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Abstract

It has been shown that named entity recognition
(NER) could benefit from incorporating the
long-distance structured information captured
by dependency trees. However, dependency
trees built by tools usually have a certain per-
centage of errors. Under such circumstances,
how to better use relevant structured informa-
tion while ignoring irrelevant or wrong struc-
tured information from the dependency trees to
improve NER performance is still a challenging
research problem. In this paper, we propose the
Attention and Edge-Label guided Graph Con-
volution Network (AELGCN) model. Then,
we integrate it into BiLSTM-CRF to form
BiLSTM-AELGCN-CRF model. We design
an edge-aware node joint update module and
introduce a node-aware edge update module to
explore hidden structured information entirely
and solve the wrong dependency label informa-
tion to some extent. After two modules, we ap-
ply attention-guided GCN, which automatically
learns how to attend to the relevant structured
information selectively. We conduct extensive
experiments on several standard datasets across
four languages and achieve better results than
previous approaches. Through experimental
analysis, it is found that our proposed model
can better exploit the structured information on
the dependency tree to improve the recognition
of long entities.

1 Introduction

Named Entity Recognition (NER) is the recogni-
tion of entities with specific meanings in the text,
mainly including person, organization, location,
etc. NER is the fundamental tasks for many natural
language processing tasks such as relation extrac-
tion (Miwa and Bansal, 2016), event extraction
(Chen et al., 2015; Liu et al., 2019), coreference
resolution (Lee et al., 2017), question answer (Yao
and Van Durme, 2014), and knowledge graph (Li
et al., 2022). Previous studies have obtained useful
structured information from dependency trees and

Figure 1: Sentences annotated with dependency tree
and named entities.

have verified the effectiveness of integrating syn-
tactic dependency into NER tasks (Jie et al., 2017;
Jie and Lu, 2019; Aguilar and Solorio, 2019; Xu
et al., 2021).

A dependency tree reveals the syntactic structure
of a language unit by analyzing the dependency
relationships between its components, and "depen-
dency" refers to the relationship between related
words while specifying a dependency relationship
to form a syntactic tree reflecting the syntactic rela-
tionships between words in a sentence. However,
how to better use relevant structured information
while ignoring irrelevant or wrong structured infor-
mation for NER remains a research question to be
answered.

For example, Figure 1 (a) shows the dependency
tree and named entities of the sentence "Old Li
Jingtang still tells visitors old war stories circulat-
ing in the Taihong Mountain area". For the PER
(person) entity "Li Jingtang" where there is an ex-
ternal dependency arc, which is pointed from the
word "tells" to "Li Jingtang", whose dependency la-
bel is "nsubj" (nominal subject). Similarly, for the
LOC (location) entity "Taihong Mountain area",
which has an incoming arc with dependency label
"pobj" (prepositional object). These dependency
arcs contain structured information between words
and dependency label information that is useful
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for identifying named entity categories and bound-
aries.

However, under a different context, as shown
in Figure 1 (b), the same dependency label (pobj)
may convey different information for NER. For
example, the dependency label "pobj" connected
with "area" indicates LOC entity, but another de-
pendency label "pobj" connected with "Zhengcao"
points out PER entity. Therefore, a single context-
independent representation for each dependency
label is not enough to express the complex rela-
tions between words (Cui and Chen, 2022).

Even worse, there are some incorrect depen-
dency labels in the dataset, these incorrect depen-
dency labels may convey the wrong information
for NER. Figure 1 (c,d) shows that for the same
MONEY entity "about three hundred and fifty dol-
lars", there is an external dependency arc pointed
from the word "hundred" to "about" in sentence
(c) and (d), respectively. But the label of depen-
dency in sentence (c) is incorrect. The incorrect
dependency label "advmod" (adverbial modifier)
would convey wrong information, as a result, "three
hundred and fifty dollars" would probably be recog-
nized as the MONEY entity by mistake. Thus it is
necessary to find a solution to mitigate the impact
of incorrect dependency labels.

Also, on the other hand, sequence models like
bidirectional LSTM (Hochreiter and Schmidhuber,
1997) are not able to fully capture the long-range
dependencies (Bengio, 2009). Using the structured
information contained in the dependency tree can
solve the problem to some extent.

We propose a novel dependency-based named
entity recognition model to address the above prob-
lems, which improves the named entity recogni-
tion performance by exploiting syntactic depen-
dency information with graphical neural networks.
The model obtains contextual information by BiL-
STM and then by Attention and Edge-Label guided
Graph Convolution Network (AELGCN) to inte-
grate better contextual and structured information.
For each AELGCN layer, an edge-aware node joint
update module is firstly performed for aggregat-
ing information from neighbors and different de-
pendency labels. Then a node-aware edge update
module is used to update the dependency label rep-
resentation by its connected node representations,
which makes dependency label representation more
informative. After that, we introduce attention-
guided GCN (AGGCN) (Guo et al., 2019) which

contains an attention guide, densely connected, and
linear combination layer. The AGGCN is able to
select and discard structured information. These
two modules with AGGCN are complementary to
each other and work in a mutual promotion way. Fi-
nally, the Conditional Random Field Model (CRF)
(Lafferty et al., 2001b) is used to predict the labels
of entities.

Our contributions can be summarized as follows:

• We propose an edge-aware node joint update
module and introduce a node-aware edge up-
date module. These two modules exploit
the adjacency matrix and dependency label
embedding adjacency matrix to learn struc-
tured information representation in a context-
dependent manner and mitigate the impact of
incorrect dependency labels.

• We introduce AGGCN, which exploits the
multi-head self-attention mechanism better
learn how to select effective structured in-
formation. We combine the two modules
with AGGCN to construct our proposed AEL-
GCN model. Finally, we integrate AELGCN
into the BiLSTM-CRF model to form a novel
model called the BiLSTM-AELGCN-CRF
model. The model effectively leverages the
structured information, thus improving the
performance of NER.

• We have conducted extensive experiments on
standard datasets across four languages. On
these datasets, our proposed model signifi-
cantly outperforms previous approaches.

2 Related Work

The traditional feature-based NER approaches re-
quire considerable feature engineering skills and
domain expertise. However, deep neural network
based models can build reliable NER systems with
much less effort in designing features. BiLSTM-
CRF model (Huang et al., 2015) is one of the ear-
liest neural network based models. Due to word
embeddings having the out-of-vocabulary problem
in BiLSTM-CRF, character-level embeddings gen-
erated by LSTM (Lample et al., 2016) or CNN (Ma
and Hovy, 2016) are concatenated to enhance the
representation of rare and out-of-vocabulary words.
To further improve named entity recognition, the
representation of words was later enhanced by pre-
trained language models (Peters et al., 2018; Devlin
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Figure 2: Illustration of BiLSTM-AELGCN-CRF architecture. After input representation and context encoder layer,
L layers of AELGCN are stacked to learn syntax-enhanced word representation for sequence labeling. AELGCN
is composed of three modules: Edge-Aware Node Joint Update Module, which aggregates information from
neighbors of each node and dependency label information, Node-Aware Edge Update Module, which updates
context-independent representation for each dependency label, and M blocks of Attention Guided GCN, which
learns how to select effective structured information.

et al., 2019). Recent works have focused on lever-
aging sentence and document-level representations
into NER models. (Luo et al., 2020) enhanced the
sentence representation, which was learned from
an independent BiLSTM via label embeddings, and
used key-value memory networks with an attention
mechanism to calculate document-level representa-
tions. (Schweter and Akbik, 2020) used the contex-
tual information of the current sentence to generate
a contextual representation of the sentence so that
more information could be obtained for the sen-
tence representation. These models focus on find-
ing good contextualized word representations and
better sentence representations to improve NER.

Syntactic information also plays an important
role in NER. (Jie et al., 2017) exploited TREE-
LSTM (Tai et al., 2015) to extract the dependency
tree features and a semi-Markov model to predict
the entity types. (Cetoli et al., 2017) found that the
use of dependency tree information through graph
convolutional networks (GCN) (Kipf and Welling,
2017) has been effective for named entity recogni-
tion. (Jie and Lu, 2019) proposed a DGLSTM-CRF
model by introducing dependencies into an LSTM
to obtain information about the dependency tree
for named entity recognition. (Xu et al., 2021) pro-

posed the Synergized-LSTM (Syn-LSTM), where
they constructed syntactic adjacency matrices and
learned syntactic information through GCN, allow-
ing the LSTM cell to update and represent hid-
den states with additional GCN syntactic informa-
tion representations. Although these previous ap-
proaches have utilized dependency tree structures,
we focus on exploring neural architectures to bet-
ter exploit structured information by dependency
trees.

3 Model

This section presents our BiLSTM-AELGCN-CRF
model in detail. Figure 2 shows the overall model
architecture, which consists of four components:
the Input Representation Layer, the Context En-
coder Layer, the Attention and Edge-Label guided
GCN layer, and the CRF Layer.

3.1 Input Representation Layer

Following the work by (Xu et al., 2021), given a
sequence of n tokens X = {x1, x2, ..., xn}, for
each word xt, the input representation xt of our
model is the concatenation of the word embedding
wt, the character representation ct, the dependency

6501



relation embedding rt, and the POS embedding pt:

xt = [wt; ct; rt; pt] (1)

where wt is the pre-trained word embedding,
character-level embedding ct is learned from
character-based BiLSTM, rt and pt embeddings are
randomly initialized and fine-tuned during training.
In addition, we use contextualized representations
such as BERT (Devlin et al., 2019) in our experi-
ments, we further concatenate the contextual word
representation to xt.

3.2 Context Encoder Layer
Given the input representation x, then x is fed into
BiLSTM, which is applied to generate contextual
representation. The BiLSTM enables the model to
get contextual information from both directions.

H = {h1, h2, ..., hn}
= BiLSTM(x1, x2, ..., xn)

ht = [
−→
h t,
←−
h t]

−→
ht = LSTM(xt,

−→
h t−1,

−→
θ )

←−
ht = LSTM(xt,

←−
h t−1,

←−
θ )

(2)

where
−→
θ and

←−
θ are learnable parameters, respec-

tively.

3.3 Attention and Edge-Label guided Graph
Convolutional Networks

In this subsection, we first introduce the GCN
model and then present the proposed AELGCN,
which contains an edge-aware node joint update
module, a node-aware edge update module and the
attention-guided GCN.

3.3.1 Vanilla Graph Convolutional Network
GCN (Kipf and Welling, 2017), which is capable of
encoding graphs, is an extension of convolutional
neural network. For an L-layer GCN, if we denote
H l−1 the input state and H l the output state of the
l-th layer, the graph convolutional operation can be
formulated as:

H l = GCN(A,H l−1,W )

= σ(AH l−1W )
(3)

where H l =
{
hl1, h

l
2, ..., h

l
n

}
, l ∈ [1, 2, ..., L], the

calculation formula is as follows:

hli = σ(
n∑

j=1

AijW
lhl−1

j + bl) (4)

where W l is a linear transformation, bl is a bias,
and σ denotes a nonlinear activation function, e.g.,
ReLU. A ∈ Rn×n is obtained from the dependency
tree, which is an adjacency matrix expressing con-
nectivity between nodes.

However, directly stacking GCN and LSTM may
cause a performance drop (Xu et al., 2021). We
need to find a new solution to incorporate both
types of features interaction between dependency
trees and contextual information. Moreover, pre-
vious works for NER ignore dependency labels in
the GCN modeling process.

3.3.2 AELGCN
Edge-Aware Node Joint Update Module Pre-
vious work (Cui et al., 2020) proposed an edge-
aware node update (EANU) module that exploited
the meaning of dependency labels in different con-
texts, and they did not consider that the dependency
labels themselves may be incorrect. For EANU,
this approach would cause the problem of remote
propagation of incorrect dependency label informa-
tion in node representations, finally, it will convey
wrong information for NER and thus deteriorate
the performance.

For this reason, we designed an edge-aware node
joint update (EANJU) module. The EANJU mod-
ule is able to mitigate the above problem. Theoreti-
cally, the EANJU module combine the structured
information with dependency label information, via
pool operation. If this dependency label informa-
tion is incorrect, the structured information will
be polluted. In order to mitigate this problem, we
add its original structured information after pool
operation to reduce the polluted influence.

Firstly, for a given dependency tree, we trans-
form dependency tree into its corresponding ad-
jacency matrix A ∈ Rn×n and dependency la-
bel embedding adjacency matrix E ∈ Rn×n×p

where Aij = 1 indicates that node i and node j
are connected, which means that node i and node
j have dependency relation, Ei,j,: ∈ Rp denotes
the p-dimensional dependency label representation
between the node i and node j. With words in
sentences interpreted as nodes in the graph, the
EANJU module updates the representation for each
node. Mathematically, this operation can be de-
fined as follows:

H l = EANJU(El−1, A,H l−1)

= Pool(H l
1, ...,H

l
p) + σ(AH l−1W1)

(5)

Specifically, the aggregation is conducted channel
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by channel in the adjacency tensor as follows:

H l
i = El−1

:,:,iH
l−1W2 (6)

where E ∈ Rn×n×p is the dependency label em-
bedding adjacency matrix from initialization or last
AELGCN layer, El−1

:,:,i denotes the i-th channel slice
of El−1, H0 is output of BiLSTM, W1 ∈ Rd×d,
W2 ∈ Rd×d are a learnable filter, d is the di-
mension of BiLSTM output representation and
A ∈ Rn×n is the adjacency matrix from initial-
ization and σ is the ReLU activation function. A
mean-pooling operation is applied to compress fea-
tures since it covers information from all channels.

Node-Aware Edge Update Module Following
the work by (Cui et al., 2020), it mentions that the
same dependency label in different contexts may
convey different signals, so specifying a context-
independent representation for each dependency
label is not sufficient to express the complex rela-
tionships between words. Therefore, (Cui et al.,
2020) proposed a novel node-aware edge update
(NAEU) module to dynamically calculate and up-
date dependency label representations according to
the node context. Formally, the NAEU operation is
defined as:

El
:,:,i = NAEU(El−1

:,:,i , h
l
i, h

l
j)

= Wu[E
l−1
:,:,i⊕hli⊕hlj ]

(7)

where ⊕ means the concatenation operator, hli and
hli denote the representations of node i and j in
the lth layer after EANJU operation, El−1

:,:,i ∈ Rp

is the relation representation between node i and
j, Wu ∈ R2×d+p is a learnable parameters. This
updated dependency label embedding adjacency
matrix is fed to the next AELGCN layer to per-
form another round of joint node updates, and such
mutual update process can be stacked over L layers.

Attention Guided GCN In order to obtain syn-
tactic information from different representation
subspaces and learn how to attend to the rele-
vant structured information selectively, we ap-
ply attention-guided GCN (AGGCN) (Guo et al.,
2019) into our model. Unlike Vanilla GCN (Kipf
and Welling, 2017), AGGCN will construct an
attention-guided adjacency matrix Ã generated by
multi-head self-attention in AGGCN to update the
node information again. The formula for generat-
ing Ã is given as follows:

Ãt = softmax(
QtW t

Q × (KtW t
K)T

√
dhead

) (8)

where Qt and Kt are both equal to EANJU out-
put H l or at layer l − 1 of the AGGCN output
hl−1, W t

Q and W t
K are used to project the input

Qt,Kt ∈ Rn×dhead(dhead = dh
Nhead

) of the t-th
head into a query and a key Ã ∈ Rn×n is the up-
dated adjacency matrix for the t-th head.

For each head, AGGCN uses Ã and a densely
connected layer to deepen the layers of the whole
AGGCN, to better capture the rich local informa-
tion and k-hop information. The output of the
densely connected layer is H̃t ∈ Rn×dh , then a
linear combination layer is used to merge the out-
put of each head, H̃ = [H̃1, H̃2, ..., H̃Nhead ]W ,
where W ∈ R(Nhead×dh)×dh is a learnable parame-
ters, H̃ ∈ Rn×dh is the final output of AGGCN.

After that, H̃t will be fed into the next layer of
AELGCN to perform the same operation again and
get the final output.

3.4 CRF Layer

We use a conditional random field (CRF) (Lafferty
et al., 2001a) classifier at the top of our model to
perform the sequential inference. The CRF takes
vectors in the tagging space as input and produces
the best sequence of labels using the Viterbi al-
gorithm. Consider the observation sequence of
vectors x = [x1, x2, ..., xn] and its corresponding
target labels y = [y1, y2, ..., yn], CRF computes
the conditional probability of the target sequence
y given the inputs x by globally normalizing the
target score:

P (y|x) = exp(score(x, y))∑
y′ exp(score(x, y

′))
(9)

The score function is defined as:

score(x, y) =
∑

Tyi,yi+1 +
∑

Eyi (10)

where Tyi,yi+1 denotes the transition score from
label yi to yi+1, Eyi denotes the score of label yi at
the ith position and the scores are computed using
the hidden state. During training, we minimize the
negative log-likelihood to obtain the model param-
eters.

4 Experiments

4.1 Datasets

Our proposed method is evaluated on four bench-
mark NER datasets: SemEval 2010 Task 1 (Re-
casens et al., 2010) Catalan and Spanish datasets,
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Dataset # Sent. # Entity # Entity Length

1 2 3 4 5 ≥ 6

Train 8,709 15,278 8,819 3,897 1,742 264 119 437
Catalan Dev 1,445 2,431 1,370 676 269 40 18 58

Test 1,698 2,910 1,601 811 338 57 27 76

Train 9,022 17,297 10,307 3,609 2,302 301 175 603
Spanish Dev 1,419 2,615 1,523 559 348 54 31 100

Test 1,705 3,046 1,755 702 369 59 34 127

Train 59,924 81,828 46,525 17,391 9,714 4,892 1,938 1,368
English Dev 8,528 11,066 6,325 2,395 1,256 643 275 172

Test 8,262 11,057 6,129 2,598 1,359 706 278 187

Train 36,487 62,543 47,285 9,668 3,626 1,139 467 358
Chinese Dev 6,083 9,104 6,969 1,397 473 169 55 41

Test 4,472 7,494 5,479 1299 473 146 55 42

Table 1: Dataset statisticss.

and OntoNotes 5.0 (Weischedel et al., 2013) En-
glish and Chinese datasets. We chose these datasets
because they contain both constituency tree and
named entity annotations. For SemEval 2010 Task1
datasets, there are 4 entity types. For OntoNotes
5.0 datasets, there are 18 entity types in total. Fol-
lowing the work by (Xu et al., 2021), we transform
the parse trees into the Stanford dependency trees
(De Marneffe and Manning, 2008) by using Stan-
ford CoreNLP (Manning et al., 2014). Moreover,
we present the number of different lengths of en-
tities to show that these datasets have a modest
amount of long entities. Detailed statistics of each
dataset can be found in Table 1.

4.2 Experimental Setup
For Catalan and Spanish, we use Subs2Vec (Pari-
don and Thompson, 2020) 100-dimensional em-
beddings to initialize the word embeddings. For
OntoNotes 5.0 Chinese, we use SGNS Word2vec
(Qiu et al., 2018) 300-dimensional embeddings to
initialize the word embeddings. For OntoNotes 5.0
English, we adopt the publicly available GloVE
(Pennington et al., 2014) 100-dimensional embed-
dings to initialize the word embeddings. For ex-
periments with the contextualized representation,
we adopt the pre-trained language model BERT
(Devlin et al., 2019) for the four datasets. We use
the cased version of the BERT large model for
the OntoNotes 5.0 English data experiments. We
use the cased version of the BERT base model for
the experiments on the other three datasets. For
the character embeddings, we randomly initialize
the character embeddings, set the dimension as 30,
and set the hidden size of character-level BiLSTM
as 50. For the dependency label embeddings, we
randomly initialize dependency label embeddings
with 50-dimension vectors and dependency label
embedding adjacency matrix embeddings as 50.
The hidden size of AELGCN and BiLSTM is set

as 200, and the number of AELGCN layers L as 2.
For AGGCN, we set the number of heads for the
attention guided layer as 4, the first block number
as 2, and the number of sublayers L in each densely
connected layer as 4. Our models are optimized by
mini-batch stochastic gradient descent (SGD) with
a learning rate of 0.1 and batch size of 20. We use
L2 regularization with a parameter of 1e-8 to avoid
overfitting. Dropout is applied to word embeddings
and hidden states with a rate of 0.5. We ran experi-
ments using Pytorch 1.9.0 on Nvidia Tesla K40m
GPU with Intel Xeon E5-2620 CPU.

4.3 Baselines
We compare our models with several competitive
dependency-based models.

• BiLSTM-GCN-CRF (Jie and Lu, 2019),
which simply stacks GCN on top of BiLSTM
to incorporate the dependency trees.

• Dependency guided LSTM-CRF (DGLSTM-
CRF) (Jie and Lu, 2019), which takes the con-
catenation of head word representation and
word embeddings as input into BiLSTM.

• GCN-BiLSTM-CRF (Xu et al., 2021), which
takes the concatenation of the graph-encoded
representation from GCN and word embed-
ding as input into BiLSTM.

• Syn-LSTM-CRF (Xu et al., 2021), a recurrent
neural network architecture considers an addi-
tional graph-encoded representation to update
the memory and hidden states.

Besides, we compare our model with previous
works that have results on these datasets.

4.4 Results
SemEval 2010 Task 1 Table 2 shows the compar-
ison of our model with the baseline models on the
SemEval 2010 Task 1 Catalan and Spanish datasets.
Our BiLSTM-AELGCN-CRF model outperforms
all models with F1 86.75 and 88.13. Our model
outperforms the BiLSTM-CRF model by 17.24
and 14.26 percentage points in F1, outperforms
the BiLSTM-GCN-CRF model by 11.53 and 6.20
F1 points, and outperforms the GCN-BiLSTM-
CRF model 9.32 and 6.28 F1. Compared to the
DGLSTM-CRF, our proposed method improves
5.11 and 4.66 F1 points on the Catalan and Spanish
datasets. In addition, compared to Syn-LSTM-CRF,
we improved 3.99 and 3.04 F1 points, respectively.
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Models Catalan Spanish

P. R. F1 P. R. F1

BiLSTM-CRF* 76.83 63.47 69.51 78.33 69.89 73.87
BiLSTM-GCN-CRF* 81.25 75.22 78.12 84.10 79.88 81.93
GCN-BiLSTM-CRF† 80.95 74.19 77.43 84.36 79.48 81.85
DGLSTM-CRF (2019) 83.35 80.00 81.64 84.05 82.90 83.47
Syn-LSTM-CRF (2021) 83.90 81.65 82.76 86.22 84.24 85.09

BiLSTM-AELGCN-CRF (Ours) 87.60 85.91 86.75 88.75 87.52 88.13
Improvement ∆ +3.70 +4.26 +3.99 +2.53 +3.29 +3.04

+ Contextualized Word Representation
BERT-CRF† 76.34 76.05 76.19 79.30 77.22 78.24
Wolf et al. (2020)† 83.42 85.7 84.23 81.36 85.58 83.42
BiLSTM-CRF + ELMO* 77.85 76.22 77.03 81.72 79.09 80.38
BiLSTM-CRF + BERT† 81.21 79.90 80.55 83.28 80.11 81.66
BiLSTM-GCN-CRF+ ELMO* 83.68 83.16 83.42 85.31 85.19 85.25
GCN-BiLSTM-CRF+ BERT† 87.60 86.39 86.99 88.07 87.46 87.76
DGLSTM-CRF (2019) + ELMO 84.71 83.75 84.22 87.79 87.33 87.56
DGLSTM-CRF+ BERT† 85.92 84.50 85.20 85.67 85.00 85.33
Syn-LSTM-CRF (2021) + BERT 89.07 89.04 89.05 89.66 90.54 90.10

BiLSTM-AELGCN-CRF+ BERT (Ours) 90.11 90.21 90.16 91.86 90.41 91.13
Improvement ∆ +1.04 +1.17 +1.11 +2.20 -0.11 +1.03

Table 2: Experimental results [%] on SemEval 2010
Task 1 Catalan and Spanish test set. The models with
* symbol are retrieved from (Jie and Lu, 2019) and †
symbol are retrieved from (Xu et al., 2021)

The results show that our proposed model can ef-
fectively capture structured information compared
to traditional GCN.

We further compare the performance of all
models with contextualized word representation,
BiLSTM-AELGCN-CRF+ BERT achieves higher
performance improvements than any other method.
Our model outperformed the strong baseline model
Syn-LSTM-CRF+ BERT in F1 by 1.11 and 1.03 in
Catalan and Spanish, respectively.

OntoNotes 5.0 English Table 3 shows the perfor-
mance comparison between our work and previous
work on the OntoNotes English 5.0 dataset. Our
BiLSTM-AELGCN-CRF model outperforms all
existing methods with 89.25 in terms of F1 score.
Our model outperforms the BiLSTM-CRF model
by 2.18 in F1 and the BiLSTM-GCN-CRF model
by 1.07. Compared to the DGLSTM-CRF and Syn-
LSTM-CRF, our proposed method improves 0.73
and 0.21 F1 points, respectively. Although our
proposed method that precision drops compared
to Syn-LSTM-CRF, the performance improvement
on recall is more significant. This shows that our
proposed method is able to extract more entities.
Moreover, with the contextualized word represen-
tation BERT, our method achieves an F1 score of
91.16. Our method outperforms Syn-LSTM-CRF
model by 0.31 F1.

OntoNotes 5.0 Chinese Our experimental re-
sults on OntoNotes 5.0 Chinese test set are shown
in Table 4. Our model still consistently outper-
forms the baseline models. Our model outperforms

Models P. R. F1

Chiu and Nichols (2016) 86.04 86.53 86.28
Li et al. (2017) 88.00 86.50 87.21
Strubell et al. (2017) - - 86.84
Ghaddar and Langlais (2018) - - 87.95
BiLSTM-CRF* 87.21 86.93 87.07
BiLSTM-GCN-CRF* 88.30 88.06 88.18
GCN-BiLSTM-CRF† 88.56 88.76 88.66
DGLSTM-CRF (2019) 88.53 88.50 88.52
Luo et al. (2020) - - 87.98
Syn-LSTM-CRF (2021) 88.96 89.13 89.04

BiLSTM-AELGCN-CRF (Ours) 88.72 89.79 89.25
Improvement ∆ -0.24 +0.66 +0.21

+ Contextualized Word Representation
Akbik et al. (2018) - - 89.30
BERT-CRF† 88.42 88.33 88.37
Wolf et al. (2020)† 88.39 90.29 89.33
BiLSTM-CRF+ ELMO* 89.14 88.59 88.87
BiLSTM-CRF+ BERT† 89.32 90.02 89.67
BiLSTM-GCN-CRF+ ELMO* 89.40 89.71 89.55
GCN-BiLSTM-CRF+ BERT† 89.34 91.26 90.29
DGLSTM-CRF(2019)+ ELMO 89.59 90.17 89.88
DGLSTM-CRF+ BERT† 89.63 89.87 89.75
Luo et al. (2020)+ BERT* - - 90.30
Syn-LSTM-CRF (2021)+ BERT 90.14 91.58 90.85

BiLSTM-AELGCN-CRF+ BERT (Ours) 90.55 91.78 91.16
Improvement ∆ +0.41 +0.20 +0.31

Table 3: Experimental results [%] on OntoNotes 5.0
English test set. The models with * symbol are retrieved
from (Jie and Lu, 2019) and † symbol are retrieved from
(Xu et al., 2021).

the BiLSTM-CRF model by 2.97 in F1, and the
BiLSTM-GCN-CRF model by 3.32 in F1. Note
that the BiLSTM-GCN-CRF model is 0.35 points
worse than BiLSTM-CRF. This confirms that sim-
ply stacking GCN on top of the BiLSTM does
not perform well, which may cause a performance
drop. Compared to the DGLSTM-CRF and Syn-
LSTM-CRF, our proposed method improves 2.04
and 0.93 F1 points, respectively. With the contex-
tualized word representation, we achieve a higher
F1 score of 80.89. However, it is worth noting that
the dependency-based models with the contextu-
alized word representation have different degrees
of decline in precision compared to BERT-CRF.
The reason could be that some of the entities do
not form subtrees under the dependency trees. In
such a situation, the model with the contextualized
word representation may not correctly identify the
boundary of the entities, which results in lower
precision.

5 Analysis

Ablation Study To demonstrate the effectiveness
of each component, we conduct an ablation study
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Models P. R. F1

Pradhan et al. (2013) 78.20 66.45 71.85
Lattice LSTM (2018) 76.34 77.01 76.67
BiLSTM-CRF* 78.45 74.59 76.47
BiLSTM-GCN-CRF* 76.35 75.89 76.12
GCN-BiLSTM-CRF† 78.30 75.07 76.65
DGLSTM-CRF (2019) 77.40 77.41 77.40
Syn-LSTM-CRF (2021) 77.95 79.07 78.51

BiLSTM-AELGCN-CRF (Ours) 79.11 79.78 79.44
Improvement ∆ +1.16 +0.71 +0.93

+ Contextualized Word Representation
BERT-CRF† 79.83 79.68 79.75
Wolf et al. (2020)† 77.35 81.74 79.49
BiLSTM-CRF+ ELMO* 79.20 79.21 79.20
BiLSTM-CRF+ BERT† 78.45 81.24 79.82
BiLSTM-GCN-CRF+ ELMO* 78.71 79.29 79.00
GCN-BiLSTM-CRF+ BERT† 79.03 80.98 80.00
DGLSTM-CRF (2019)+ ELMO 78.86 81.00 79.92
DGLSTM-CRF+ BERT† 77.79 81.65 79.67
Syn-LSTM-CRF (2021)+ BERT 78.66 81.80 80.20

BiLSTM-AELGCN-CRF+ BERT (Ours) 79.23 82.63 80.89
Improvement ∆ -0.60 +0.83 +0.69

Table 4: Experimental results [%] on OntoNotes 5.0
Chinese test set. The models with * symbol are retrieved
from (Jie and Lu, 2019) and † symbol are retrieved from
(Xu et al., 2021).

on each of the four benchmark datasets as Table
5 shows 1) - AGGCN: we remove the AGGCN
then we observe that the performance reduces by
0.39, 0.21, 0.26, and 0.20 of the F1 scores on
the results, respectively, which demonstrates that
the AGGCN captures useful syntactic information.
2) - vanilla GCN: we remove the vanilla GCN in
EANJU, which means that EANJU degenerates
into the EANU (Cui and Chen, 2022). As a result,
the F1 scores drop by 1.25, 0.70, 0.20, and 0.26,
respectively, demonstrating that EANJU captures
more useful syntactic information than EANU. 3) -
EANJU: the results drop by 4.88, 4.59, 0.41, and
0.78 F1 scores, respectively, which demonstrates
that syntactic structure information plays an impor-
tant role in the model. 4) - NAEU: the results drop
by 0.25, 0.20, 0.22, and 0.14 of F1 scores, respec-
tively, which verifies that the context-dependent
relation representations also provide some useful
information for NER than the context-independent
ones.

Effect of Entity Length Table 6 shows the
performance of NER comparison with differ-
ent entity lengths on all datasets. We compare
the BiLSTM-CRF+ BERT, DGLSTM-CRF+ ELMO,
Syn-LSTM-CRF+ BERT and BiLSTM-AELGCN-
CRF+ BERT models with respect to entity length

Model Catalan Spanish English Chinese

F1-score(%)

BiLSTM-AELGCN-CRF 86.75 88.13 89.25 79.44
– AGGCN 86.36 87.92 89.05 79.18
– vanilla GCN in EANJU 85.50 87.43 88.99 79.24
– EANJU 81.87 83.54 88.47 79.03
– NAEU 86.50 87.93 89.11 79.22

Table 5: Ablation study of the BiLSTM-ALEGCN-CRF
model on four datasets. – means removing.

Dataset Model Entity Length
1 2 3 4 5 ≥ 6

Catalan

BiLSTM-CRF+ BERT 82.4 84.4 77.8 53.3 31.8 36.2
DGLSTM-CRF+ ELMO 85.4 85.1 84.1 78.9 60.9 59.3
Syn-LSTM-CRF+ BERT 90.5 91.1 87.2 77.8 63.8 60.6
BiLSTM-AELGCN-CRF+ BERT 91.1 91.6 89.0 84.0 73.0 69.5

Spanish

BiLSTM-CRF+ BERT 85.1 84.2 81.5 33.7 43.1 27.2
DGLSTM-CRF+ ELMO 89.3 87.4 90.8 74.1 67.7 64.4
Syn-LSTM-CRF+ BERT 92.7 90.9 91.1 73.0 75.4 58.5
BiLSTM-AELGCN-CRF+ BERT 93.3 91.5 92.1 73.0 77.4 62.2

Chinese

BiLSTM-CRF+ BERT 82.5 74.6 71.4 65.0 69.8 52.5
DGLSTM-CRF+ ELMO 82.2 75.5 71.8 64.1 58.5 41.1
Syn-LSTM-CRF+ BERT 82.5 75.6 73.1 66.4 66.1 42.5
BiLSTM-AELGCN-CRF+ BERT 83.2 76.3 74.3 67.6 69.2 44.1

English

BiLSTM-CRF+ BERT 92.9 88.3 83.1 85.5 80.5 77.9
DGLSTM-CRF+ ELMO 91.8 90.1 85.4 87.0 80.8 78.7
Syn-LSTM-CRF+ BERT 92.9 90.8 87.7 87.4 80.6 79.8
BiLSTM-AELGCN-CRF+ BERT 92.9 91.1 87.9 87.7 84.3 82.2

Table 6: F1-score [%] based on entity length on Cata-
lan, Spanish, English and Chinese datasets. Note that
DGLSTM-CRF+ ELMO have better performance com-
pared to DGLSTM-CRF+ BERT based on the results.

∈ {1, 2, 3, 4, 5, ≥ 6} on the four languages. With
the structured information, DGLSTM-CRF+ ELMO,
Syn-LSTM-CRF+ BERT and BiLSTM-AELGCN-
CRF+ BERT models achieve better performance
compared to BiLSTM-CRF+ BERT. When the
length of entity is ≤ 3, BiLSTM-AELGCN-
CRF+ BERT achieves better results compared to
DGLSTM-CRF+ ELMO and Syn-LSTM-CRF+ BERT.
Our model consistently outperforms Syn-LSTM-
CRF+ BERT. These results confirm that our pro-
posed method can effectively incorporate struc-
tured information . When the length of an entity
is equal to or longer than 4, there may be inter-
nal dependencies (subtree) between the words in
the entity, which can provide valuable information
to improve the performance of dependency-based
models. Thus, all dependency-based models per-
form much better than BiLSTM-CRF+ BERT on all
datasets except OntoNotes Chinese dataset. This
exceptional case may due to the fact that the ratio
of entities that form subtrees in this dataset is rel-
atively smaller compared to other datasets, 92.9%
versus nearly 100% (Jie and Lu, 2019). But our
proposed method also performs better than Syn-
LSTM-CRF+ BERT and DGLSTM-CRF+ ELMO on
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OntoNotes Chinese dataset. In general, our pro-
posed method slightly improves performance on
short entities compared to other models. Further,
our proposed method is more effective for long en-
tities than other dependency-based models in most
cases, especially for the Catalan dataset.

Impact of AELGCN layers As AELGCN can
be stacked over L layers, we investigate the effect
of the layer number L on the final performance.
We conduct another experiment on the BiLSTM-
AELGCN-CRF model with the number of AEL-
GCN layers ∈ {1, 2, 3} on test datasets. The last
AVG bar is obtained by averaging the results of
the four test datasets. As shown in Figure 3, the
performance increases as the number of AELGCN
layers increases from 1 to 2 and decreases when
the number of layers increases from 2 to 3. The
latter phenomenon could be caused by an over-
smooth problem of deep GCNs, which also exists in
(Xu et al., 2021) for named entity recognition and
(Kipf and Welling, 2017) for document classifica-
tion and node classification. For this observation, it
is considered that when L = 1, AELGCN can only
utilize first-order syntactic relations on the depen-
dency tree, which is insufficient to bring important
contextual words with multiple hops on the depen-
dency tree into the entity recognition. Therefore,
we evaluate our proposed BiLSTM-AELGCN-CRF
model with 2-layer AELGCN.

Figure 3: F1-score [%] variation with AELGCN layers
on test datasets.

6 Conclusion and Future Works

In this paper, we propose a novel model named
BiLSTM-AELGCN-CRF for the NER task. Specif-
ically, we introduce the dependency label informa-
tion and multi-head self-attention mechanism into

the graph modeling process. Our analysis shows
that our method can better capture structured infor-
mation which is beneficial for the model to recog-
nize entities.

In the future, we would like to apply BiLSTM-
AELGCN-CRF to other information extraction
tasks, such as relation extraction or joint entity and
relation extraction. Moreover, we will continue to
explore how to use syntactic information better for
NER tasks.

Limitations

The limitation of our model is that the performance
of our model is highly dependent on the quality of
the dependency trees. In most cases, the quality
of the automatically generated dependency trees is
good enough for our model. However, in some
cases, the dependency trees generated by auto-
matic tools are lack of sufficient and high qual-
ity dependency information. Under such cases,
the performance of our method will be greatly de-
creased by the insufficient or poor-quality depen-
dency information, becomes even worse than that
of dependency-tree-free methods. This problem
can be seen from the result of ontonoes Chinese
dataset in table 6. After investigation, it is found
that the percentage of entities that have subtrees is
only 92.9% for OntoNotes Chinese dataset, as com-
pared to 98.5%, 100%, 100% for OntoNotes En-
glish, SemEval Catalan and Spanish, respectively
(Jie and Lu, 2019).
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