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Abstract

Image captioning models require the high-level
generalization ability to describe the contents
of various images in words. Most existing ap-
proaches treat the image–caption pairs equally
in their training without considering the dif-
ferences in their learning difficulties. Several
image captioning approaches introduce curricu-
lum learning methods that present training data
with increasing levels of difficulty. However,
their difficulty measurements are either based
on domain-specific features or prior model
training. In this paper, we propose a simple yet
efficient difficulty measurement for image cap-
tioning using cross-modal similarity calculated
by a pretrained vision–language model. Ex-
periments on the COCO and Flickr30k datasets
show that our proposed approach achieves supe-
rior performance and competitive convergence
speed to baselines without requiring heuristics
or incurring additional training costs. More-
over, the higher model performance on difficult
examples and unseen data also demonstrates
the generalization ability.

1 Introduction

Image captioning has been widely investigated in
computer vision and language research. However,
most current methods treat image–caption pairs for
training indistinctively, thus neglecting the differ-
ence in terms of learning difficulty. As illustrated
in Figure 1, an image is annotated with multiple
references with diverse styles and complexity lev-
els. Such diversity can introduce different levels
of learning difficulty, and undertrained captioning
models can be misled by wrong gradients when
training on the difficult data (Dong et al., 2021).

Curriculum learning (CL) has demonstrated im-
provements in model performance and training
speed by presenting data sorted according to the
learning difficulty (Bengio et al., 2009). Existing
image captioning approaches using CL have draw-
backs in their difficulty measurements: 1) Requir-
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- A pizza with multiple toppings including an egg.
- A white plate holding a pizza next to plate of fries.
- A pizza sits on top of a pan covered in vegetables.
- A pizza pie with vegetables of some sort on it.
- A full veggie pizza is ready to be eaten.

Pretrained Vision-Language Model
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- A city street lined with pine trees on the medium.
- A large metal ball sitting next to a street in a major city.
- A truck some palm trees buildings and traffic lights.
- A truck driving down a busy street.
- The image is not loading to describe it.

Similarity:
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Figure 1: Example of cross-modal similarity score for
the caption data calculated by the pretrained VL model
CLIP. Numbers with RED and BLUE colors denote the
higher and lower scores respectively.

ing domain-specific knowledge or heuristics (Liu
et al., 2021); 2) Adding up the mono-modal diffi-
culty scores without considering the cross-modal
features (Alsharid et al., 2021); and 3) Requiring
additional computational resources to train models
on the target data (for the cases of bootstrapping
methods) (Liu et al., 2021; Dong et al., 2021).

We propose a simple yet efficient difficulty mea-
surement using a pretrained vision–language (VL)
model. Most VL models are pretrained with image–
text matching tasks, which involve the calcula-
tion of the cross-modal similarity. The similar-
ity reveals the model confidence in the image–text
data relevance and a lower score indicates hard-
to-determine or low-quality data (Lee et al., 2021;
Hessel et al., 2021). As shown in Figure 1, the
VL model assigns higher scores to the highly rele-
vant image–caption pairs usually with simple im-
ages and appropriate captions, while assigns lower
scores to less relevant pairs often with complex
images and low-quality captions. We consider the
pairs with higher scores to be easier to learn and
train the captioning model with training examples
presented from easy to hard.
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In our experiments on the COCO and Flickr30k
datasets, models trained with our similarity-based
CL achieve superior performance and convergence
speed without domain-specific heuristics or addi-
tional pretraining cost. Moreover, using a VL pre-
trained model possessing the knowledge of the tar-
get data can further improve the performance. We
also evaluate the trained model on difficult exam-
ples and unseen data, and the better performance
of our method demonstrates the generalization abil-
ity. Last, our method brings higher improvement
when applied to a smaller model, suggesting its ap-
plicability to scenarios in which fine-tuning large
models is unfeasible.

2 Related Work

Curriculum Learning (CL) CL is a method to
train a model with sorted data to improve gener-
alization and accelerate convergence. It has been
explored in neural machine translation (Platanios
et al., 2019; Liu et al., 2020), relation extraction
(Huang and Du, 2019), and natural language un-
derstanding (Xu et al., 2020) in the language field,
or image classification (Wang et al., 2019; Xiang
et al., 2020) and semantic segmentation (Wei et al.,
2016; Huang and Du, 2019) in the vision field. We
focus on the efficient data difficulty measurement
of CL methods for image captioning.

Mono-Modal Difficulty Measurement Diffi-
culty measurement can be classified into prede-
fined and automatic methods. Predefined methods
require heuristics based on the data feature, such
as the variety (Bengio et al., 2009) or number (Wei
et al., 2016) of objects in an image and the length
(Spitkovsky et al., 2010) or word rarity (Platan-
ios et al., 2019) in a sentence, to measure the data
complexity for image classification and language
generation. In contrast, automatic methods usually
adopt a teacher model for difficulty measurement
based on cross entropy (Weinshall et al., 2018; Xu
et al., 2020) or perplexity (Zhou et al., 2020b) to
determine the model confidence and uncertainty.

Cross-Modal Difficulty Measurement Diffi-
culty measurement for caption data requires to con-
sider the visual and language modalities. Alsharid
et al. (2021) directly added visual and textual diffi-
culty scores measured by Wasserstein distance and
TF-IDF respectively for ultrasound image caption-
ing. Similarly, Liu et al. (2021) used both domain-
specific heuristics and entropy from the bootstrap-

ping model trained on the target data as difficulty
measurements for medical report generation. In ad-
dition, Dong et al. (2021) trained several bootstrap-
ping models to evaluate generated captions with the
BLEU score as the image difficulty. Unlike these
works, we propose an efficient measurement based
on cross-modal similarity to improve the model
performance in the general domain.

3 Methodology

3.1 Cross-modal Similarity
To calculate the cross-modal similarity, we use ei-
ther CLIP (Radford et al., 2021) pretrained on
image–text pairs from the web or ViLT (Kim
et al., 2021) pretrained on labelled image-caption
pairs for comparison. Specifically, given an im-
age X = (x1, ..., xP ) with P patches and a text
Y = (y1, ..., yT ) with T tokens, CLIP encodes
each modality with individual encoder to obtain
the visual feature x and textual feature y respec-
tively. Then the similarity is calculated as:

DCLIP_sim = cos(x,y). (1)

While for ViLT, image and text inputs are con-
catenated with a prepended [class] token, and the
inputs are encoded by a cross-modal encoder as:

ViLT(X,Y ) = x′[class], x
′
1, ..., x

′
P , y

′
1, ..., y

′
T .

(2)
The joint representation x′[class] is then given to a

pretrained fully-connected layer which is denoted
as FFN to calculate the similarity as:

DViLT_sim = sigmoid(FFN(x′[class])). (3)

3.2 Training Schedule
With the sorted dataset, we need to schedule when
and how much harder data should be given during
the training. Here we use the Baby Step learning
(Spitkovsky et al., 2010) as our training schedule.
The sorted dataset is equally divided into L buckets,
and the model is trained with the easiest bucket first.
When the model performance on the validation set
does not improve over several epochs, we consider
the model has converged and then merge the harder
bucket with current buckets to continue the train-
ing. Training terminates when all the buckets are
used and the maximum number of training epochs
is reached. In the experiments, we apply this train-
ing schedule to all the CL methods, and adjust the
optimal number of buckets based on the model per-
formance on the validation set. We use the notation
Simi-CL for our proposed similarity-based CL.
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3.3 Baseline Approaches
Addup-CL This method simply adds the diffi-
culty scores of two modalities, and we use pre-
trained models to measure the difficulty score of
each modality for a fair comparison. Specifically,
we use pretrained object detector BUTD (Anderson
et al., 2018) for visual difficulty Dv and language
model GPT-2 (Radford et al., 2019) for textual dif-
ficulty Dt, and take the weighted sum to obtain the
adding up difficulty Daddup:

Dv = −
K∑

k=1

N∑

n=1

pk,n log pk,n,

Dt = −
T∑

t=1

log p(yt|y<t),

Daddup = λ×Dv + (1− λ)×Dt,

(4)

where K denotes the top-K detected boxes with the
highest confidence score, N denotes the detected
object classes, pk,n is the probability of the n-th
class for the k-th box, and λ denotes the weight.

Bootstrap-CL This method requires training a
model with target data in advance to provide the
difficulty score. Specifically, we train the caption-
ing model on each dataset with the regular strat-
egy, then calculate the cross-entropy loss using the
trained model as follows:

Dbootstrap = −
T∑

t=1

log p(yt|y<t, X). (5)

4 Experiments

4.1 Settings
We performed experiments on the COCO and
Flickr30k datasets and adopted the Karparthy split-
ting strategy (Karpathy and Fei-Fei, 2015), ob-
taining 113k/5k/5k and 29k/1k/1k for the train-
ing/validation/test sets, respectively. We imple-
mented the captioning model as a vanilla Trans-
former based on the publicly available codes (Luo
et al., 2018), and set the batch size to 10, learn-
ing rate to 3e-4, and dropout rate to 0.4 for all the
experimental settings.

For CL-related settings, the split numbers L
for the Baby Step learning were empirically de-
termined to be 5 and 3 for COCO and Flickr30k,
respectively. About the hyperparameters in Addup-
CL, the number of the object detection classes N
is 1600 and we use the top-10 confident boxes to
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Figure 2: Model performance variation on the validation
sets of both datasets during the training.

calculate the difficulty, and the weight λ was set to
0.6 after the parameter tuning. For the similarity
calculation, we used the base version of CLIP as
the default model, and compare it with two ver-
sions of ViLT models which were fine-tuned on
the COCO (ViLT-CC) and the Flickr30k (ViLT-FL)
respectively by ViLT authors. We evaluated the per-
formance with the COCO API and focused on four
metrics: BLEU-4, METEOR, CIDEr, and SPICE.

4.2 Main Results
The performance on the validation set is shown
in Figure 2. For COCO, all the CL methods im-
prove the performance, and accelerate the conver-
gence speed towards the best vanilla model per-
formance. Particularly, Simi-CL achieves better
performance than Bootstrap-CL without additional
training cost, and both methods outperform Addup-
CL. For the Flickr30k dataset, we observe a similar
phenomenon but with smaller improvement and
Add-CL fails to improve the performance, which
indicates that CL method is more efficient for the
larger dataset. Since the vocabulary size of COCO
is larger than Flickr30k (9,487 vs. 7,000), we sup-
pose the difficulty measurement is efficacy for more
diverse data, which requires further investigations.

For the model performance on the test sets listed
in Table 1, the performance of CL-based models is
consistent with that for the validation sets, achiev-
ing similar performance to existing Transformer
baselines. Among the Simi-CL settings, using the
ViLT model without fine-tuning can bring improve-
ments similar to Bootstrap-CL but lower than the
CLIP model that has a larger size. While using
the ViLT models fine-tuned with in-domain and
non-target data, the model achieves similar perfor-
mance to CLIP with fewer parameters, and using
ViLT models fine-tuned with the target data can fur-
ther outperform CLIP, which reveals the efficacy
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Model
COCO Flickr30k

B@4 M C S B@4 M C S

Transformer Baseline w/ pretraining
LEMON (Hu et al., 2022) 40.3 30.2 133.3 23.3 - - - -

Transformer Baselines w/o pretraining
VL-BART (Cho et al., 2021) 33.8 28.5 112.4 21.4 - - - -
Unified VLP (Zhou et al., 2020a) 35.5 28.2 114.3 21.0 27.6 20.9 56.8 15.3
AoANet (Huang et al., 2019) 37.2 28.4 119.8 21.3 - - - -

Our Implemented Baselines
Transformer 35.7 27.9 113.0 20.9 27.7 21.8 58.5 16.0
Transformer + Addup-CL 35.2 27.9 114.2 21.0 26.5 21.5 56.6 16.0
Transformer + Bootstrap-CL 36.1 28.0 115.8 21.1 27.6 21.9 59.1 16.0

Our Proposed Methods
Transformer + Simi-CL (ViLT) 35.9 28.0 115.6 21.2 27.3 21.9 59.0 16.0
Transformer + Simi-CL (CLIP) 36.3 28.1 116.2 21.2 27.0 22.1 59.6 16.2
Transformer + Simi-CL (ViLT-CC) 36.4 28.2 117.1 21.4 27.5 22.1 61.0 16.3
Transformer + Simi-CL (ViLT-FL) 36.0 28.0 115.9 21.0 28.5 22.1 61.8 16.2

Table 1: Overall performance of CL-based methods and existing state-of-the-art models on COCO and Flickr30k.
B@4, M, C, and S represent BLEU-4, METEOR, CIDEr, and SPICE, respectively.

Difficulty Level

Model
Level-1 Level-2 Level-3 Level-4

B@4 C B@4 C B@4 C B@4 C

Transformer 71.0 199.5 36.5 120.9 4.5 84.0 0.7 47.8
+ Bootstrap-CL 57.1 172.0 37.8 122.5 27.0 97.8 18.3 71.2
+ Simi-CL 57.0 172.5 37.1 122.8 27.8 100.4 18.6 72.6

Table 2: Model performance on the divided COCO test sets with different difficulty levels.

of teacher models possessing the target data knowl-
edge for better curricula design. More details about
the measured difficulty score distributions can be
found in Appendix A. We also conduct the signifi-
cance test for measuring the improvements which
are described in Appendix B.

4.3 Quantitative Analysis

Performance on Divided Sets To understand
how CL contributes to the vanilla captioning model,
we equally divide the COCO test set into four sub-
sets based on the BLEU scores of captions gener-
ated by the vanilla model for the test images. The
results in Table 2 show that the vanilla model per-
formance is unbalanced among data with different
difficulty levels, while both CL methods improve
the performance on the harder subsets, and Simi-
CL achieves the best performance.

Model B@4 M C S

Transformer 15.8 17.0 35.8 10.9
+ Bootstrap-CL 18.1 17.5 38.3 11.4
+ Simi-CL 18.6 18.2 39.8 11.7

Table 3: Cross-dataset performance evaluation using the
best-performing COCO model for Flickr30k.

Model Generalization To evaluate the model
generalization ability, we test the model with cross-
dataset evaluation referencing the former work
(Torralba and Efros, 2011). Specifically, we use
the best-performing model trained with COCO
to generate captions for the unseen test set from
Flickr30k, obtaining the results listed in Table 3.
The model performance maintains similar trends,
with Simi-CL achieving the highest improvement
and thus the best generalization ability.
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High-Score Examples from Hardest Subset Low-Score Examples from Easiest Subset
Transformer :
A girl playing a video game in a living room. (82.4)
Transformer + Bootstrap-CL :
A woman standing in a living room holding a remote. (127.2)
Transformer + Simi-CL :
A woman standing in a living room holding a wii remote. (170.8)
References:
1. A woman standing next to a couch holding a wii controller.
2. Young woman playing wii in a furnished living room.

Transformer :
A group of sleep laying on top of hay. (206.1)
Transformer + Bootstrap-CL :
A couple of sheep laying on top of dry grass. (185.5)
Transformer + Simi-CL :
A group of sheep laying in hay next to each other. (131.2)
References:
1. A couple of sheep laying on top of a pile of dry grass.
2. Sheep laying and eating hay in an enclosure.

Transformer :
A stone building with a stone wall in front of it. (22.0)
Transformer + Bootstrap-CL :
A stone wall with a brick wall and a vase. (42.0)
Transformer + Simi-CL :
A bunch of vases sitting on a stone wall. (112.3)
References:
1. A window on brick wall with vases in the sill.
2. Several colorful vases on a stone window ledge.

Transformer :
A cat laying in a suitcase on the floor. (293.5)
Transformer + Bootstrap-CL :
A cat laying on top of a piece of luggage. (149.9)
Transformer + Simi-CL :
A cat sitting inside of a bag on the floor. (207.8)
References:
1. A cat laying in a bag in a room.
2. A cat sitting in a suitcase on the floor.

Transformer :
A busy highway with a lot of traffic. (35.8)
Transformer + Bootstrap-CL :
A train travelling on a bridge over a street. (67.9)
Transformer + Simi-CL :
A train travelling down a highway next to traffic. (126.1)
References:
1. A train travelling down tracks next to a highway.
2. A photo of a train heading down the tracks.

Transformer :
A green and white bus driving down a street. (252.6)
Transformer + Bootstrap-CL :
A green and white bus parked at a bus stop. (126.5)
Transformer + Simi-CL :
A green and white bus parked next to a street sign. (162.4)
References:
1. An empty bus travels down a city street.
2. A green and white bus is on the street.

Figure 3: Samples of generated captions on divided sets. Number in the parentheses indicates the CIDEr score.

Model B@4 M C S

BUTD 35.2 27.2 109.9 20.1
+Simi-CL 36.2 27.8 113.0 20.6

AoANet 36.8 28.0 117.2 21.3
+Simi-CL 37.3 28.2 117.0 21.4

Table 4: Model performance on the COCO for applying
Simi-CL to different model architectures.

Target Model Architecture To investigate the
effect of CL on different model architectures, we
applied it to the LSTM-based model BUTD and
more advanced Transformer-based model AoANet.
The results are shown in Table 4. The improvement
achieved by CL is higher when applied to a simpler
architecture, which reveals the small-size model
can benefit more from the large pretrained model.

4.4 Qualitative Analysis

We compare the captions from the vanilla model
and CL-based models on the aforementioned di-
vided subsets to understand the differences of gen-
erated captions as shown in Figure 3. On the hard-
est subset, we observed captions from Simi-CL can
recognize objects more accurately such as wii re-
mote or vases and describe contents in detail, which
reveals the improved generalization ability. While
on the easiest subset, we found that even if both
CL-based models generate captions with similar
or higher quality, low scores are given since the
matched n-grams are less based on the limited ref-
erences, which indicates the model-based metrics
should be considered for the reference-free evalua-
tion, and we leave it to our future work.

5 Conclusion

In this paper, we propose an efficient cross-modal
similarity-based difficulty measurement for image
captioning. Our proposed Simi-CL method boosts
the model performance and training speed espe-
cially for larger datasets, and the pretrained mod-
els fine-tuned with target data can lead to further
improvement. The improvement for data with dif-
ferent difficulty levels and data from other dataset
indicates that Simi-CL achieves the highest model
generalization ability. We also apply Simi-CL to
different model architectures, and the higher im-
provement for the simpler model shows its practi-
cality when only small-size models can be imple-
mented in real-world scenarios.

Limitations

The limitations of this paper are listed as follows:

Multiple Difficulty Measurements We mainly
focus on the CL method with a single measurement,
but ensemble multiple measurements for model
training may improve the model performance fur-
ther or disturb each other, which requires further
investigations.

More Advanced Training Schedules There are
other advanced continuous CL training schedules
such as the competence-based learning (Platanios
et al., 2019), which samples the data from easy to
hard gradually. We think our study is a baseline for
follow-up work, and we believe a better training
schedule will further boost the model performance.
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Challengeable Datasets There are several chal-
lengable image captioning datasets, such as the
Novel Object Captioning (NoCaps) (Agrawal et al.,
2019) and Conceptual Captions (CC) (Sharma
et al., 2018). Since the model trained with the
CL method can handle the harder data with better
generalization ability, we believe its performance
on these datasets will be improved.
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A Difficulty Score Distribution
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Figure 4: Difficulty score distribution for the COCO
training data under different difficulty measurements.

We provide distributions of normalized difficulty
scores for the COCO training data under differ-
ent difficulty measurements as shown in Figure 4.
We find distributions of scores measured by both
VL models have higher dispersion, which indicates
VL models can differentiate the difficulty levels
of the training data better, thus can achieve higher
model performance. However, although the dis-
tribution of Addup method has higher dispersion
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than Bootstrap, the latter one brings higher im-
provement. We suppose that it is because a good
measurement requires not only strong differentia-
tion ability, but also the rational data sorting order,
and Addup method cannot provide the appropriate
sorting order by simply adding up the mono-modal
scores for the difficulty measurement.

B Significance Test

We adopt the Bootstrap Test (Koehn, 2004) that is
widely used to compare two NMT systems’ perfor-
mance for our significance test. According to the
sampling strategy in Bootstrap Test, we repeatedly
sample images with replacements from the COCO
test set to create 1000 sampled test sets (each con-
tains 5000 images). Then we compute the metric
scores for Bootstrap-CL and Simi-CL on all sam-
pled sets. Finally we calculate the percentage of
times that Simi-CL outperforms Bootstrap-CL to
obtain the statistical significance as: Simi-CL is su-
perior on BLEU-4, CIDEr, METEOR, and SPICE
with p-value 0.032, 0.005, 0.001, and 0.001 respec-
tively. If we set the significance level to 0.05, the
improvements in all the metrics indicate the statis-
tically significant improvement of our method.
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