that Logical Equiv-
alence set is an easier task in general than Logical
Contrast set and the performances are stable across
three models.

H Human Evaluation

We recruit three Computer Science graduates to an-
notate the datasets. To keep the annotation realistic,
we sample 30 instances from each test subset of
ROBUSTLR and ask the annotators to mark a la-
bel from True, False, and Unknown. The question
asked is: “Does the theory entail or contradict the
statement, or we cannot say anything about it?”.
Overall, we find the average inter-annotator agree-
ment to be around 0.79, evaluated using the Fleiss’
kappa score 7.

7https://www.statsmodels.org/dev/generated/
statsmodels.stats.inter_rater.fleiss_kappa.html
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(a) # Rules (b) # Facts

(c) # Facts with Negations (d) # Rules with Negations

(e) # Rules with Conjunctions (f) # Rules with Disjunctions

(g) # Statements with Negations

Figure 8: Plots of label distribution with respect to different statistical features for the All dataset after our filtering
techniques are used. Additionally, we plot the histogram of the count of instances for each feature value.
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Logical Contrast set breakdown
C-CS D-CS N-CS

BASE CONJ CONJ + NEG BASE DISJ DISJ + NEG BASE NEG

NOT 1.00 0.28 0.28 1.00 0.62 0.28 1.00 0.22
AND+NOT 1.00 0.50 0.48 1.00 0.56 0.43 1.00 0.37
OR+NOT 1.00 0.32 0.29 1.00 0.74 0.52 1.00 0.31
All 1.00 0.41 0.34 1.00 0.81 0.50 1.00 0.26

Table 14: Performance breakdown of RoBERTa-Large with different groups of Logical Contrast set. Please refer to
Appendix F for more details.

Logical Contrast set breakdown
C-CS D-CS N-CS

BASE CONJ CONJ + NEG BASE DISJ DISJ + NEG BASE NEG

NOT 1.00 0.30 0.23 1.00 0.68 0.43 1.00 0.30
AND+NOT 1.00 0.40 0.31 1.00 0.69 0.43 1.00 0.32
OR+NOT 1.00 0.31 0.23 1.00 0.77 0.49 1.00 0.32
All 1.00 0.34 0.24 1.00 0.84 0.48 1.00 0.30

Table 15: Performance breakdown of T5-Large with different groups of Logical Contrast set. Please refer to
Appendix F for more details.

Logical Contrast set breakdown
C-CS D-CS N-CS

BASE CONJ CONJ + NEG BASE DISJ DISJ + NEG BASE NEG

NOT 0.96 0.56 0.53 0.96 0.61 0.57 0.96 0.55
AND+NOT 0.91 0.58 0.53 0.90 0.62 0.54 0.90 0.51
OR+NOT 0.95 0.37 0.39 0.93 0.74 0.65 0.93 0.53
All 0.93 0.54 0.49 0.93 0.75 0.62 0.94 0.49

Table 16: Performance breakdown of T5-3B with different groups of Logical Contrast set. Please refer to Appendix
F for more details.

Training Dataset
C-CS D-CS N-CS

False True Unknown False True Unknown False True Unknown

NOT 0.77 0.76 0.24 0.68 0.66 0.14 0.73 0.74 0.18
AND+NOT 0.89 0.87 0.48 0.71 0.71 0.38 0.67 0.69 0.49
OR+NOT 0.93 0.94 0.19 0.90 0.92 0.19 0.73 0.72 0.33
All 0.88 0.89 0.28 0.91 0.93 0.14 0.76 0.76 0.23

Table 17: Performance breakdown of RoBERTa-Large with different labels for Logical Contrast set. Please refer to
Appendix G for more details.

Training Dataset Contrapositive Distributive 1 Distributive 2

False True Unknown False True Unknown False True Unknown

NOT 0.72 0.72 0.92 0.91 0.90 - 0.73 0.75 -
AND+NOT 0.73 0.74 0.92 0.88 0.89 - 0.94 0.94 -
OR+NOT 0.72 0.73 0.89 0.85 0.89 - 0.95 0.94 -
All 0.73 0.75 0.90 0.91 0.94 - 0.93 0.94 -

Table 18: Performance breakdown of RoBERTa-Large with different labels for Logical Equivalence set. Please
refer to Appendix G for more details.
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Training Dataset
C-CS D-CS N-CS

False True Unknown False True Unknown False True Unknown

NOT 0.91 0.90 0.13 0.85 0.85 0.10 0.91 0.90 0.15
AND+NOT 0.95 0.93 0.23 0.87 0.83 0.11 0.89 0.88 0.20
OR+NOT 0.94 0.95 0.12 0.93 0.94 0.10 0.83 0.86 0.24
All 0.95 0.93 0.13 0.95 0.94 0.07 0.92 0.90 0.14

Table 19: Performance breakdown of T5-Large with different labels for Logical Contrast set. Please refer to
Appendix G for more details.

Training Dataset Contrapositive Distributive 1 Distributive 2

False True Unknown False True Unknown False True Unknown

NOT 0.72 0.72 0.83 0.90 0.90 - 0.97 0.97 -
AND+NOT 0.72 0.72 0.86 0.92 0.88 - 0.96 0.97 -
OR+NOT 0.71 0.72 0.87 0.85 0.86 - 0.97 0.98 -
All 0.73 0.72 0.85 0.94 0.91 - 0.98 0.98 -

Table 20: Performance breakdown of T5-Large with different labels for Logical Equivalence set. Please refer to
Appendix G for more details.

Training Dataset
C-CS D-CS N-CS

False True Unknown False True Unknown False True Unknown

NOT 0.93 0.94 0.53 0.79 0.82 0.43 0.91 0.94 0.46
AND+NOT 0.91 0.86 0.53 0.80 0.76 0.41 0.90 0.84 0.44
OR+NOT 0.95 0.95 0.30 0.92 0.92 0.37 0.93 0.93 0.41
All 0.91 0.94 0.43 0.91 0.93 0.30 0.93 0.96 0.33

Table 21: Performance breakdown of T5-3B with different labels for Logical Contrast set. Please refer to Appendix
G for more details.

Training Dataset Contrapositive Distributive 1 Distributive 2

False True Unknown False True Unknown False True Unknown

NOT 0.71 0.72 0.92 0.77 0.81 - 0.95 0.96 -
AND+NOT 0.71 0.69 0.88 0.83 0.78 - 0.95 0.90 -
OR+NOT 0.70 0.70 0.92 0.81 0.82 - 0.98 0.98 -
All 0.70 0.69 0.76 0.84 0.81 - 0.99 0.98 -

Table 22: Performance breakdown of T5-3B with different labels for Logical Equivalence set. Please refer to
Appendix G for more details.
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Algorithm 1: Sampling Algorithm
Input :vocab containing the corpus of all

predicates, ruleset containing the set of
valid rules, predicate negation probability
n1, statement negation probability n2, max
reasoning depth d.

Output :A theory containing a set of facts and
rules, a statement, and a corresponding
label ∈ {0, 1, 2}

1 pred_num ∼ U [10, 30]
2 preds← Sample(vocab, pred_num)
3 set l ∼ U [1, d] and group preds into l layers
4 rules← [ ]
5 for predicate p in layer 1 ≤ i ≤ l do
6 Negate p with probability n1

7 q ∼ U [0, 1]
8 assign label q to predicate p
9 if i ≥ 1 then

10 k ∼ U [1, 2]
11 cand← p in layer i− 1 with label q
12 body ← Sample(cand, k)
13 if len(body) > 1 then
14 operator ← Sample([∧,∨], 1)
15 Compose the predicates in the body
16 using operator
17 end if
18 r ← (body =⇒ p)
19 if Validate(ruleset, r) then
20 add r to rules
21 else
22 /* Rule r does not match any

valid rule forms, so the
predicate is not provable */

23 assign label 0 to predicate p
24 end if
25 end if
26 end for
27 facts← predicates in layer 1 with label 1
28 statement← Sample(preds, 1)
29 label← pre-assigned label for statement
30 if label == 1 then
31 Negate the statement with probability n2

32 label← 2
33 end if
34 return (facts, rules, statement, label)
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