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Abstract

Few-shot knowledge graph completion
(FKGC) aims to infer unknown fact triples of
a relation using its few-shot reference entity
pairs. Recent FKGC studies focus on learning
semantic representations of entity pairs by
separately encoding the neighborhoods of
head and tail entities. Such practice, however,
ignores the inter-entity interaction, resulting
in low-discrimination representations for
entity pairs, especially when these entity
pairs are associated with 1-to-N, N-to-1, and
N-to-N relations. To address this issue, this
paper proposes a novel FKGC model, named
Cross-Interaction Attention Network (CIAN)
to investigate the inter-entity interaction
between head and tail entities. Specifically,
we first explore the interactions within entities
by computing the attention between the task
relation and each entity neighbor, and then
model the interactions between head and
tail entities by letting an entity to attend to
the neighborhood of its paired entity. In
this way, CIAN can figure out the relevant
semantics between head and tail entities,
thereby generating more discriminative
representations for entity pairs. Extensive
experiments on two public datasets show that
CIAN outperforms several state-of-the-art
methods. The source code is available at
https://github.com/cjlyl/FKGC-CIAN.

1 Introduction

Knowledge graphs (KGs) like YAGO (Suchanek
et al., 2007), Freebase (Bollacker et al., 2008), and
Wikidata (Vrandečić and Krötzsch, 2014) have
been successfully applied to various knowledge-
driven applications, such as question answering
(Saxena et al., 2020), semantic search (Xiong et al.,
2017), and information retrieval (Liu et al., 2018).
A knowledge graph consists of a large number of
fact triples, where each triple is represented in the
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Figure 1: An example to illustrate the importance of the
relevant attributes between head and tail entities. Intu-
itively, the political attribute (dashed blue) of head enti-
ty GeorgeBush could be more helpful for representing
entity pair (GeorgeBush, President).

form of (head entity, relation, tail entity). Although
typical KGs are large in size, they still suffer from
incompleteness. This motivates the research in
knowledge graph completion (KGC), which aim-
s to predict the missing elements in incomplete
triples.

In literature, state-of-the-art KGC models are
usually based on knowledge graph embeddings
(KGE). The key idea behind KGE-based meth-
ods is to embed entities and relations into low-
dimensional vector spaces and measure the plausi-
bility of triples based on their embeddings (Bordes
et al., 2013; Nickel et al., 2011). Despite their suc-
cess, existing KGE-based models generally require
sufficient training triples for all relations. Howev-
er, in many real-world KGs, a large proportion of
(few-shot) relations only contain a limited number
of triples (Xiong et al., 2018; Chen et al., 2019;
Sheng et al., 2020). The shortage of training triples
hinders existing KGE-based models from achiev-
ing satisfactory performance on these few-shot re-
lations.

To address this issue, few-shot knowledge graph
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completion (FKGC) models have been proposed
to predict a tail entity t in a query triple (h, r, ?)
given K support entity pairs about the task rela-
tion r. Their primary focus lies in learning se-
mantic representations of entity pairs. Typically,
most methods learn entity embeddings from their
respective neighborhoods and then concatenate the
embeddings of head and tail entities (Niu et al.,
2021; Wang et al., 2021; Zhang et al., 2020). Such
practice, however, treats each entity independently
when modeling the semantic information of entity
pairs, ignoring the interactions between head and
tail entities. As a result, the generated represen-
tations of entity pairs are not sufficiently discrim-
inative, especially in 1-to-N, N-to-1, and N-to-N
relations where many different entity pairs involve
common entities.

To solve this problem, we propose to investi-
gate the inter-entity interaction between head and
tail entities, which affects the importance of their
semantic attributes to represent entity pairs. The
basic idea behind this is that entity pairs are sup-
posed to pay more attention to the relevant se-
mantic attributes between head and tail entities.
Figure 1 shows an example of the head entity
GeorgeBush and its two entity pairs belonging to
the task relation HasJobPosition. The left neigh-
borhood (dashed blue) describes the political at-
tribute of GeorgeBush as a former president of the
US, while the right one (solid green) shows his
soldier attribute as a navy pilot. Intuitively, the
political attribute could be more helpful for repre-
senting (GeorgeBush, President), while the sol-
dier attribute could contribute more to representing
(GeorgeBush, Pilot). Hence, exploiting the inter-
actions between head and tail entities is beneficial
to characterize entity pairs.

To this end, we propose a Cross-Interaction
Attention Network (CIAN) for few-shot knowledge
graph completion. Our contributions can be sum-
marized as follows:

• We investigate the inter-entity interaction in
few-shot knowledge graph completion, which
differs from previous paradigms by explor-
ing the relevant semantic information between
head and tail entities to represent correspond-
ing entity pairs.

• We model the inter-entity interaction through
two stages: the interactions within entities are
first captured to extract task-relevant entity

attributes, and then the interactions between
entities are explored to discern the attributes
of one entity related to its paired entity.

• We conduct extensive experiments on the
NELL-One and Wiki-One datasets. Exper-
imental results demonstrate that our method
outperforms the state-of-the-art methods of
few-shot KG completion with different few-
shot sizes.

2 Related Work

A common approach for KGC is to represent enti-
ties and relations as low-dimensional vectors (a.k.a,
knowledge graph embeddings, KGE) and then
learn a well-designed score function to measure
the plausibility of triples in the embedding space.
Existing KGE-based models can be roughly clas-
sified into two groups: (1) translational distance
approaches, which view relations as translation op-
erations and define a distance-based score function
accordingly (Bordes et al., 2013; Wang et al., 2014;
Lin et al., 2015), and (2) semantic matching ap-
proaches, which establish similarity-based score
functions and make predictions by matching latent
semantics of entities and relations (Nickel et al.,
2011; Trouillon et al., 2016; Vashishth et al., 2019;
Schlichtkrull et al., 2018). These KGE-based mod-
els usually assume that there are sufficient training
triples for all relations, and thus are limited in prac-
tical few-shot scenarios.

Recently, much research progress has been made
in few-shot KG completion, which solves KGC for
unseen relations with a handful of training sam-
ples, based on some prior knowledge gained from
a large number of similar but different relations.
Existing FKGC approaches can be divided into
two main categories. (1) Metric learning-based
methods: GMatching (Xiong et al., 2018) is the
first study to solve the one-shot KG completion
problem. It learns entity embeddings by encoding
their direct neighbors and measures the similari-
ties between the query and reference entity pairs
by a multi-step matching processor. FSRL (Zhang
et al., 2020) extends GMatching to a few-shot sce-
nario through a recurrent autoencoder aggregation
network and employs a heterogeneous neighbor en-
coder to improve the quality of entity embeddings.
Unlike GMatching and FSRL that learn the iden-
tical representation for the same entity in various
triples, FAAN (Sheng et al., 2020) allows for the
dynamic properties of entities under different task
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relations and learns task-aware entity representa-
tions. In addition, P-INT (Xu et al., 2021) lever-
ages the paths from head to tail entities to represent
entity pairs and calculates the path interactions be-
tween the support and query entity pairs. (2) Meta
learner-based methods: MetaR (Chen et al., 2019)
generates relation-specific meta-information using
the embeddings of head and tail entities and up-
dates relation meta via gradient meta. GANA (Niu
et al., 2021) learns relation-meta by incorporating
the neighbor information of entities and devises
a meta-learning-based TransH module to model
complex relations.

Different from the aforementioned methods that
treat each entity independently, our work explores
the inter-entity interaction and leverages the rele-
vant attributes between entities to represent entity
pairs.

3 Problem Formulation

A KG can be represented as a set of triples G =
{(h, r, t) ∈ E × R × E}, where E and R are the
entity set and the relation set, respectively. Given
any two of three elements within a triple, the KG
completion task aims to predict the remaining one.
This study focuses on predicting t given (h, r, ?)
since our goal is to infer new facts for few-shot
relations.

Following the standard setting in FKGC (Xiong
et al., 2018; Chen et al., 2019), we have access to
a background KG G′, which is a subset of G with
some relations of R. The remaining relations in
R are further divided into three disjoint task sets
Rtrain, Rtest and Rvalid, which are used in the
meta-training, meta-testing, and meta-validation
phases, respectively.

To perform few-shot learning, we adopt the
episodic paradigm (Vinyals et al., 2016) to imi-
tate the real test conditions. Specifically, in each
iteration of the meta-training phase, we sample
a task relation r from Rtrain, and construct its
support set Sr = {(hi, ti)}Ki=1 and its query set
Qr = {(hj , tj , Chj ,r)}Bj=1. Here, K and B de-
note the numbers of support and query triples, tj
is the ground-truth tail entity for query head en-
tity h about relation r, and Chj ,r is the set of the
corresponding candidate entities in G. The can-
didate entities are constructed based on the entity
type constraint (Xiong et al., 2018; Toutanova et al.,
2015). Our goal is to train a model using K sup-
port entity pairs in Sr such that the model can rank

the ground-truth entity tj higher than the corre-
sponding candidate entities in Chj ,r. A few-shot
KG completion task can be defined as follows:

Definition of Few-shot KG Completion. Giv-
en a task relation r and its support set Sr =
{(hi, r, ti)}Ki=1, one task is to predict the missing
tail entities of the query triples, where few-shot size
K is very small. The task is called K-shot KG
completion.

After sufficient training withRtrain, the learned
model can be used for the meta-validation and meta-
testing phases with Rvalid and Rtest, which are
defined in the same way asRtrain.

4 Methodology

The framework of the proposed CIAN is illustrated
in Figure 2. CIAN includes the following stages:
(1) modeling the inter-entity interaction by a task-
aware attention module and an entity-pair-aware
attention module to generate the semantic repre-
sentations of entity pairs, and (2) matching support
and query sets to compare the degree of semantic
matching between the input queries and the given
support entity pairs.

4.1 Modeling the Inter-entity Interaction

In this subsection, we aim to explore the inter-
entity interaction between the head and tail entities
and utilize their relevant semantics to represent the
corresponding entity pairs. To achieve this goal, we
take the following two steps: (1) First, we design a
task-aware attention module to extract task-relevant
semantic attributes for each entity. This step is
motivated by FAAN (Sheng et al., 2020), which
points out that entities should exhibit the semantic
attributes that adapt to the task relations. (2) On the
basis of the task-relevant attributes, we then explore
the relevant semantic attributes between head and
tail entities. This is realized by an entity-pair-aware
attention module, which attempts to compute the
attention of interaction between one entity and the
neighbors of its paired entity. Figure 3 gives an
example of modeling the inter-entity interaction.
We detail each module in the following.

4.1.1 Task-aware Attention Module
Given a pair of entities (h, t) about the task relation
r, the task-aware attention module takes as input
each entity and its local neighborhood, and outputs
its task-aware representation.
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Figure 2: Illustration of CIAN model architecture.

Figure 3: An example of modeling the inter-entity in-
teraction through two interaction stages.

Take the head entity h as a target, and
we denote its local neighborhood as Nh =
{(rhi, ehi)|(h, rhi, ehi) ∈ G′}. We first lever-
age three linear transformations, parameterized by
WQ

s ,WK
s ,W

V
s ∈ Rd×d, to project the task rela-

tion representation into the query, the neighboring
relation representations into the keys, and the se-
mantic representations of neighbors into the values,
as follows:

Qs
ht = rhtW

Q
s ,

Ks
hi = rhiW

K
s ,

V s
hi = nhiW

V
s , (1)

where

[rht||rth] = Bilinear(h, t), (2)

nhi = ReLU
(
[rhi||ehi]Wn + bn

)
. (3)

Here, h, t, ehi, rhi ∈ Rd are the embedding vec-
tors of h, t, ehi, rhi, respectively; d is the embed-

ding dimension; || represents the concatenation
operation; Wn ∈ R2d×d and bn ∈ Rd are learnable
parameters shared by all neighbors. In this paper,
we adopt a bilinear function to model pairwise in-
teractions between the head and tail entities (as
shown in Eq. 2), and obtain the forward represen-
tation rht ∈ Rd and the backward representation
rth ∈ Rd about the task relation r. In addition, we
apply a feed-forward neural network to learn the
semantic representation nhi of neighbor (rhi, ehi).
Different from previous studies (Sheng et al., 2020;
Zhang et al., 2020) that only use the information of
neighboring entities to represent neighbor seman-
tics, we compute the semantic representations of
neighbors by combining the information of neigh-
boring entities and neighboring relations, as shown
in Eq. 3.

Next, we calculate the relevance between the
neighboring relation and the task relation by a bi-
linear dot product, and then normalize the relevance
scores across all neighbors using the softmax func-
tion, as follows:

Attshi = Qs
htWsK

s
hi

T , (4)

αhi =
exp(Attshi)∑

(rhj ,ehj)∈Nh

exp(Attshj )
, (5)

where Ws ∈ Rd×d is a trainable weight vector that
captures interactions between relations; αhi repre-
sents the task-relevant attention weight of neigh-
bor (rhi, ehi). Afterward, we obtain the task-aware
neighbor representation h̄s about h by considering
its diverse roles:

h̄s =
∑

(rhi,ehi)∈Nh

αhiV
s
hi. (6)
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In this way, entity neighbors that are more relevant
to the task relation will be assigned higher weights,
thus capturing more valuable neighbor information.

Finally, we incorporate the weighted neighbor
representation h̄s into the entity embedding h to
generate the task-aware entity representation:

hs = ReLU(hWent + h̄sWnbr), (7)

where Went, Wnbr ∈ Rd×d are two trainable
weight vectors.

Likewise, we also perform the above procedures
on tail entity t and its local neighborhood Nt, and
obtain its task-aware entity representation ts.

4.1.2 Entity-pair-aware Attention Module
Given a pair of entities, the entity-pair-aware atten-
tion module aims to identify the relevant seman-
tics between head and tail entities by letting one
entity attend to each neighbor of its paired entity.
The generated entity-pair-aware representations are
then coupled together to form the semantic repre-
sentation of the corresponding entity pair.

Take the head entity h as a target. The entity-pair-
aware attention module takes as input {h,Nh, ts}
and outputs the entity-pair-aware representation of
h. In specific, for each neighbor (rhi, ehi) ∈ Nh,
we transform the task-aware representation of t into
the query, the neighboring entity representation ehi
into the keys, and the neighbor representation nhi

into the values with three linear transformations,
WQ

c ,WK
c ,W

V
c ∈ Rd×d, respectively, as follows:

Qc
t = tsW

Q
c ,

Kc
hi = ehiW

K
c ,

V c
hi = nhiW

V
c . (8)

Then, we compute the relevance of each neighbor
with respect to t:

Attchi = Qc
tWcK

c
hi

T , (9)

where Wc ∈ Rd×d is a trainable weight vector that
captures the interactions between entities. After-
ward, we compute the entity-pair-aware neighbor
representation h̄c for h:

h̄c =
∑

(rhi,ehi)∈Nh

βhiV
c
hi,

βhi =
exp(Attchi)∑

(rhj ,ehj)∈Nh

exp(Attchj )
, (10)

where βhi denotes the entity-pair-aware attention
weight of neighbor (rhi, ehi). Higher values of βhi
are indicative of stronger relevance between the
i-th entity neighbors of h and the paired entity t.

Finally, we generate the entity-pair-aware repre-
sentation of h by combining its entity embedding
h and its neighbor representation:

hc = ReLU(hWent + h̄cWnbr). (11)

Analogously, for tail entity t, the attention mech-
anism takes as input {t,Nt,hs} and generates its
entity-pair-aware representation tc. Based on the
generated representations hc and tc, we compute
the semantic representation p(h,t) of entity pair
(h, t) by a position-wise forward feed neural net-
work:

p(h,t) = ReLU
(
[hc||tc]Wp1 + bp

)
Wp2, (12)

where Wp1,Wp2 ∈ R2d×2d and bp ∈ R2d are train-
able matrix vectors.

4.2 Matching Support and Query Sets

Based on the generated semantic representations of
entity pairs, we are going to learn a general repre-
sentation from the representations of the reference
entity pairs in the support set, i.e., the prototype
of the few-shot relation. Due to the scarcity of ref-
erence triples, one reference triple far from other
references in the vector space will cause a huge de-
viation of the corresponding prototype (Gao et al.,
2019). Inspired by (Sheng et al., 2020; Gao et al.,
2019), we introduce an attention mechanism to s-
elect more informative references and denoise the
noisy references during training.

In specific, given a query qr in the query set Qr,
the prototype vector Zqr of few-shot relation r can
be obtained as follows:

Zqr =
∑

srk∈Sr
γkpsrk , (13)

γk =
exp(pqr � psrk)∑

sri∈Sr exp(pqr � psri)
. (14)

Here, srk , (hk, r, tk) ∈ Sr denotes the k-th triple
in the support set Sr; � denotes element-wise pro-
duction. As such, the prototype Zqr focuses more
on the query-relevant references and thus reduces
the impact of noisy references.
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Dataset # Ent # Triple # Rel # Task

NELL-One 68,545 181,109 358 67
Wiki-One 4,838,244 5,859,240 822 183

Table 1: Statistics of datasets. # Ent, # Triple, # Rel
and # Task represent the number of entities, triples, re-
lations, and task relations, respectively.

To predict the plausibility of qr , we calculate the
similarity score between the query representation
of qr and the prototype vector of r, as follows:

φ(qr, Sr) = pqr � Zqr . (15)

Higher values of φ(·) are indicative of more rea-
sonable triples.

4.3 Loss Function and Model Training
Given a task r ∈ Rtrain and its corresponding
triples, we randomly sample K entity pairs to
construct the support set Sr, and a batch of en-
tity pairs to construct the positive query set Qr.
For each entity pair in Qr, we pollute its tail en-
tity and construct a set of negative query enti-
ty pairs Q−r = {(hq, t−q )|(hq, tq) ∈ Qr}, where
t−q ∈ {Chq ,r \ tq}. Then we use a margin-based
scoring function to ensure that a positive query in
Qr has a higher similarity score than a negative
query in Q−r , as follows:

L =
∑

r

∑

qr∈Qr

∑

q−r ∈Q−
r

[γ+φ(q−r , Sr)−φ(qr, Sr)]+,

(16)
where [x]+ = max(0, x) is the hinge loss, and γ >
0 is a margin hyperparameter. We adopt a batch
sampling-based meta-training procedure (Vinyals
et al., 2016) to minimize L and optimize model
parameters.

5 Experiments

In this section, we conduct extensive experiments
to evaluate the performance of the proposed CIAN
and verify the effectiveness of the key components
in CIAN.

5.1 Experimental Settings
Datasets. In our experiments, we choose two
widely used benchmark datasets, namely NELL-
One and Wiki-One (Xiong et al., 2018), for few-
shot KG completion. In both datasets, relations
with less than 500 but more than 50 triples are
selected as few-shot relations, and the remaining

relations along with their triples constitute the back-
ground knowledge graphs. With this setting, there
are 67 and 183 few-shot relations on NELL-One
and Wiki-One, respectively. Following the orig-
inal settings (Xiong et al., 2018), we split the
training/test/validation relations as 51/11/5 and
133/34/16 on NELL-One and Wiki-One, respec-
tively. The detailed statistics of the two datasets
are summarized in Table 1.

Evaluation Metrics. We evaluate the model per-
formance using two common metrics: MRR and
Hits@N . MRR is the average of the reciprocal
ranks of the correct entities. Hits@N is the propor-
tion of correct entities ranked in the top N , with
N = 1, 5, 10. Higher values of MRR or Hits@N
are indicative of the better performance of KG com-
pletion.

Comparison Methods. We choose the follow-
ing 5 state-of-the-art models1 as the baselines to
compare with CIAN: GMatching (Xiong et al.,
2018), MetaR (Chen et al., 2019), FSRL (Zhang
et al., 2020), FAAN (Sheng et al., 2020), and
GANA (Niu et al., 2021) (cf. Section 2 for model
details). All the above methods learn entity em-
beddings by independently encoding their neigh-
borhoods. Traditional KGE-based models such as
TransE, DisMult, and ComplEx have been shown
to perform significantly worse than the aforemen-
tioned few-shot baselines (Sheng et al., 2020; Niu
et al., 2021). Due to space limitations, we omit the
comparisons with these traditional methods.

Implementation Details. We initialize the enti-
ty and relation embeddings with the pre-trained
TransE embeddings provided by Xiong et al.
(2018), and further fine-tune these embeddings dur-
ing training. On both datasets, we set the maximum
number of neighbors as 100, and fix the margin γ to
5.0. We use the Adam optimizer (Kingma and Ba,
2015) as the optimizer with an initial learning rate
of 8e−5 for NELL-One and 2e−4 for Wiki-One,
respectively. Following (Sheng et al., 2020), we e-
valuate our model on the validation set at every 10k
training steps, and save the best model when MRR
reaches the highest value within 300k steps. We
select the optimal hyperparameters of our method
by grid search on the validation set.

1For the sake of fairness, we do not compare our method
with P-INT (Xu et al., 2021) since its results are obtained by
discarding disconnected entity pairs.
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MRR Hits@10 Hits@5 Hits@1
NELL-One 3-shot 5-shot 3-shot 5-shot 3-shot 5-shot 3-shot 5-shot

GMatching (Xiong et al., 2018) - .176‡ - .294‡ - .233‡ - .113‡

MetaR (In-Train) (Chen et al., 2019) .245† .261 .456† .437 .360† .350 .144† .168
MetaR (Pre-Train) (Chen et al., 2019) .210† .209 .386† .355 .311† .280 .119† .141

FSRL (Zhang et al., 2020) .219† .195† .383† .359† .296† .279† .139† .108†

FAAN (Sheng et al., 2020) .247† .279 .369† .428 .309† .364 .183† .200
GANA (Niu et al., 2021) .322 .344 .510 .517 .432 .437 .225 .246

CIAN .344 .376 .484 .527 .417 .453 .266 .298
Wiki-One 3-shot 5-shot 3-shot 5-shot 3-shot 5-shot 3-shot 5-shot

GMatching (Xiong et al., 2018) - .263‡ - .387‡ - .337‡ - .197‡

MetaR (In-Train) (Chen et al., 2019) .210† .221 .299† .302 .249† .264 .165† .178
MetaR (Pre-Train) (Chen et al., 2019) .317† .323 .432† .418 .379† .385 .261† .270

FSRL (Zhang et al., 2020) .102† .113† .200† .236† .131† .135† .050† .056†

FAAN (Sheng et al., 2020) .298† .341 .435† .463 .368† .395 .228† .281
GANA (Niu et al., 2021) .331 .351 .425 .446 .389 .407 .283 .299

CIAN .358 .383 .492 .505 .438 .453 .284 .318

Table 2: Evaluation results of all methods on NELL-One and Wiki-One in terms of MRR and Hits@{1, 5, 10}.
‡Results come from (Sheng et al., 2020). †Results were obtained with the official implementation from the authors.
The remaining results were reported in the original papers. For each metric, bold numbers mark the best results.

5.2 Overall Comparison with Baselines

Table 2 reports the performance of all models on
the NELL-One and Wiki-One datasets. From the
table, we can observe that our CIAN significantly
outperforms all baselines on both datasets. Specif-
ically, for 5-shot link prediction, CIAN achieves
relative performance improvements of 3.2% / 1.0%
/ 1.6% / 5.2% in MRR / Hits@10 / Hits@5 / Hits@1
on NELL-One, and relative improvements of 3.2%
/ 4.2% / 4.6% / 1.9% on Wiki-One, compared to the
best performing baseline. For 3-shot link predic-
tion, CIAN achieves relative improvements of 2.7%
/ 5.7% / 4.9% / 0.1% in MRR / Hits@10 / Hits@5
/ Hits@1 on Wiki-One over the best performing
baseline. These results demonstrate that exploiting
the interactions between head and tail entities can
indeed improve the performance of few-shot KG
completion.

To further investigate the effectiveness of our
model under different few-shot sizes, we compare
the performance of all models on NELL-One in
various settings of K. The results are shown in
Figure 4. It can be observed that:

(1) CIAN consistently outperforms all baselines
by a large margin under different K, further prov-
ing the superiority of our model in the few-shot
scenario.

Figure 4: Impact of few-shot size K on NELL-One.

(2) With the increment of K, the performance
of all models does not continuously increase, sug-
gesting that larger reference sets do not always lead
to better performance of FKGC models. Even so,
CIAN still gets relatively stable improvements com-
pared to most baselines such as FSRL and MetaR
(In-Train).

5.3 Comparison with Variants
To evaluate the contributions of each component
in the proposed CIAN, we compare CIAN with its
three variant models. The results are displayed in
Table 3. We observe that the performance drops sig-
nificantly when the task-aware attention module is
removed (-TAM). This demonstrates that suppress-
ing task-irrelevant entity attributes can effectively
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Configuration MRR Hits@10 Hits@5 Hits@1
Full model .376 .527 .453 .298
-TAM .307 .494 .408 .212
-EPAM .211 .494 .408 .212
-Eq.2 .371 .484 .404 .223

Table 3: Results of CIAN and its variants in 5-shot link
prediction on NELL-One. “-TAM” and “-EPAM” rep-
resent CIAN without task-aware attention module, and
without entity-pair-aware attention module, respective-
ly. “-Eq.2” means that we replace Eq.2 with the equa-
tion r = t− h used in FAAN.

improve the model performance. We also notice
that removing the entity-pair-aware attention mod-
ule (-EPAM) will cause a remarkable performance
drop, and it performs worse than -TAM. This im-
plies that modeling the interactions between en-
tities is more critical than encoding each entity’s
neighborhood individually. In addition, we replace
the computation method of task relations in Eq. 2
with the modeling method of task relation embed-
dings used in FAAN. It can be seen that the per-
formance drops, indicating the superiority of our
method to model relationship semantics between
entities.

5.4 Comparison on Different Relations

To investigate the effectiveness of our model for
different categories of relations, we further analyze
the model performance of each task relation on the
NELL testing data. Table 4 displays the results of
CIAN and two best baselines: FAAN, and GANA.
We can observe that CIAN has better performance
on almost all relations. Further, the improvement
is more significant in N-to-1, and 1-to-N relations
than in 1-to-1 relations2. This phenomenon illus-
trates that utilizing the relevant semantics between
head and tail entities to represent entity pairs can
help model complex relations.

In addition, we visualize the 2D embeddings
of positive and negative candidate entity pairs for
ID#1 relation (ProducedBy) in Figure 5. From the
figure, we can find that the representations of posi-
tive and negative entity pairs learned by our model
can be clearly distinguished, which demonstrates
that our model can generate more discriminative
representations of entity pairs.

2We classify relation categories based on the definition of
complex relations from (Wang et al., 2014)

ID Category CIAN FAAN GANA
1

N-to-1

.632 .488 .577
2 .478 .428 .022
3 .607 .597 .428
4 .980 .965 .972
5

1-to-N

.350 .073 .255
6 .158 .073 .139
7 .167 .139 .132
8 .589 .577 .463
9

1-to-1
.270 .220 .246

10 .429 .391 .246
11 .012 .008 .143

Table 4: Results of CIAN, FAAN and GANA for each
relation (RID) in NELL testing data.

Figure 5: Embedding visualization of entity pairs about
relation ProducedBy.

6 Conclusion

In this paper, we investigate the inter-entity inter-
action and propose a cross-interaction attention
network for few-shot KG completion. Specifically,
a task-aware attention module is designed to extract
task-relevant entity attributes, and an entity-pair-
aware attention module is developed to identify
the relevant semantic attributes between head and
tail entities. Experiments on two public datasets
demonstrate that our model outperforms state-of-
the-art models with different few-shot sizes. In the
future, we will study how to make use of the side
information such as textual descriptions of entities
to solve the few-shot KG completion task.
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Limitations

Our method has the following limitations:

• The performance of our model may degrade
when there are many long-tailed entities with
few direct neighbors. This is because sparse
neighborhoods are not beneficial to model the
inter-entity interaction.

• Since our method focuses on exploiting the
interactions between entity neighborhoods, it
requires a background graph to provide the
neighbors of entities.
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