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Abstract

Conditional set generation learns a mapping
from an input sequence of tokens to a set. Sev-
eral NLP tasks, such as entity typing and di-
alogue emotion tagging, are instances of set
generation. SEQ2SEQ models, a popular choice
for set generation, treat a set as a sequence and
do not fully leverage its key properties, namely
order-invariance and cardinality. We propose a
novel algorithm for effectively sampling infor-
mative orders over the combinatorial space of
label orders. We jointly model the set cardinal-
ity and output by prepending the set size and
taking advantage of the autoregressive factor-
ization used by SEQ2SEQ models. Our method
is a model-independent data augmentation ap-
proach that endows any SEQ2SEQ model with
the signals of order-invariance and cardinality.
Training a SEQ2SEQ model on this augmented
data (without any additional annotations) gets
an average relative improvement of 20% on
four benchmark datasets across various models:
BART-base, T5-11B, and GPT3-175B.1

1 Introduction

Conditional set generation is the task of modeling
the distribution of an output set given an input se-
quence of tokens (Kosiorek et al., 2020). Several
NLP tasks are instances of set generation, including
open-entity typing (Choi et al., 2018; Dai et al.,
2021), fine-grained emotion classification (Dem-
szky et al., 2020), and keyphrase generation (Meng
et al., 2017; Yuan et al., 2020; Ye et al., 2021).
The recent successes of the pretraining-finetuning
paradigm have encouraged a formulation of set
generation as a SEQ2SEQ generation task (Vinyals
et al., 2016; Yang et al., 2018; Meng et al., 2019;
Ju et al., 2020).

In this paper, we posit that modeling set genera-
tion as a vanilla SEQ2SEQ generation task is sub-
optimal, because the SEQ2SEQ formulations do not

1Code to use SETAUG available at: https://setgen.
structgen.com

explicitly account for two key properties of a set
output: order-invariance and cardinality. Forgo-
ing order-invariance, vanilla SEQ2SEQ generation
treats a set as a sequence, assuming an arbitrary
order between the elements it outputs. Similarly,
the cardinality of sets is ignored, as the number of
elements to be generated is typically not modeled.

Prior work has highlighted the importance of
these two properties for set output through loss
functions that encourage order invariance (Ye et al.,
2021), exhaustive search over the label space
for finding an optimal order (Qin et al., 2019;
Rezatofighi et al., 2018; Vinyals et al., 2016), and
post-processing the output (Nag Chowdhury et al.,
2016). Despite the progress, several important gaps
remain. First, exhaustive search does not scale with
large output spaces typically found in NLP prob-
lems, thus stressing the need for an optimal sam-
pling strategy for the labels. Second, cardinality is
still not explicitly modeled in the SEQ2SEQ setting
despite being an essential aspect for a set. Finally,
architectural modifications required for specialized
set-generation techniques might not be viable for
modern large-language models.

We address these challenges with a novel data
augmentation strategy. Specifically, we take ad-
vantage of the auto-regressive factorization used
by SEQ2SEQ models and (i) impose an informative
order over the label space, and (ii) explicitly model
cardinality. First, the label sets are converted to
sequences using informative orders by grouping
labels and leveraging their dependency structure.
Our method induces a partial order graph over la-
bel space where the nodes are the labels, and the
edges denote the conditional dependence relations.
This graph provides a natural way to obtain infor-
mative orders while reinforcing order-invariance.
Specifically, sequences obtained via topological
traversals of this graph allow independent labels to
appear at different locations in the sequence, while
restricting order for dependent labels. Next, we
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Figure 1: An illustrative task where given an input x, the output is a set of emotions. Our method first discovers
a partial order graph (middle) in which specific labels (joy) come before more general labels (pride). Listing the
specific labels first gives the model more clues about the rest of the set. Topological samples from this partial order
graph are label sequences that can be efficiently generated using SEQ2SEQ models. The size of each set is also
added as the first element for joint modeling of output with size.

jointly model a set with its cardinality by simply
prepending the set size to the output sequence. This
strategy aligns with the current trend of very large
language models which do not lend themselves to
architectural modifications but increasingly rely on
the informativeness of the inputs (Yang et al., 2020;
Liu et al., 2021).

Figure 1 illustrates the key intuitions behind our
method using sample task where given an input
x (say a conversation), the output is a set of emo-
tions (Y). To see why certain orders might be more
meaningful, consider a case where one of the emo-
tions is joy, which leads to a more general emotion
of pride. After first generating joy, the model can
generate pride with certainty (joy leads to pride in
all samples). In contrast, the reverse order (generat-
ing pride first) still leaves room for multiple possi-
ble emotions (joy and love). The order [joy, pride]
is thus more informative than [pride, joy]. The car-
dinality of a set can also be helpful. In our example,
joy contains two sub-emotions, and love contains
one. A model that first predicts the number of
sub-emotions can be more precise and avoid over-
generation, a significant challenge with language
generation models (Welleck et al., 2020; Fu et al.,
2021). We efficiently sample such informative or-
ders from the combinatorial space of all possible
orders and jointly model cardinality by leveraging
the auto-regressive nature of SEQ2SEQ models.

Our contributions

(i) We show an efficient way to model sequence-
to-set prediction as a SEQ2SEQ task by jointly
modeling the cardinality and augmenting the
training data with informative sequences us-
ing our novel SETAUG data augmentation ap-
proach. (§3.1, 3.2).

(ii) We theoretically ground our approach: treat-

ing the order as a latent variable, we show
that our method serves as a better proposal
distribution in a variational inference frame-
work. (§3.1)

(iii) With our approach, SEQ2SEQ models of dif-
ferent sizes achieve a ∼20% relative im-
provement on four real-world tasks, with
no additional annotations or architecture
changes. (§4).

2 Task

We are given a corpus D = {(xt,Yt)}mt=1

where xt is a sequence of tokens and Yt =
{y1, y2, . . . , yk} is a set. For example, in multi-
label fine-grained sentiment classification, xt is a
paragraph, and Yt is a set of sentiments expressed
by the paragraph. We use yi to denote an output
symbol, [yi, yj , yk] to denote an ordered sequence
of symbols and {yi, yj , yk} to denote a set.

2.1 Set generation using SEQ2SEQ model
Task Given a corpus {(xt,Yt)}mt=1, the task of
conditional set generation is to efficiently estimate
p(Yt | xt). SEQ2SEQ models factorize p(Yt | xt)
autoregressively (AR) using the chain rule:

p(Yt | xt) = p(y1, y2, . . . , yk | xt)

= p(y1 | xt)
k∏

j=2

p(yj | xi, y1 . . . yj−1)

where the order Yt = [y1, y2, . . . , yk] factorizes
the joint distribution using chain rule. In theory,
any of the k! orders can be used to factorize the
same joint distribution. In practice, the choice of or-
der is important. For instance, Vinyals et al. (2016)
show that output order affects language modeling
performance when using LSTM based SEQ2SEQ

models for set generation.

4875



Consider an example input-output pair
(xt,Yt = {y1, y2}). By chain rule, we have
the following equivalent factorizations of this
sequence: p(Yt | xt) = p(y1 | x)p(y2 | x, y1) =
p(y2 | x)p(y1 | x, y2). However, order-invariance
is only guaranteed with true conditional prob-
abilities, whereas the conditional probabilities
used to factorize a sequence are estimated by
a model from a corpus. Thus, dependening
on the order, the sequence factorizes as either
p̂(y1 | x)p̂(y2 | x, y1) or p̂(y2 | x)p̂(y1 | x, y2),
which are not necessarily equivalent. Further,
one of these two factorizations may be better
represented in the training data, and thus lead
to better samples. For instance, if the training
data always contains y1, y2 in the order [y1, y2],
p̂(y2 | x)p̂(y1 | x, y2) will be ∼ 0.

Order will also be immaterial if the labels are
conditionally independent given the input (Sec-
tion B.3). However, this assumption is often not
valid in practice, especially for NLP, where labels
typically share a semantic relationship.

3 Method

This section expands on two critical components of
our system, SETAUG. Section 3.1 presents TSAM-
PLE, a method to create informative orders over
sets tractably. Section 3.2 presents our method for
jointly modeling cardinality and set output.

3.1 TSAMPLE: Adding informative orders for
set output

As discussed in Section 2, SEQ2SEQ formulation
requires the output to be in a sequence. Prior work
(Vinyals et al., 2016; Rezatofighi et al., 2018; Chen
et al., 2021) has noted that listing the output in
orders that have the highest conditional likelihood
given the input is an optimal choice. Unlike these
methods, we sidestep exhaustive searching during
training using our proposed approach TSAMPLE.

Our core insight is that knowing the optimal
order between pairs of symbols in the output dras-
tically reduces the possible number of permuta-
tions. We thus impose pairwise order constraints
for labels. Specifically, given an output set Yt =
y1, y2, . . . , yk, if yi, yj are independent, they can
be added in an arbitrary order. Otherwise, an order
constraint is added to the order between yi, yj .

Learning pairwise constraints We estimate
the dependence between elements yi, yj using
pointwise mutual information: pmi(yi, yj) =

log p(yi, yj)/p(yi)p(yj). Here, pmi(yi, yj) > 0
indicates that the labels yi, yj co-occur more than
would be expected under the conditions of in-
dependence (Wettler and Rapp, 1993). We use
pmi(yi, yj) > α to filter our such pairs of depen-
dent pairs, and perform another check to determine
if the order between them should be fixed. For each
dependent pair yi, yj , the order is constrained to
be [yi, yj ] (yj should come after yi) if log p(yj |
yi)− log p(yi | yj) > β, and [yj , yi] otherwise. In-
tuitively, log p(yj | yi)−log p(yi | yj) > β implies
that knowledge that a set contains yi, increases the
probability of yj being present. Thus, in an autore-
gressive setting, fixing the order to [yi, yj ] will be
more efficient for generating a set with {yi, yj}.

Generating samples To systematically create se-
quences that satisfy these constraints, we construct
a topological graph Gt where each node is a la-
bel yi ∈ Yt, and the edges are determined using
the pmi and the conditional probabilities as out-
lined above (Algorithm 1). The required permuta-
tions can then be generated as topological traversals
Gt (Figure 2). We begin the traversal from a dif-
ferent starting node to generate diverse samples.
We call this method TSAMPLE. Our method of
generating graphs avoids cycles by design (proof
in B.4), and thus topological sort remains well-
defined. Later, we show that TSAMPLE can be
interpreted as a proposal distribution in variational
inference framework, which distributes the mass
uniformly over informative orders constrained by
the graph.

Do pairwise constraints hold for longer se-
quences? While TSAMPLE uses pairwise (and
not higher-order) constraints for ordering variables,
we note that the pairwise checks remain relevant
with extra variables. First, dependence between
pair of variables is retained in joint distributions
involving more variables (yi ̸⊥⊥ yj =⇒ yi ̸⊥
⊥ yj ,yk) for some yk ∈ Y (Appendix B.1). Fur-
ther, if yi, yj ⊥⊥ yk, then it can be shown that
p(yi | yj) > p(yj | yi) =⇒ p(yi | yj ,yk) >
p(yj | yi,yk) (Appendix B.2). The first property
shows that the pairwise dependencies hold in the
presence of other set elements. The second prop-
erty shows that an informative order continues to
be informative when additional independent sym-
bols are added. Thus, using pairwise dependencies
between the set elements is still effective. Using
higher-order dependencies might be suboptimal for
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Algorithm 1 Generating permutations for Yt

Input: Set Yt, number of permutations n
Parameter: α, β
Output: n topological sorts over Gt(V,E)

1: Let V = Yt, E = ∅.
2: for yi, yj ∈ Yt do
3: if pmi(yi, yj) > α; lg p(yi | yj)− lg p(yj | yi) > β

then
4: E = E ∪ yj → yi

5: end if
6: end for
7: return topo_sort(Gt(V,E), n)

practical reasons: higher-order dependencies (or
including xt) might not be accurately discovered
due to sparsity, and thus cause spurious orders.

Finally, we note that if all the labels are inde-
pendent, then the order is guaranteed not to mat-
ter (Lemma B.3, also shown empirically in Ap-
pendix G). Thus, our method will only be useful
when labels have some degree of dependence.

Complexity analysis Let Y be the label space,
(xt,Yt) be a particular training example, N be the
size of the training set, and c be the maximum num-
ber of elements for any set Yt in the input. Our
method requires three steps: i) iterating over train-
ing data to learn conditional probabilities and pmi,
and ii) given a Yt, building the graph Gt (Algo-
rithm 1), and iii) doing topological traversals over
Gt to create samples for (xt,Yt).

The time complexity of the first operation is
O(Nc2): for each element of the training set, the
pairwise count for each pair yi, yj and unigram
count for each yi is calculated. The pairwise counts
can be used for calculating joint probabilities. In
principle, we need O(|Y|2) space for storing the
joint probabilities. In practice, only a small fraction
of the combinations will appear |Y|2 in the corpus.

Given a set Yt and the conditional probabilities,
the graph Gt is created in O(c2) time. Then, gen-
erating k samples from Gt requires a topological
sort, for O(kc) (or O(c) per traversal). For train-
ing data of size N , the total time complexity is
O(Nck). The entire process of building the joint
counts and creating graphs and samples takes less
than five minutes for all the datasets on an 80-core
Intel Xeon Gold 6230 CPU.

Interpreting TSAMPLE as a proposal distribu-
tion over orders We show that our method of
augmenting permutations to the training data can
be interpreted as an instance of variational infer-

Figure 2: Our sampling method TSAMPLE first builds
a graph Gt over the set Yt, and then samples orders
from Gt using topological sort (topo_sort). The
topological sorting rejects samples that do not follow
the conditional probability constraints.

ence with the order as a latent variable, and TSAM-
PLE as an instance of a richer proposal distribution.

Let πj be the jth order over Yt (out of |Yt|!
possible orders Π), and πj(Yt) be the sequence of
elements in Yt arranged with order πj . Treating π
as a latent random variable, the output distribution
can then be recovered by marginalizing over all
possible orders Π:

log pθ(Yt | xt) = log
∑

πz∈Π
pθ(πz(Yt) | xt)

where pθ is the SEQ2SEQ conditional generation
model. While summing over Π is intractable,
standard techniques from the variational inference
framework allow us to write a lower bound (ELBO)
on the actual likelihood:

log pθ(Yt | xt) = log
∑

πz∈Π

pθ(πz(Yt) | xt)

≥ Eqϕ(πz)

[
log

pθ(πz(Yt) | xt)

qϕ(πz)

]

︸ ︷︷ ︸
ELBO

In practice, the optimization procedure draws k
samples from the proposal distribution q to opti-
mize a weighted ELBO (Burda et al., 2016; Domke
and Sheldon, 2018). Crucially, q can be fixed (e.g.,
to uniform distribution over the orders), and in such
cases only θ are learned (Appendix H). The data
augmentation approach used for XL-NET (Yang
et al., 2019b) can be interpreted with this frame-
work. In their case, the proposal distribution q is
fixed to a uniform distribution for generating orders
over tokens. The variational interpretation also indi-
cates that it might be possible to improve language
modeling by using a different, more informative
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q. Investigating such proposal distribution for lan-
guage modeling is an interesting future work.

TSAMPLE can thus be seen as a particular pro-
posal distribution that assigns all the support to
the topological ordering over the label dependence
graphs. We experiment with sampling from a uni-
form distribution over the samples (referred to as
RANDOM experiments in our baseline setup). The
idea of using an informative proposal distribution
over space of structures to do variational inference
has also been used in the context of grammar induc-
tion (Dyer et al., 2016) and graph generation (Jin
et al., 2018; Chen et al., 2021). Our formulation is
closest in spirit to Chen et al. (2021). However, the
set of nodes to be ordered is already given in their
graph generation setting. In contrast, we infer the
order and the set elements jointly from the input.

3.2 Modeling cardinality
Let m = |Yt| be the cardinality (number of ele-
ments) in Yt. Our goal is to jointly estimate m
and Yt (i.e., p(m,Yt | xt)). Additionally, we
want the model to use the cardinality informa-
tion for generating Yt. We add the cardinality in-
formation at the beginning of the sequence, thus
converting a sample (xt,Yt) to (xt, [|Yt|, π(Yt)]),
and then train our SEQ2SEQ model as usual from
x → [|Yt|, π(Yt)]. Here π is some ordering that
converts the set Yt to a sequence. As SEQ2SEQ

models use autoregressive factorization, listing the
order information first ensures that the distribution
p([|Yt|, π(Yt)] | xt) factorizes as p([|Yt|, π(Yt)] |
xt) = p(|Yt| | xt)p(π(Yt) | |Yt|,xt). Thus, the
generation of Yt is conditioned on the input and the
cardinality |Yt| (due to p(π(Yt) | |Yt|,xt) term).

Why should cardinality help? Unlike models
like deep sets (Zhang et al., 2019a), SEQ2SEQ mod-
els are not restricted by the number of elements
generated. However, adding cardinality informa-
tion has two potential benefits: i) it can help avoid
over-generation (Welleck et al., 2020; Fu et al.,
2021), and ii) unlike free-form text output, the dis-
tribution of the set output size (p(|Yt| | xt)) might
benefit the model to adhere to the set size constraint.
Thus, information on the predicted size can be ben-
eficial for the model to predict the elements to be
generated.

4 Experiments

SETAUG comprises: i) TSAMPLE, a way to generate
informative orders to convert sets to sequences, and

ii) CARD: jointly modeling cardinality and the set
output. This section answers two questions:
RQ1: How well does SETAUG improve existing
models? Specifically, how well SETAUG can take
an existing SEQ2SEQ model and improve it just us-
ing our data augmentation and joint cardinality pre-
diction, without making any changes to the model
architecture. We also measure if these performance
improvements carry across diverse datasets, model
classes, and inference settings.

RQ2: Why does our approach improve perfor-
mance? We study the contributions of TSAMPLE

and joint cardinality prediction (CARD), and ana-
lyze where SETAUG works or fails.

4.1 Setup

Tasks We consider multi-label classification and
keyphrase generation. These tasks represent set
generation problems where the label space spans
a set of fixed categories (multi-label classification)
or free-form phrases (keyphrase generation).
1. Multi-label classification task: We have three
datasets of varying sizes and label space:

• Go-Emotions classification (GO-EMO, Dem-
szky et al. (2020)): generate a set of emotions
for a paragraph.

• Open Entity Typing (OPENENT, Choi et al.
(2018)): assigning open types (free-form
phrases) to the tagged entities in the input text.

• Reuters-21578 (REUTERS, Lewis (1997)): la-
beling news article with the set of mentioned
economic subjects.

2. Keyphrase generation (KEYGEN): We experi-
ment with a popular keyphrase generation dataset,
KP20K (Meng et al., 2017) which involves gener-
ating keyphrases for a scientific paper abstract.

Table 1 lists the dataset statistics and examples
from each dataset are shown in Appendix E. We
treat all the problems as open-ended generation,
and do not use any specialized pre-processing. For
all the datasets, we filter out samples with a sin-
gle label. For each training sample, we create n
permutations using SETAUG.

Baselines We compare with two baselines:
i) MULTI-LABEL: As a non-SEQ2SEQ baseline,
we train a multi-label classifier that makes inde-
pendent predictions of the output labels. Encoder-
only and encoder-decoder approaches can be
adapted for MULTI-LABEL, and we experiment
with BART (encoder-decoder) and BERT (encoder-
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Task Avg/min/max
labels per sample

Unique
labels

Train/test/dev
samples per split

GO-EMO 3.03/3/5 28 0.6k/0.1k/0.1k
OPENENT 5.4/2/18 2519 2k/2k/2k
REUTERS 2.52/2/11 90 0.9k/0.4k/0.3k
KEYGEN 3.87/3/79 274k 156k/2k/2k

Table 1: Datasets used in our experiments.

only). This baseline represents a standard method
for doing multi-label classification (e.g., Demszky
et al. (2020)). During inference, top-k logits are
returned as the predicted set. We search over
k = [1, 3, 5, 10, 50] and use k that performs the
best on the dev set. Table 13 in Appendix F shows
precision, recall, and F scores at each-k.
ii) SET SEARCH: each training sample
(x, {y1, y2, . . . , yk}) is converted into k training
examples {(x, yi)}ki=1. We fine-tune BART-base to
generate one training sample for input x. During
inference, we run beam-search with the maximum
set size in the training data (Table 1). The unique
elements generated by beam search are returned as
the set output, a popular approach for one-to-many
generation tasks (Hwang et al., 2021).

SETAUG can apply to any SEQ2SEQ model. We
show results with models of various capacity:
iii) BART-base (Lewis et al., 2020) (110M),
iv) T5-11B (Raffel et al., 2020) (11B), and
v) GPT3-175B (Brown et al., 2020) (175B).

Training We augment n = 2 permutations to
the original data using TSAMPLE. For all the re-
sults, we use three epochs and the same number
of training samples (i.e., input data for the base-
lines is oversampled). This controls for models
trained with augmented data improving only be-
cause of factors such as longer training time. All
the experiments were repeated for three different
random seeds, and we report the averages. We
found from our experiments2 that hyperparameter
tuning over α, β did not affect the results in any
significant way. For all the experiments reported,
we use α = 1 and β = log2(3). We use a single
GeForce RTX 2080 Ti for all our experiments on
bart, and a single TPU for all experiments done
with T5-11B. For GPT3-175B, we use the OpenAI
completion engine (davinci) API (OpenAI, 2021).

2We conduct a one-tailed proportion of samples test (John-
son et al., 2000) to compare with the strongest baseline,
and underscore all results that are significant with p <
0.0005. For Algorithm 1, we try α = {0.5, 1, 1.5} and
β = {log2(2), log2(3), log2(4)}, and use networkx imple-
mentation of topological sort (Hagberg et al., 2008).

GO-
EMO

OPENENT REUTERS

SET SEARCH (BART) 7.4 26.3 7.5
MULTI-LABEL (BART) 25.6 16.4 25.2
MULTI-LABEL (BERT) 25.7 16.2 25.5

BART 23.4 44.6 15.6
BART + SETAUG 30.0 53.5 26.7

T5-11B 47.8 53.6 45.3
T5-11B + SETAUG 50.9 57.0 48.5

Table 2: SETAUG improves SEQ2SEQ models by ∼20%
relative F1- points, on three multilabel classification
datasets. BART and T5-11B are trained on the original
datasets with a random order and no cardinality. “+ SE-
TAUG” indicates augmented train data using TSAMPLE
and cardinality is prepended to the output sequence.

Additional hyperparameter details in Appendix D.
We use greedy sampling for all experiments. Our
method remains effective across five different sam-
pling techniques, incl. beam search, nucleus, top-k,
and random sampling (Table 14, Appendix G).

4.2 SETAUG improves existing models

Our method helps across a wide range of models
(BART, T5-11B, and GPT3-175B) and tasks.

4.2.1 Multi-label classification
Table 2 shows improvements across all datasets
and models for the multi-label classification
task (∼20% relative gains). For brevity, we list
macro F score, and include detailed results includ-
ing macro/micro precision, recall, F scores in Ta-
ble 9 (Appendix F). We attribute the comparatively
lower performance of SET SEARCH baseline to two
specific reasons - repeated generation of the same
set of terms (e.g., person, business for OPENENT)
and generating elements not present in the test set
(see Section 4.3.4 for a detailed error analysis). We
see similar trends with GPT3-175B (Section 4.2.4).

4.2.2 Keyphrase generation
To further motivate the utility of SEQ2SEQ models
for set generation tasks, we experiment on KP-
20k, which is an extreme multi-label classification
dataset (Meng et al., 2017) with label space span-

Ye et al. (2021) BART BART + SETAUG

5.8 5.3 6.5
39.2 36.3 39.1

Table 3: SETAUG improves off-the-shelf BART-base for
keyphrase generation task
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ning over 257k unique keyphrases. Due to the large
label space, training multi-class classification base-
lines is not computationally viable. In this dataset,
the input text is an abstract from a scientific paper.
We use the splits used by Ye et al. (2021). For a
fair comparison with Ye et al. (2021), we use BART-
base for this experiment. Table 3 shows the results.
Similar to datasets with smaller label space, our
method improves on vanilla SEQ2SEQ.

We want to emphasize that while specialized
models for individual tasks might be possible, we
aim to propose a general approach that shows that
sampling informative orders can help efficient and
general set-generation modeling.

4.2.3 Simulations
Following prior work on studying deep network
properties effectively via simulation (Vinyals et al.,
2016; Khandelwal et al., 2018), we design a sim-
ulation to study the effects of output order and
cardinality on conditional set generation. The simu-
lation reveals several key properties of our methods.
We defer the details to Appendix G, and mention
some key findings here. We find similar trends in
simulated settings. Specifically, our method is (i)
ineffective when labels are independent, (ii) helpful
even when position embeddings are disabled, and
(iii) helps across a wide range of sampling types.

4.2.4 Few-shot prompting with GPT3-175B

We fine-tune the generation models using aug-
mented data for both BART and T5-11B. How-
ever, fine-tuning models at the scale of GPT3-175B

is prohibitively expensive. Thus such models are
typically used in a few-shot prompting setup. In
a few-shot prompting setup, M (∼10-100) input-
output examples are selected as a prompt p. A
new input x is appended to the prompt p, and
p∥x is the input to GPT3-175B. Improving these
prompts, sometimes referred to with an umbrella
term prompt tuning (Liu et al., 2021), is a popu-
lar and emergent area of NLP. Our approach is
the only feasible candidate for such settings, as it
does not involve changing the model or additional
post-processing. We apply our approach for tuning
prompts for generating sets in few-shot settings.3

We focus on GO-EMO and OPENENT tasks, as the
relatively short input examples allow cost-effective
experiments. We randomly create a prompt with

3We use the text-davinci-001 version of GPT3-175B
available via the OpenAI API: https://beta.openai.
com/

M = 24 examples from the training set and run in-
ference over the test set for each. For each example
in the prompt, we order the set of emotions using
our ordering approach TSAMPLE and compare the
results with random orderings. Using TSAMPLE

to arrange the labels outperforms random ordering
for both OPENENT (macro F 34 vs. 39.5 with ours,
15% statistically significant relative improvement),
and GO-EMO (macro F 16.5 vs. 14.5, 14% relative
improvement). This suggests that ordering helps
performance in resource-constrained settings e.g.,
few-shot prompting.

Figure 3: Label dependency discovered by TSAMPLE
for OPENENT: specific entities (e.g., volleyball) precede
generic ones (event). Appendix C has more examples

4.3 Why does SETAUG improve performance?
As mentioned in Section 3, our method of gener-
ating sets with SEQ2SEQ models consists of two
components: i) a strategy for sampling informative
orders over label space (TSAMPLE), and ii) jointly
generating cardinality of the output (CARD). This
section studies the individual contributions of these
components in order to answer RQ2.

Figure 4: SETAUG (T) consistently outperforms RAN-
DOM (U) as the number of permutations (n) is increased.

4.3.1 Ablation study
We ablate the two critical components of our
system: cardinality (SETAUG - CARD) and or-
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der (SETAUG - TSAMPLE) and investigate the per-
formance for each of these settings using BART for
multi-label classification. Table 4 presents the re-
sults. Both the components individually help, but
a larger drop is seen by removing cardinality. We
also train using RANDOM orders, instead of TSAM-
PLE. RANDOM does not improve over SEQ2SEQ

consistently (both with and without CARD), show-
ing that merely augmenting with random permu-
tations does not help. Further, Appendix F shows
that cardinality is useful even with RANDOM order.

GO-EMO OPENENT REUTERS

SETAUG 30.0 53.5 26.7
- CARD 23.3 (-22%) 48.0 (-10%) 15.8 (-40%)
- TSAMPLE 26.8 (-11%) 50.5 (-6%) 24.3 (-9%)
RANDOM 27.5 (-8%) 50.4 (-6%) 24.7 (-7%)
FREQ 19.03 (-36%) 49.9 (-7%) 23.4 (-12%)

Table 4: Ablations: modeling cardinality (CARD) and
sampling informative orders (TSAMPLE) both help, with
larger gains from CARD. RANDOM ordering hurts.

4.3.2 Role of order
Nature of permutations created by SETAUG
SETAUG encourages highly co-occurring pairs
(yi, yj) to be in the order yi, yj if p(yj | yi) >
p(yi | yj). In our analysis, this dependency in
the datasets shows that the orders exhibit a pat-
tern where specific labels appear before the generic
ones. E.g., in entity typing, the more generic entity
event is generated after the more specific entities
home game and match (see Figure 3).

Increasing # permutations (n) helps: Fig. 4
shows that SETAUG and RANDOM improve as n is
increased from n = 2 to 10; SETAUG outperforms
RANDOM across n.

Reversing the order hurts performance In or-
der to check our hypothesis of whether only infor-
mative orders helping with set generation, we invert
the label dependencies returned by SETAUG for all
the datasets and train with the same model settings.
Across all datasets, we observe that reversing the
order leads to an average of 12% drop in F1- score.
The reversed order not only closes the gap between
SETAUG and RANDOM, but in many instances, the
performance is slightly worse than RANDOM.

Ordering by frequency Yang et al. (2018) use
frequency ordering, where the most frequent label
is placed first in the sequence. We compare with

this baseline in Table 4 (FREQ). The results indicate
that the performance of frequency-based ordering
is dataset dependent. Relying on a fixed criteria
like frequency might lead to skewed outputs, espe-
cially for datasets with a long-tail of labels. For
instance, for OPENENT, one of the most significant
failure modes of the freq method was generating
the most common label in the corpus (person) for
every input. TSAMPLE can be seen as a way to
balance the most frequent and least frequent labels
in the corpus using PMI and conditional likelihood
(Algorithm 1, L3).

4.3.3 Role of cardinality

Cardinality is successfully predicted and used
Table 4 shows that cardinality is crucial to model-
ing set output. To study whether the models learn to
condition on predicted cardinality, we compute an
agreement score - defined as the % of times the pre-
dicted cardinality matches the number of elements
generated by the model. The model effectively pre-
dicts the cardinality almost exactly in GO-EMO and
REUTERS datasets (avg. 95%). While the exact
match agreement is low in OPENENT (35%), the
model is within an error of ±1 in 93% of the cases.
These results show that cardinality predicts the end
of sequence (EOS) token. The accuracy for pre-
dicting the exact cardinality is 61% across datasets,
and it increases to 76% within an error of 1 (i.e.,
when the predicted cardinality is off by 1).

Information about cardinality improves multi-
label classification MULTI-LABEL baseline uses
different values of k for predicting labels. To test
if knowledge of cardinality improves multi-class
classification, we experiment with a setting where
the true cardinality is available at inference (i.e.,
k is set to the true value of cardinality). Table 5
shows that cardinality improves performance.

GO-EMO OPENENT REUTERS

MULTI-LABEL 22.4 14.3 21.7
MULTI-LABEL-K* 21.3(-4.9%) 17.8(+24.5%) 25.6(+18%)

Table 5: Cardinality improves multi-label classification.

4.3.4 Error analysis

We manually compare the outputs generated by the
vanilla BART model with BART + SETAUG. For
the open-entity typing dataset, we randomly sam-
ple 100 examples and find that vanilla SEQ2SEQ
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approach generates sets with an ill-formed ele-
ment 22% of the time, whereas SETAUG completely
avoids this. Examples of such ill-formed elements
include personformer, businessirm, polit, founda-
tionirm, politplomat, eventlete. This analysis indi-
cates that training the model with an informative or-
der infuses more information about the underlying
type-hierarchy, avoiding the ill-formed elements.

5 Related work
Set generation in NLP Prior work has noted the
impact of the order on the performance of text gen-
eration models (Vinyals et al., 2016), especially in
the context of keyphrase generation (Meng et al.,
2019). Approaches to explicitly model set prop-
erties for NLP tasks include either performing an
exhaustive search to find the best order (Vinyals
et al., 2016), changing the model training to mod-
ify the loss function (Qin et al., 2019), or apply-
ing post-processing (Nag Chowdhury et al., 2016).
Notably, Ye et al. (2021) introduced One2Set, a
method for training order-invariant models for gen-
erating set of keyphrases. Our main goal in this
work is to provide a framework to identify useful
orders for set generation, and show that such orders
can help vanilla SEQ2SEQ models. SETAUG can
work with any SEQ2SEQ model, and is complemen-
tary to these specialized methods.

Non-SEQ2SEQ set generation These include
reinforcement learning for multi-label classifica-
tion (Yang et al., 2019a) and combinatorial prob-
lems (Nandwani et al., 2020), and using pointer
networks for keyphrase extraction (Ye et al., 2021).
We focus on optimally adapting existing SEQ2SEQ

models for set generation, without external knowl-
edge (Wang et al., 2021; Zhang et al., 2019b).

Chen et al. (2021) explored the generation of an
optimal order for graph generation given the nodes.
They observed that ordering nodes before inducing
edges improves graph generation. However, in our
case, since the labels are unknown, conditioning on
the labels to create the optimal order is not possible.

Connection with Janossy pooling Murphy et al.
(2019) generalize deep sets by encoding a set of
N elements by pooling permutations of P (N, k)
tuples. With k = N , their method is the same as
pooling all N ! sequences, and reduces to deep sets
with k = 1. We share similarity with tractable
searching over N ! with Janossy pooling, but in-
stead of iterating over all possible 2-tuples, we
impose pairwise constraints on the element order.

Modeling set input A number of techniques
have been proposed for encoding set-shaped in-
puts (Santoro et al., 2017; Zaheer et al., 2017; Lee
et al., 2019; Murphy et al., 2019; Huang et al., 2020;
Kim et al., 2021). Specifically, Zaheer et al. (2017)
propose deep sets, wherein they show that pooling
the representations of individual set elements and
feeding the resulting features to a non-linear net-
work is a principled way of representing sets. Lee
et al. (2019) present permutation-invariant atten-
tion to encode shapes and images using a modified
version of attention (Vaswani et al., 2017). Unlike
these works, we focus on settings where the input
is a sequence, and the output is a set.

6 Conclusion and Discussion

We present SETAUG, a novel data augmentation
method for conditional set generation that incor-
porates informative orders and adds cardinality in-
formation. Our key idea is using the most likely
order (vs. a randomly selected order) to represent
a set as a sequence and conditioning the genera-
tion of a set on predicted cardinality. As a com-
putationally efficient and general-purpose plug-in
data augmentation algorithm, SETAUG improves
SEQ2SEQ models for set generation across a wide
spectrum of tasks. For future work, it would be
interesting to investigate if the general ideas in this
work have applications in settings beyond set gener-
ation. Examples include generating additional data
to improve language modeling in low-resource sce-
narios and determining the ideal order of in-context
examples in a prompt.
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Limitations

Ineffectiveness on independent sets SETAUG is
only useful when the labels share some degree of
dependence. For tasks where the labels are com-
pletely independent, SETAUG will not be effective.
It can be shown that order will not affect learning
joint distribution over labels if the labels are inde-
pendent (Lemma B.3). Thus, in such settings, any
method (including SETAUG) that seeks to leverage
the relationship between labels will not be helpful.
In addition to Lemma B.3, we conduct thorough
simulation studies to verify this limitation (Fig-
ure 8).

Use of large language models We perform ex-
periments with extremely large models, including
T5-XXL and GPT-3 models. Particularly, GPT-3
is only available through OpenAI API; thus, all
the details about its working are not publicly avail-
able. However, our experiments also show results
using BART models that run on a single RTX 2080
GPU (please also see details on reproducibility in
Appendix A). Further, such language models are
typically trained on a large English corpora, which
is also the focus of our work.

Focus on SEQ2SEQ A key limitation of our work
is that it focuses on set-generation using SEQ2SEQ

models. Thus the proposed insights may not ap-
ply to other settings (e.g., computer vision) where
using language models is not directly feasible. Nev-
ertheless, with the growing popularity of libraries
like Huggingface (Wolf et al., 2019), we anticipate
that SEQ2SEQ models will be applied to a growing
number of use cases, even those that would tradi-
tionally be tackled using a non-SEQ2SEQ method.
Further, we compare our method with representa-
tive non-SEQ2SEQ baselines (like multi-label clas-
sifier).

To our knowledge, our work does not directly
use any datasets that contain explicit societal biases.
Therefore, we anticipate that our work will not lead
to any significant negative implications concerning
real-world applications.
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A Reproducibility

We take the following steps for reproducibility of
our results:

1. All the experiments are performed for three
different random seeds. In addition, we con-
duct a proportion of samples hypothesis test
to establish the statistical significance of our
results. We did not perform extensive hyper-
parameter tuning and used the same set of de-
faults for baselines and our proposed method.

2. For all data augmentation experiments, we
match the number of training samples and
epochs; all the models are trained for the same
duration. This alleviates the concern that the
models perform well with augmented data
merely because of the longer training time.

3. We conduct a proportion of samples test for
all the experiments conducted on real-world
datasets and use a small p = 0.0005 to mea-
sure highly significant results, which are indi-
cated with an underscore.

Our work aims to promote the usage of existing
resources for as many use cases as possible. In par-
ticular, all our experiments are performed on the
BASE-version of the model (BART) that can rela-
tively lower parameter count to conserve resources
and help lower our impact on climate change.

B Proofs

Let Y be the output space, yi, yj , yk ∈ Y, and yk ∈
Y− yi − yj be a subset of the symbols excluding
yi, yj . We assume that all the distributions are non-
negative (i.e., p(y) > 0, ∀y ∈ Y)

Lemma B.1. yi ̸⊥⊥ yj =⇒ yi ̸⊥⊥ (yjyk)

Proof Let yi ⊥⊥ (yjyk) by contradiction. Then:

p(yi, yjyk) = p(yi)p(yjyk) (1)

Also,

p(yi, yj) =
∑

yk∈Z
p(yi, yjyk)

=
∑

yk∈Z
p(yi)p(yjyk) (equation 1)

= p(yi)
∑

yk∈Z
p(yjyk)

= p(yi)p(yj) (2)

However, yi ̸⊥⊥ y thus yi ̸⊥⊥ y =⇒ yi ̸⊥⊥ (yjyk).

Lemma B.2.

p(yi | yj) > p(yj | yi)

=⇒ p(yi | yj ,yk) > p(yj | yi,yk)

if yi, yj ⊥⊥ yk

Proof We have:

p(yi | yj) > p(yj | yi)

=⇒ p(yj) < p(yi) (3)

p(yj ,yk) = p(yk | yj)p(yj)

< p(yk | yj)p(yi) (Equation 3)

= p(yk | yi)p(yi)
(yi, yj ⊥⊥ yk =⇒ p(yk | yj) = p(yk | yi) = p(yk))

= p(yi,yk) (4)

Thus,

p(yi | yj ,yk) =
p(yi, yj ,yk)

p(yj ,yk)

>
p(yi, yj ,yk)

p(yi,yk)

= p(yj | yi,yk) (5)

Lemma B.3. If yi ⊥⊥ yj ∀yi, yj ∈ Y, the order is
guaranteed to not affect learning.

Proof Let πj be the jth order over Y (out of |Y|!
possible orders Π), and πj(Y) be the sequence of el-
ements in Y arranged with πj . As yi ⊥⊥ yj ∀yi, yj ,
we have p(yi | yj) = p(yi). This gives:

p(yi, yj , yk) = p(yi)p(yj | yi)p(yk | yi, yj)

= p(yi)p(yj)p(yk)

Thus ∀πm, πm ∈ Π:

p(πm(yi, yj , yk))

= p(πn(yi, yj , yk))

In other words, when all elements are mutually
independent, all possible joint factorizations will
simply be a product of the marginals, and thus
identical.

Lemma B.4. The graphs constructed to sample
orders for SETAUG cannot have cycles.
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Proof Let yi, yj , yk form a cycle: yi → yj →
yk → yi. By construction, the following conditions
must hold for such a cycle to be present:

log p(yj | yi)− log p(yi | yj) > β =⇒ log p(yi) < log p(yj)

log p(yk | yj)− log p(yj | yk) > β =⇒ log p(yj) < log p(yk)

log p(yi | yk)− log p(yk | yi) > β =⇒ log p(yk) < log p(yi)

Putting the three implications together, we get
log p(yi) < log p(yj) < log p(yk) < log p(yi),
which is a contradiction. Hence, the graphs con-
structed for SETAUG cannot have a cycle.

C Sample graphs

In this section, we present additional examples
from REUTERS and GO-EMO datasets to illustrate
the permutations generated by our method. As dis-
cussed in Section 3.1, SETAUG encourages highly
co-occuring pairs (yi, yj) to be in the order yi, yj if
p(yj | yi) > p(yi | yj). In our analysis, this depen-
dency in the datasets shows that the orders exhibit
a pattern where specific labels appear before the
generic ones. For example, in case of entity typing,
the more GO-EMO, sadness is generated after the
more specific emotion remorse and fear (Figure 5).
Similarly, the entity crude is generated after the
entities gas and nat-gas. (Figure 6 (right)).

Figure 5: Label dependencies discovered by TSAMPLE
for GO-EMO

D Hyperparameters

We list all the hyperparameters in Table 6.

E Dataset

Table 7 shows examples for each of the datasets.

Figure 6: Label dependencies discovered by TSAMPLE
for REUTERS

Hyperparameter Value

GPU GeForce RTX 2080 Ti
gpus 1
auto_select_gpus false
accumulate_grad_batches 1
max_epochs 3
precision 32
learning_rate 1e-05
adam_epsilon 1e-08
num_workers 16
warmup_prop 0.1
seeds [15143, 27122, 999888]
add_lr_scheduler true
lr_scheduler linear
max_source_length 120
max_target_length 120
val_max_target_length 120
test_max_target_length 120

Table 6: List of hyperparameters used for all the experi-
ments.
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Input Output

Fine-grained emotion
classification, [28]
(Demszky et al., 2020)

So there’s hope for the rest of us!
Thanks for sharing. What helped
you get to where you are?

{curiosity, gratitude,
optimism}

Open-entity typing [2519]

(Choi et al., 2018)

Some 700,000 cubic meters of
caustic sludge and water burst
inundating [SPAN] three west
Hungarian villages [SPAN] and spilling.

{colony, region,
location, hamlet,
area, village,
settlement, community}

Reuters [90]

(Lewis, 1997)
India is reported to have bought
two white sugar cargoes for. . .
. . .cargo sale, they said.

{ship, sugar}

Keyphrase generation [270k]

(Ye et al., 2021)

We analyze the impact of core
affinity on both network and
disk i/o performance...our dynamic
core affinity improves the file upload
throughput more than digit%

{big data, multi-core,
process-scheduling}

Table 7: Real world tasks used for experiments
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GO-EMO OPENENT REUTERS

MULTI-LABEL 22.4 14.3 21.7
MULTI-LABEL @oracle-k 21.3 17.8 25.6
SETAUG + card 30.0 53.5 26.7

Table 8: Multi-label classification when the true car-
dinality is provided to the classifier. While providing
the true cardinality helps the performance of multi-label
classifiers, it still lags SETAUG.

F Additional results

This section presents detailed results that were
omitted from the main paper for brevity. This in-
cludes macro and micro precision, recall, and F
scores on all datasets, and additional ablation ex-
periments.

1. Table 9 shows the detailed results from the
four tasks.

2. Detailed results on GO-EMO, REUTERS, and
OPENENT are present in Tables 10, 11, and 12,
respectively.

3. Table 13 includes results from a multi-
label classification baseline where bert-base-
uncased is used as the encoder.
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GO-EMO OPENENT REUTERS KEYGEN

p r F p r F p r F p r F

MULTI-LABEL 20.8 42.4 22.4 16.4 25.1 14.3 19.7 43.4 21.7 - - -
MULTI-LABEL-K* 21.3 21.3 21.3 17.8 17.8 17.8 25.6 25.6 25.6 - - -

SET SEARCH 10.7 7.0 7.4 26.5 31.4 26.3 10.9 7.1 7.5 5.8 7.4 6.4
SEQ2SEQ 27.4 26.2 23.4 55.4 42.4 44.6 24.8 13.8 15.6 6.7 5.5 5.9
RANDOM 32.5 19.9 22.7 62.6 41.7 46.9 26.7 12.7 15.2 6.6 4.5 5.2
SETAUG 36.7 19.8 23.3 60.0 44.5 48.0 26.5 12.8 15.8 7.0 5.0 5.6

SEQ2SEQ + CARD 33.0 28.3 26.8 62.5 44.7 50.5 34.1 21.8 24.3 7.1 5.6 6.1
RANDOM + CARD 35.6 26.5 27.5 68.6 42.3 50.4 35.3 22.1 24.7 7.3 5.7 6.3
SETAUG + CARD 36.1 30.5 30.0 65.5 47.5 53.5 36.7 24.1 26.7 7.7 6.1 6.6

Table 9: Our main results in detail: using permutations generated by SETAUG and adding cardinality gives the best
overall performance in terms of macro precision, recall, and F1- score. MULTI-LABEL is the standard multi-label
classification approach. Statistically significant results (p = 5e−4) are underscored. CARD stands for cardinality.

pmicro pmacro rmicro rmacro Fmicro Fmacro jaccard

SET SEARCH 47.17 10.68 13.09 7.02 10.7 7.36 7.4
SEQ2SEQ 41.65 27.39 35.19 26.21 27.4 23.41 23.4
SEQ2SEQ + CARD 39.77 33 38.02 28.31 33 26.79 26.8
RANDOM + CARD 44.77 35.6 32.96 26.54 35.6 27.53 27.5
SETAUG + CARD 43.37 36.08 34.51 30.54 36.1 30.01 30
RANDOM- CARD 48.85 32.45 27.75 19.86 32.5 22.67 22.7
SETAUG- CARD 50 36.68 29.84 19.84 36.7 23.31 23.3

Table 10: Results for GO-EMO.

pmicro pmacro rmicro rmacro Fmicro Fmacro jaccard

SET SEARCH 70.04 10.92 34.9 7.1 46.56 7.54 37.49
SEQ2SEQ 66.36 24.74 42.28 13.78 51.64 15.58 44.3
SEQ2SEQ + CARD 73.02 34.17 53.8 21.85 61.95 24.28 59.08
RANDOM + CARD 74.26 35.31 54.33 22.13 62.75 24.74 58.95
SETAUG + CARD 75.65 36.67 55.54 24.13 64.05 26.66 61.14
RANDOM- CARD 69.56 26.68 38.15 12.71 49.27 15.2 42.24
SETAUG- CARD 76.55 26.49 41.78 12.77 54.06 15.78 47.34

Table 11: Results for REUTERS.

pmicro pmacro rmicro rmacro Fmicro Fmacro jaccard

SET SEARCH 24.65 26.5 29.98 31.44 23.92 26.25 13.39
SEQ2SEQ 52.78 55.4 39.84 42.42 41.45 44.63 24.6
SEQ2SEQ + CARD 61.26 62.48 41.87 44.68 48.07 50.48 27.84
RANDOM + CARD 67.56 68.59 39.61 42.25 47.98 50.4 26.89
SETAUG + CARD 64.58 65.53 44.6 47.46 51.2 53.48 29.39
RANDOM- CARD 60.93 62.57 39.09 41.69 44.2 46.85 25.26
SETAUG- CARD 58.02 59.88 42.63 44.95 46.54 48.86 26.82

Table 12: Results for OPENENT.
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GO-EMO OPENENT REUTERS

p r F p r F p r F

BERT @1 31.8 10.3 15.6 38.0 10.3 15.9 31.7 12.3 17.6
BERT @3 23.8 23.4 23.6 19.7 14.0 16.1 23.4 28.3 25.5
BERT @5 20.6 34.0 25.7 15.5 18.0 16.4 18.8 37.6 24.9
BERT @10 16.5 54.3 25.3 11.8 26.0 16.0 15.1 61.8 24.2
BERT @20 14.1 93.2 24.5 8.4 34.3 13.5 9.5 75.9 16.8
BERT @50 - - - 2.6 50.2 4.9 8.9 - - -
BERT 21.4 43.0 22.9 16.0 25.5 13.8 19.7 43.2 21.8

BART @1 31.7 10.3 15.5 38.0 10.3 15.6 31.8 12.3 17.6
BART @3 21.2 21.0 21.0 19.7 14.0 15.8 23.1 28.1 25.2
BART @5 14.1 33.4 25.6 15.5 18.0 16.2 18.7 37.6 24.8
BART @10 16.3 53.4 25.0 11.7 26.0 15.9 15.1 62.0 24.1
BART @20 14.1 93.3 24.5 8.4 34.3 13.4 9.6 77.1 17.1
BART @50 - - - 4.9 48.0 8.9 - - -
BART 20.8 42.4 22.4 16.4 25.1 14.3 19.7 43.4 21.7

SET SEARCH 10.7 7.0 7.4 26.5 31.4 26.3 10.9 7.1 7.5
SEQ2SEQ 27.4 26.2 23.4 55.4 42.4 44.6 24.8 13.8 15.6
RANDOM 32.5 19.9 22.7 62.6 41.7 46.9 26.7 12.7 15.2
SETAUG 36.7 19.8 23.3 60.0 44.5 48.0 26.5 12.8 15.8

SEQ2SEQ +CARD 33.0 28.3 26.8 62.5 44.7 50.5 34.1 21.8 24.3
RANDOM + CARD 35.6 26.5 27.5 68.6 42.3 50.4 35.3 22.1 24.7
SETAUG + CARD 36.1 30.5 30.0 65.5 47.5 53.5 36.7 24.1 26.7

Table 13: Our main results: using permutations generated by SETAUG and adding cardinality gives the best overall
performance in terms of macro precision, recall, and F1--score score. Statistically significant results are underscored.
CARD stands for cardinality. BERT @k / BART @k denotes the pointwise classification baseline using BERT/ BART
where the top k labels are used as the model output. The average is denoted by BERT/ BART.
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G Exploring the influence of order on
SEQ2SEQ models with a simulation

We design a simulation to investigate the effects
of output order and cardinality on conditional set
generation, following prior work that has found
simulation to be an effective for studying proper-
ties of deep neural networks (Vinyals et al., 2016;
Khandelwal et al., 2018).

We note that a number of techniques have been
proposed for encoding set-shaped inputs (Santoro
et al., 2017; Zaheer et al., 2017; Lee et al., 2019;
Murphy et al., 2019; Huang et al., 2020; Kim et al.,
2021). Unlike these works, we focus on settings
where the input is a sequence, and the output is a
set, and design the data generation process accord-
ingly.

Data generation We use a graphical model (Fig-
ure 7) to generate conditionally dependent pairs
(x,Y), with different levels of interdependencies
among the labels in Y. Let Y = {y1, y2, . . . , yN}
be the set of output labels. We sample a dataset
of the form {(x,y)}mi=1. x is an N dimensional
multinomial sampled from a dirichlet parameter-
ized by α, and y is a sequence of symbols with
each yi ∈ Y. The output sequence y is created in
B blocks, each block of size k. A block is created
by first sampling k − 1 prefix symbols indepen-
dently from Multinomial(x), denoted by yp The
kth suffix symbol (ys) is sampled from either a
uniform distribution with a probability = ϵ or is
deterministically determined from the preceding
k− 1 prefix terms. For block size of 1 (k = 1), the
output is simply a set of size B sampled from x
(i.e., all the elements are independent). Similarly,
k = 2 simulates a situation with a high degree of
dependence: each block is of size 2, with the pre-
fix sampled independently from the input, and the
suffix determined deterministically from the prefix.
Gradually increasing the block size increases the
number of independent elements.

Dir(α) X yp ys

k-1

B

M

Figure 7: The generative process for simulation

G.1 Major Findings

We now outline our findings from the simulation.
We use the architecture of BART-base (Lewis et al.,
2020) (six-layers of encoder and decoder) without
pre-training for all simulations. All the simulations
were repeated using three different random seeds,
and we report the averages.

Finding 1: SEQ2SEQ models are sensitive to or-
der, but only if the labels are conditionally de-
pendent on each other. We train with the prefix
yp listed in the lexicographic order. At test time,
the order of is randomized from 0% (same order
as training) to 100 (appendixly shuffled). As can
be seen from Figure 8 the perplexity gradually in-
creases with the degree of randomness. Further,
note that perplexity is an artifact of the model and
is independent of the sampling strategy used, show-
ing that order affects learning.

Finding 2: Training with random orders makes
the model less sensitive to order As Figure 9
shows, augmenting with random order makes the
model less sensitive to order. Further, augmenting
with random order keeps helping as the perplexity
gradually falls, and the drop shows no signs of
flattening.

Finding 3: Effects of position embeddings can
be overcome by augmenting with a sufficient
number of random samples Figure 9 shows that
while disabling position embedding helps the base-
line, similar effects are soon achieved by increas-
ing the random order. This shows that disabling
position embeddings can indeed alleviate some con-
cerns about the order. This is crucial for pre-trained
models, for which position embeddings cannot be
ignored.

Finding 4: SETAUG leads to higher set overlap
We next consider blocks of order 2 where the prefix
symbol yp is selected randomly as before, but the
suffix is set to a special character y′p with 50% prob-
ability. As the special symbol y′p only occurs with
yp, there is a high pmi between each (yp, y′p) pair
as p(yp | y′p) = 1. Different from finding 1, the
output symbols are now shuffled to mimic a realis-
tic setup. We gradually augment the training data
with random and topological orders and evaluate
the learning and the final set overlap using training
perplexity and Jaccard score, respectively. The re-
sults are shown in Figure 10. Similar trends hold
for larger block sizes, and the results are included

4893



Figure 8: Perplexity vs. Randomness for varying block sizes. The degree of dependence between the labels is
highest for block size = 2, where each label depends the preceding label. In such cases, the model is most affected
by shuffling the order at test time. In contrast, with block size of 1, the perplexity is nearly unaffected by the order.
This result complements Lemma B.3 in showing that order will not affect SEQ2SEQ models if all the labels are
independent of each other.

Figure 9: Augmenting dataset with multiple orders help across block sizes. Augmentations also overcome any
benefit that is obtained by using position embeddings.

in the Appendix in the interest of space.

Finding 5: SETAUG helps across all sampling
types We see from Table 14 that our approach is
not sensitive to the sampling type used. Across five
different sampling types, augmenting with topolog-
ical orders yields significant gains.

Finding 6: SEQ2SEQ models can learn cardinal-
ity and use it for better decoding We created
sample data from Figure 7 where the length of
the output is determined by sum of the inputs X .
We experimented with and without including cardi-
nality as the first element. We found that training
with cardinality increases step overlap by over 13%,
from 40.54 to 46.13. Further, the version with car-
dinality accurately generated sets which had the
same length as the target 70.64% of the times, as
opposed to 27.45% for the version without cardi-
nality.
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Figure 10: Effect of SETAUG on perplexity and set overlap. Left: Augmentations done SETAUG helps the model
converge faster and to a lower perplexity. Right: Using SETAUG, the overlap between training and test set increases
consistently, while consistently outperforming RANDOM.

Beam Random Greedy Top-k Nucleus

RANDOM 0.39± 0.05 0.39± 0.02 0.35± 0.05 0.39± 0.02 0.39± 0.02
SETAUG 0.67± 0.05 0.67± 0.05 0.71± 0.04 0.67± 0.05 0.68± 0.05

Table 14: Set overlap for different sampling types with 200% augmentations. The gains are consistent across
sampling types. Similar trends were observed for 100% augmentation and without positional embeddings. Top-k
sampling was introduced by (Fan et al., 2018), and Nucleus sampling by (Holtzman et al., 2020).

4895



H Fixing the proposal distribution in the
VAE formulation

log pθ(Y | x) = log
∑

πz∈Π
pθ(πz(Y) | x)

= log
∑

πz∈Π

qϕ(πz)

qϕ(πz)
pθ(πz(Y) | x)

= logEqϕ(πz)

[
pθ(πz(Y) | x)

qϕ(πz)

]

≥ Eqϕ(πz) [log pθ(Y, πz | x)]− Eqϕ(πz) [log qϕ(πz)]

log pθ(Y | x) = log
∑

πz∈Π
pθ(πz(Y) | x)

≥ Eqϕ(πz)

[
log

pθ(πz(Y) | x)
qϕ(πz)

]

︸ ︷︷ ︸
ELBO

= L(θ, ϕ)

(6)

Where equation 6 is the evidence lower
bound (ELBO). The success of this formulation
depends on the quality of the proposal distribution
q from which the orders are drawn. When q is
fixed (e.g., to uniform distribution over the orders),
learning only happens for θ. This can be clearly
seen from splitting Equation 6 into terms that in-
volve just θ and ϕ:

∇ϕL(θ, ϕ) = 0

∇θL(θ, ϕ) = ∇θEqϕ(πz) [log pθ(Y, πz | x)]

A Example Appendix

This is an appendix.
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