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Abstract

With the development of medical digitization,
the extraction and structuring of Electronic
Medical Records (EMRs) have become chal-
lenging but fundamental tasks. How to ac-
curately and automatically extract structured
information from medical dialogues is espe-
cially difficult because the information needs
to be inferred from complex interactions be-
tween the doctor and the patient. To this end,
in this paper, we propose a speaker-aware co-
attention framework for medical dialogue in-
formation extraction. To better utilize the pre-
trained language representation model to per-
ceive the semantics of the utterance and the
candidate item, we develop a speaker-aware di-
alogue encoder with multi-task learning, which
considers the speaker’s identity into account.
To deal with complex interactions between dif-
ferent utterances and the correlations between
utterances and candidate items, we propose a
co-attention fusion network to aggregate the
utterance information. We evaluate our frame-
work on the public medical dialogue extraction
datasets to demonstrate the superiority of our
method, which can outperform the state-of-the-
art methods by a large margin.

1 Introduction

In the past decade, the collection and usage of Elec-
tronic Medical Records (EMRs) have been proved
as one of the most important applications in the pro-
cess of medical digitization. However, the record-
ing and writing of the EMRs may bring a signif-
icant burden to doctors. Given the breakthrough
advance of speech recognition technology, conver-
sations between doctors and patients can be accu-
rately recorded as text. However, such unstructured
medical dialogue data cannot be easily utilized for
medical research. How to automatically extract
the structured information from these unstructured
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Patient:Doctor,	could	you	please	tell	me	is	it	a	
coronary	disease?

Doctor:Did	you	feel	angina?

Patient:No,	I	felt	there	is	a	sense	of	suppression	
in	the	chest.

Doctor:The	result	of	echocardiography	is	normal.	
Don’t	worry.

Patient:OK,	thanks,	doctor.

Dialogue	Window	

Coronary	disease Patient-unk

Annotation	Labels	

Utterance Candidate	Item Stauts

Angina Patient-neg

Chest	tightness Patient-pos Echocardiography Doctor-pos

Figure 1: An example of a patient-doctor dialogue and
the corresponding annotated labels.

textual medical dialogue data is an essential step to
accelerate medical digitization.

Compared with the general medical information
extraction, the crucial challenge of the medical dia-
logue extraction is that it has to take the speaker’s
identity and utterance interactions into consider-
ation. In conventional information extraction, a
relation can largely be inferred by a sentence or
a paragraph. However, in the medical dialogue
extraction task, the candidate item and status infor-
mation need to be detected and then verified by the
conversations between the doctor and the patient.
An example of a patient-doctor dialogue and the
corresponding annotated labels is shown in Figure
1. For instance, the doctor asks the patient, “Did
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you feel angina?”, the patient responds, “No, I
felt there is a sense of suppression in the chest.”,
the ground truth labels for correct extraction are
(chest tightness: patient-positive), (angina: patient-
negative). If only considering the utterance of the
patient or the doctor alone, we cannot make correct
information extraction.

However, how to leverage the speaker’s identity
and utterance interactions information to facilitate
medical information extraction is not well explored.
Du et al. (2019) describe a novel model that extracts
the symptoms mentioned in clinical conversations
along with their status. The annotation of their sta-
tus does not consider the speaker’s identity into ac-
count. Lin et al. (2019) make symptom recognition
and symptom inference in medical dialogues, and
propose a global attention mechanism to capture
symptom-related information. Zhang et al. (2020)
develop a medical information extractor based on a
simple deep matching module to take turn interac-
tion into consideration. Thus, all existing methods
fail to take the speaker into consideration, and the
simple utterance combination method such as just
concatenating all utterances together with flat at-
tention cannot grasp sufficient information among
utterance interactions in the medical dialogue.

To tackle the above challenge, we propose a
Speaker-aware co-Attention Framework for med-
ical dialogue Extraction (name SAFE for short).
First, to better predict the status of the candidate
item in the medical dialogue, we should both con-
sider the contextual information from the dialogue
and be aware of the identity of the speaker. For
the annotated label (echocardiography: doctor-
positive) in the dialogue shown in Figure 1, be-
ing aware of the identity (patient or doctor) of the
speaker can help make a correct inference. Second,
we propose an utterance-based co-attention graph
network to perceive complex correlations between
different utterances.

We summarize our contributions as follows:

• We propose a new framework (SAFE) for
medical dialogue extraction, which can better
utilize the pre-trained language representation
model to grasp the semantics of both utter-
ances and candidate items.

• We develop a novel speaker-aware encoder
and a co-attention fusion method with multi-
task learning and graph networks, which takes
the speaker’s identity and correlations be-

tween utterances and candidate items into con-
sideration.

• We evaluate our framework on the public med-
ical dialogue datasets to demonstrate the supe-
riority of our method, which can outperform
the state-of-the-art methods by a large margin.

2 Related Work

2.1 Pre-trained Language Models
Pre-trained language models, like BERT (Devlin
et al., 2019), Roberta (Liu et al., 2019), XLNet
(Yang et al., 2019), ERNIE (Sun et al., 2020),
T5(Raffel et al., 2020), BART(Peng et al., 2021)
and GPT3 (Brown et al., 2020), can achieve huge
gains on many Natural Language Processing (NLP)
tasks, such as GLUE (Wang et al., 2018) and Super-
GLUE (Wang et al., 2019) benchmarks. In our pro-
posed framework, we utilize the fine-tuned BERT
model as the initial encoder to obtain the represen-
tations for the utterance and the candidate item.

2.2 Medical Dialogue Extraction
Extracting information from EMR texts has at-
tracted much research attention in both NLP and
biomedical domains (Xia et al., 2021). Du et al.
(2019) propose a span-attribute tagging (SAT)
model and a variant of the sequence-to-sequence
model to solve the symptom tagging and extraction
problems. Lin et al. (2019) present a global at-
tention mechanism, which perceives the symptom-
related information from both dialogues and corpus
to improve the performance of symptom recogni-
tion and symptom inference. However, the above
works mainly focus on the sequential labeling and
medical name entity recognition (NER), and fail
to consider the complex interaction between utter-
ances. In industrial applications, Peng et al. (2021)
propose a dialogue-based information extraction
system that integrates existing NLP technologies
for medical insurance assessment, while their mo-
tivation is to reduce the time cost of the insurance
assessment procedure.

The most similar work related to to our study
is (Zhang et al., 2020), which proposes a medical
information extractor (MIE) by using an LSTM
(Hochreiter and Schmidhuber, 1997) model as an
encoder module, and then adopting an aggregate
module to take the utterance interaction into consid-
eration. Our study is different from (Zhang et al.,
2020) in the following two points. On the one
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Figure 2: The Illustration of the Speaker-Aware Co-Attention Framework for Medical Dialogue Extraction (SAFE).
It includes a three-stage pipeline system: a Speaker-Aware Dialogue Encoder Module (SAE), a Co-Attention Fusion
Module (CAF), and an Inference Module (IM).

hand, we develop a multi-task learning method to
train a speaker-aware dialogue encoder module that
takes the speaker’s information into consideration.
On the other hand, we utilize a co-attention fusion
mechanism to perceive complex interactions be-
tween different utterances and the correlation with
the candidate item.

3 Preliminaries

In this section, we formally define the problem of
medical dialogue extraction (MDE). For a dialogue
with n tokens and m utterances, it can be defined
as D = (U r1

1 , U
r2
2 , · · · , U rm

m ), where U ri
i is the

i-th utterance in the dialogue, ri ∈ {0, 1}, which
indicates the speaker’s identity (e.g. belongs to
patient or doctor). The candidate item I ∈ I is
a medical term (like symptom, disease, surgery,
etc.) which can be extracted from a dialogue D.
For each candidate item I , we also need to iden-
tify its status S ∈ S where S is an element from
the set {patient-negative, patient-positive, patient-
unknown, doctor-positive, doctor-negative} which
indicates whether the candidate item is confirmed
or denied by doctors and patients.

Finally, we define the task of medical dialogue
extraction as follows: given a medical dialogue
D ∈ D, candidate item I ∈ I and its status S ∈ S ,
the MDE can be formulated to predict the label
f : D → Y where Y is a matrix generated by
Cartesian product of the candidate item I and its
status S, i.e. Y = (yij) ∈ R|I|×|S|, and yij = 1
indicates that the medical dialogue D contains the
candidate Ii with the status Sj . Note that different
from the task for relation extraction (RE), the label
space for the MDE is very sparse, which causes it
a more challenging problem.

4 Method

We develop a three-stage pipeline system: (1)
Speaker-Aware Dialogue Encoder Module (SAE),
a module to turn the utterances in the medical di-
alogue and the candidate item into node feature
representations, which also takes the speaker iden-
tity into account; (2) Co-Attention Fusion Module
(CAF), a module to involve the interactions be-
tween the utterances and the correlation between
utterance and candidate item into consideration;
and (3) Inference Module (IM), a module to utilize
the fusion representation for final dialogue infor-
mation extraction. The full pipeline of our pro-
posed medical dialogue extraction framework is
illustrated in Figure 2.

4.1 Speaker-Aware Dialogue Encoder Module

An effective medical dialogue encoder should cap-
ture the semantics of the utterance and perceive
the speaker’s identity. In this work, we designed a
multi-task learning method to pre-train our speaker-
aware dialogue encoder. Our dialogue encoder is
pre-trained on a Speaker Recognition Task (SRT)
and a Status Entailment Task (SET). For the SRT
task, we design a speaker recognition task to distin-
guish the identity of the speaker. For the SET task,
we leverage the pre-trained language model like
BERT to train a status entailment task to perceive
the semantics in the dialogue. In Figure 3, we il-
lustrated the training process of our speaker-aware
dialogue encoder module.

Speaker Recognition Task
Given an utterance in a dialogue, if the encoder
itself can be aware of whether the speaker is a
patient or a doctor, it will help to infer the corre-
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Figure 3: Illustration of the multi-task fine-tuning of Speaker-Aware Dialogue Encoder.

sponding status for the candidate item. We pre-train
the BERT-base encoder with the auxiliary speaker
recognition task, which is designed to distinguish
whether the utterance in the medical dialogue is
spoken by the patient or by the doctor. The speaker
recognition task is illustrated in the upper side of
Figure 3. We construct the binary training samples
from the medical dialogues corpus. The utterances
from the patient are labeled as 1, and the utterances
from the doctor are labeled as 0. We mask the
word patient and doctor at the beginning of each
utterance, which can prevent the model from dis-
tinguishing the speaker only with the beginning
prompt words.

First, we take the utterance U r into the BERT-
base encoder to get the utterance representation
UB:

UB
i = Encoder(BERT)(U ri

i ). (1)

Then, we fed the utterance representation into
a binary classifier, which is imposed of a dense
layer and a softmax layer. The speaker recognition
probability is as follows:

P (ri = 1|U ri
i ) = softmax(WrU

B
i ), (2)

where Wr ∈ R2×d denotes weight matrix, d is the
number of hidden dimensions of the encoder. The
loss function of the SRT for a single dialogue is as
follows:

LSRT =
1

M

∑

i

−rilogP (ri = 1|U ri
i )

−(1− ri)logP (ri = 0|U ri
i ).

(3)

where M is the number of utterances in a dialogue,
and ri is the label of the speaker.

Status Entailment Task
We jointly pre-train the BERT encoder with another
auxiliary status entailment task, which is designed

to entail the status of the candidate item. The status
entailment task is illustrated at the bottom of Figure
3. We re-formulate the medical dialogue informa-
tion extraction into a status entailment task. Given
a medical dialogue and the candidate item, we need
to entail the status of the candidate item. The model
should make an inference on the candidate’s sta-
tus conditioned on the dialogue and candidate item
information.

First, we concatenate all the utterances in a med-
ical dialogue D and the candidate item I together,
and fed them into the BERT-base encoder to get
the dialogue representation DB:

DB = Encoder(BERT)(D, I). (4)

Then, we fed the dialogue representation into a
multi-class (multi-status) classifier, which is also
imposed of a dense layer and a softmax layer. The
status entailment probability is as follows:

P (y|D, I) = softmax(WeD
B), (5)

where We ∈ RC×d denotes weight matrix, d is the
number of hidden dimensions of the encoder, C is
the number classes of the status. The loss function
for the SET is as follows:

LSET = CrossEntropy(y, P (y|D, I)). (6)

where y is ground truth status label for candidate
item in the dialogue, and CrossEntropy(·) is cross
entropy loss function.

Joint Optimizing
The final loss function for the speaker-aware en-
coder Encoder(SA) is as follows:

LSAE = λLSRT + (1− λ)LSET . (7)

where LSRT and LSET are the losses for speaker
recognition task and status entailment task, re-
spectively, λ is the hyper-parameter to control the
weight of each task.
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4.2 Co-Attention Fusion Module

Given the medical dialogue, we employ our pre-
trained speaker-aware encoder Encoder(SA) as
our utterance encoder by extracting the final hid-
den state of the [CLS] token as the represen-
tation, where [CLS] is the special classifica-
tion embedding in our pre-trained model. In or-
der to involve the correlation between the utter-
ance and the candidate item, given m utterances
(U r1

1 , U
r2
2 , · · · , U rm

m ) in a dialogue and a candidate
item I , we feed each utterance-candidate item pair
(U ri

i , I) into our speaker-aware encoder to obtain
the utterance representation Ui. We also feed the
candidate item I into the speaker-aware encoder
alone to obtain the candidate item representation I:

Ui = Encoder(SA)(U ri
i , I),

I = Encoder(SA)(I),
(8)

To better capture complex interactions between
utterances, we use a co-attention fusion mechanism
to aggregate the utterance information. We treat
each utterance as a node and define other utterances
in the same sliding window as its neighbors. Then
we calculate the attention coefficient between a
node i and its neighbor j (j ∈ Ni).

cij = Wu→u
1 (ReLU(Wu→u

0 (concat(Ui,Uj)))),
(9)

where j ∈ Ni is the in-window neighbors of the
node i, Wu→u

1 ∈ R1×w and Wu→u
0 ∈ Rw×2d are

weight matrices, and concat(·, ·) is concatenation
operation. d is the number of dimensions of the
utterance feature representation, w is the number
of dimensions of the intermediate hidden state.

We use a softmax function to normalize the
utterance-utterance co-attention coefficients ϕ,

ϕij = softmax(cij) =
exp(cij)∑

k∈Ni
exp(cik)

. (10)

Then, given the utterance-utterance co-attention
matrix ϕij , inspired by (Kipf and Welling, 2017;
Veličković et al., 2018; Zhou et al., 2019), we em-
ploy a simple GCN layer for information fusion.

Ũ
(l)
i = σ

( n∑

j=1

ϕijW
(l)
ϕ Ũ

(l−1)
i

)
, (11)

where Ũ
(0)
i is initialized with Ui, W

(l)
ϕ ∈ Rd×d, l

is the number of layers for propagation.

We also explicitly involve the correlation be-
tween the utterance Ũ

(l)
i and the candidate item

I by another co-attention layer:

pi = Wu→c
1 (ReLU(Wu→c

0 (concat(Ũ
(l)
i , I)))),

(12)
where Wu→c

1 ∈ R1×w and Wu→c
0 ∈ Rw×2d are

weight matrices.
Similarly, we adopt a softmax function to nor-

malize the utterance-candiate item co-attention co-
efficients ψ,

ψi = softmax(pj) =
exp(pi)∑N

k=1 exp(pk)
, (13)

Finally, the normalized co-attention coefficients
are used to compute a linear combination of ut-
terance features of neighbors for final information
extraction:

TF = CoAttn(D, I) =
N∑

k=1

ψkŨ
(l)
k . (14)

4.3 Inference Module
The output representation TF of the Co-Attention
Fusion module (CAF) is then fed into the final in-
ference module to extract the medical information
from the dialogue.

ỹc = softmax(WoT
(c)
F + bo), (15)

where T
(c)
F is the c-th index of the candidate item,

Wo ∈ RC×d and bo ∈ RC×1 are weight matrix
and bias, respectively. ỹc is the predicted probabil-
ity of the candidate item’s status, yc is the ground-
truth label.

The final loss function is as follows:

L =
1

NC

∑

i

∑

c

y(i)c logỹ(i)c . (16)

where N is number of dialogues in the training
corpus, C is the number of classes for candidate
item status.

5 Experiments

5.1 Datasets
To verify the effectiveness of our SAFE framework,
we conduct extensive experimental evaluations on
the Medical Information Extraction MIE dataset1

1Data are available at https://github.com/
nlpir2020/MIE-ACL-2020
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(Zhang et al., 2020). The dataset involves doctor-
patient dialogues collected from a Chinese medical
consultation website 2. The MIE dataset is repre-
sentative for medical dialogue task from EMR. On
the one hand, the dialogues from the MIE dataset
are collected from real doctor-patient conversations,
it can reflect the data characteristics from EMRs.
On the other hand, for industrial applications, the
problem of extracting and structuring of EMRs
raised by the MIE dataset has become a fundamen-
tal task in downstream medical applications, such
as text-based dialogue systems or cascaded with
ASR (Automatic Speech Recognition) systems.

In the MIE dataset, the dialogues are already in
text format. As the dialogues turn to be too long,
the medical dialogues are processed into pieces
using a sliding window. A window consists of mul-
tiple consecutive turns of a dialogue. The sliding
window size is set to 5, because this size allows
the included dialogue turns contain proper amount
of information. For windows with less than 5 ut-
terances, the dataset pads them at the beginning
with empty strings. Then, it uses a window-to-
information annotation method, and annotates the
candidate item and its status in each window in
the dialogue. Annotators of the MIE dataset are
guided by two physicians to ensure the correctness
and the cohen’s kappa coefficient of the labeled
data is 0.91. It defines four categories (i.e. symp-
tom, surgery, test, and other information) and 71
candidate items which are frequent items in doctor-
patient dialogues and are fixed in the MIE dataset.
The candidate item has five statuses (i.e. patient-
pos, patient-neg, doctor-pos, doctor-neg, patient-
unknown). In total, the corpus has 1,120 dialogues
and 18,212 windows. For the dialogue-level, the
dataset is split into three parts: training, validation
and testing, and the sizes are 800, 160, and 160,
respectively; for the window-level, the correspond-
ing sizes are 12,932, 2,587, and 4,254, respectively.
The detailed annotation statistics of the MIE dataset
are shown in Table 1.

5.2 Evaluation Metrics

For the MIE dataest, we evaluate the extracted med-
ical dialogue information results with Precision,
Recall and F1-Score. In accordance with the evalu-
ation metrics described in the (Zhang et al., 2020),
a correct result should both correctly predict the
candidate item and its status. The results are evalu-

2https://www.chunyuyisheng.com

Train Dev Test

# Window-level 12,932 2,587 4,254
Avg. words of windows 110.8 113.3 109.7
Avg. annotations of windows 2.5 2.7 2.4

# Dialogue-level 800 160 160
Avg. words of dialogues 404.4 434.7 401.3
Avg. annotations of dialogues 6.5 7.2 6.4

Table 1: The detailed annotation statistics of the MIE
dataset.

ated in window-level and dialogue-level as follows:

• Window-level. The evaluation is calculated
with each segmented window, and report the
micro-average of all the test windows.

• Dialogue-level. First, we merge the results of
windows belonging to the same conversation.
For mutually exclusive status, we update the
previous status with the latest status. Then,
we evaluate the results of each dialogue and
report the micro-average of all test dialogues.

5.3 Experiment Settings
Task Training Settings
For the speaker recognition task, the label of the
speaker in each utterance is generated by the begin-
ning prompt words (e.g. patient: or doctor:). In
the training stage, we mask the beginning prompt
words to prevent the leakage of labels. For the sta-
tus entailment task, in addition to the origin status
labels (e.g. patient-pos), we add the None status
label as the negative label. Because the candidate
item is not provided in the inference stage, thus
we have to traverse the candidate item space to
make a prediction. For a given dialogue and the
provided candidate item-status pair information,
suppose there are B candidate items labels pre-
sented in a dialogue, we randomly select Ns ×B
items which are not presented in the ground-truth
candidate items and label them with the None sta-
tus. In our experiments, we set Ns as 2. In the
inference stage, we make prediction on the whole
candidate item space. Only the candidate item with
non-None status is left for final evaluation.

Hyperparameter Settings
For the speaker-aware dialogue encoder module,
we use a BERT-base network structure to initialize
the base dialogue encoder. The BERT-base (110M)
namodel has 12 layers, the number of hidden state
dimensions is set to 768, and the number of heads
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Method Window-Level Dialogue Level

Precision Recall F1-Score Precision Recall F1-Score

LSTM-Classifier 53.13 49.46 50.69 61.34 52.65 56.08
MIE-Single (Zhang et al., 2020) 69.40 64.47 65.18 75.37 63.17 67.27
MIE-Multi (Zhang et al., 2020) 70.24 64.96 66.40 76.83 64.07 69.28
MIE-Multi (BERT) 71.45 71.17 71.31 71.01 74.46 72.69

SAFE (Ours) 72.59∗ 73.86∗ 73.22∗ 73.20 78.71∗ 75.86∗

Table 2: Performance comparisons with different baseline models on the MIE dataset. Significant test over the best
baseline results are marked with ∗ (pair-wised t-test , p < 0.01).

is set to 12. We use the Adam optimizer (Kingma
and Ba, 2015) with a batch size of 32 for 20 epochs.
The learning rate αs for SAE pre-training is set to
2e-5. The warmup proportion is set to 0.1. The
maximum sequence length is 512. The λ for con-
trolling the task weight is set to 0.5 with grid search
strategy. For the co-attention fusion module, the
number of hidden dimensions of the dense layer is
set to 64, and the number of layers for utterance
propagation is set to 2. The final inference module
is trained to minimize the cross-entropy loss on
the predicted label using the Adam optimizer with
a batch size of 128 for 15 epochs, and the initial
learning rate αc for co-attention fusion method is
set to 1e-3. The models are trained on the NVIDIA
Tesla V100 32GB GPU with 4 hours.

5.4 Model Comparisons
In this section, we compare our proposed frame-
work with several baselines to verify the effective-
ness of our approach.

• LSTM-Classifer The model only uses the
LSTM encoder to get the representation of
the concatenation of each utterance and uses a
self-attention layer and an MLP layer to make
predictions.

• MIE-Single (Zhang et al., 2020) The model
uses the LSTM model as the encoder mod-
ule, and only consider the interaction within a
single utterance.

• MIE-Multi (Zhang et al., 2020) The model
uses the LSTM model as an encoder module
and proposes a simple aggregate module to
take the utterance interaction into considera-
tion.

• MIE-Multi (BERT) The model architecture
is the same with the MIE-Multi, except that
we replace the original LSTM encoder with
the BERT encoder.

Method Precision Recall F1-Score

SAFE 73.20 78.71 75.86
w/o (SAE) 68.71 78.51 73.29
w/o (CAF) 69.46 74.55 71.91

Table 3: The ablation study on the MIE dataset with
dialogue-level metrics.

CAF Layers Precision Recall F1-Score

1 71.91 79.10 75.34
2 73.20 78.71 75.86
3 71.50 76.53 73.93

Table 4: Performance of different number of co-
attention layers in the CAF module on the MIE dataset
with dialogue-level metrics.

• SAFE (Ours) Our speaker-aware co-attention
framework takes the speaker’s identity and the
correlations between utterances and candidate
items into consideration.

5.5 Main Results
In accordance with the evaluation metrics intro-
duced by Zhang et al. (2020), we report both
window-level and dialogue-level results. Table 2
shows the performance comparisons with differ-
ent methods on the MIE dataset. We observe that
the LSTM-Classifier performs the worst, under the
dialogue-level metrics. The LSTM-Classifier only
has a precision of 61.34 and a recall of 52.65, be-
cause it fails to consider interactions between each
utterance. The performance of the MIE-Multi is
better than the MIE-Single, as the latter model takes
the turn interactions into account. The MIE-Multi
achieves better performance at a precision of 76.83
and a recall of 64.07 under the dialogue-level met-
rics. The MIE-Multi is a state-of-art framework
for medical dialogue extraction. However, without
taking the speaker’s identity into consideration, the
MIE-Multi cannot tackle complex interactions be-
tween utterances and candidate items, it perform
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0)	Doctor:Have	you	caught	a	cold	before?

1)	Patient:No,	I	haven’t

2)	Doctor:Do	you	have	a	fever?

3)	Patient:No,	everything	is	OK.

4)	Doctor:	How	can	it	be	diagnosed	as	viral	
myocarditis?	

Fever Patient-neg

……Patient:

……Patient:

Annotation	Label	

Window	Dialogue	

Figure 4: An case study on a patient-doctor dialogue
in the test set. The corresponding utterance-utterance
co-attention matrix is shown in Figure 5.

less effectively compared to our SAFE framework.
For a more fair comparison, to eliminate the per-

formance boost brought by pre-trained language
models like BERT, we re-implement the MIE-
Multi with a BERT-based structure, the MIE-Multi
(BERT) gets an F1-Score of 71.31 under window-
level metrics and an F1-Score of 72.69 under the
dialogue-level metrics, which is better than the orig-
inal MIE-Multi, while still getting worse results
compare to our method. Our SAFE framework
achieves the state-of-the-art F1-Score of 75.86
which demonstrates the superiority of our method
by a large margin.

5.6 Ablation Study
We conduct ablation studies on the MIE dataset
to analyze the contribution of each component of
our proposed SAFE model. The main results are
shown in Table 3.

Effectiveness of Speaker-Aware Encoder
First, we evaluate the effect of the speaker-aware
encoder module. The removal of the SAE mod-
ule causes the overall performance of the F1-
score to decline from 75.86 to 73.29 under the
dialogue-level metrics, which suggests that taking
the speaker’s information into account can help im-
prove the dialogue extraction performance. Addi-
tionally, to quantitatively demonstrate that the SAE
module can identify the speaker better, we calculate
the speaker misidentification error rate in the test
set, which indicates how many bad cases are owing
to the error of speaker identity (e.g., pred: doctor-
pos, label: patient-pos). The speaker misidentifi-
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Figure 5: The co-attention matrix for the case in Figure
4. The attention map indicates the utterance-utterance
interaction between different speakers.

cation error rate is decreased from 5.0% to 4.1%
compared to the method without the SAF module.

Effectiveness of Co-Attention Fusion Module
Second, we evaluate the effect of the co-attention
fusion module. Removing the CAF module reduces
the overall performance of the F1-score by 5.49%
(from 75.86 to 71.91) under the dialogue-level met-
rics, which proves that adopting the co-attention
graph network to capture the complex interactions
between the utterances is significant for medical
dialogue extraction. We also analyze the effect of
the different number of co-attention layers on the
performance of medical dialogue extraction. The
results are shown in Table 4. Note that when the
co-attention layer is equal to 1, the CAF is equiv-
alent to the flat attention over utterances. We can
discover from the table that the model with two
co-attention layers achieves the best result, which
indicates that the proper propagation of each utter-
ance can help to perceive complex interactions in
the medical dialogue.

5.7 Case Study

In previous sections, we provide a quantitative anal-
ysis of the experiment results. In this section, to
help better understand that our SAFE framework
can better capture utterance interactions in the dia-
logue, we provide a case study from the test set.

Figure 4 shows a case study on a patient-doctor
dialogue3 in the test set. To illustrate how our co-
attention fusion module can capture interactions be-
tween each speaker and the correlation with the can-
didate item, we visualize the utterance-utterance

3The text in Figure 4 is translated from Chinese to English.
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interaction with an attention map. From the Figure
5, we can find that the third column (Doctor: Do
you have a fever?) and the fourth column (Patient:
No, everything is OK.) of the matrix have domi-
nantly higher values, because these two utterances
are important for the model to extract the annotated
label (fever: patient-negative). We can also dis-
cover that the co-attention coefficients (i.e. ϕ2,3
and ϕ3,2) of these two utterances are also very high,
because we need to consider the interactions be-
tween these two utterances to infer the ground-truth
status as patient-negative.

5.8 Discussion

Here we would like to give a brief discussion about
how the proposed system connects with clinical
practice. For text-based systems, the structured
information from the text-based dialogues can be
extracted to form the medical knowledge graph,
which would benefit primary doctors. The struc-
tured information from medical dialogues can also
bring benefits for many clinical applications, such
as automatic diagnosis systems (Liu et al., 2018;
Xu et al., 2019; Xia et al., 2020) and clinical de-
cision support systems to assist doctors. For ASR
systems, it is also important to utilize the speaker
identity recognition in the system to facilitate medi-
cal information extraction after speech recognition.

6 Conclusion

In this paper, we propose a speaker-aware co-
attention framework for medical dialogue infor-
mation extraction. We design a speaker-aware
dialogue encoder module, which considers the
speaker’s identity into account and can better uti-
lize the pre-trained language model to capture the
semantics of the utterance and the candidate item.
Moreover, we propose a co-attention fusion net-
work to aggregate the utterance information, which
tackles complex interactions between different ut-
terances and the correlation between utterances and
candidate items. The experiment results demon-
strate the effectiveness of the proposed framework.

7 Limitations

While perceiving the speaker’s identity and com-
plex utterance interactions is essential for medical
dialogue information extraction, the limitation of
our work is that we do not explicitly involve the
prior medical knowledge such as the existing med-
ical knowledge graph (MKG) to further improve

the overall performance with less annotated labels.
To deal with the limitation, in the future, we should
leverage the medical entity relations in the medi-
cal knowledge graph, and introduce the medical
knowledge enhanced pre-train language model into
our work to further improve the results of medical
dialogue information extraction.

8 Ethical Considerations

It should be mentioned that the doctor-patient di-
alogues in the MIE dataset are collected from the
openly accessible online health forum Chunyu-
Doctor whose owners make such information visi-
ble to the public. All the patients’ information has
been anonymized. Apart from the personal infor-
mation de-identified by the Chunyu-Doctor forum
officially, we manually reviewed the collected data
to prevent privacy leaks. We ensure there is no
identifiable or offensive information in the experi-
mental dataset.

The model and framework proposed in this pa-
per are for research purposes only and intended to
facilitate studies of using NLP methods to better
extract the structure information from medical dia-
logues, which can alleviate the doctor’s burdens for
recording EMRs and accelerate the development
of medical digitization.

Acknowledgement

Our work is supported by the National Key
Research and Development Program of China
No.2020AAA0109400.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In ACL, pages 4171–4186.

4785

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf


Nan Du, Kai Chen, Anjuli Kannan, Linh Tran, Yuhui
Chen, and Izhak Shafran. 2019. Extracting symp-
toms and their status from clinical conversations. In
Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 915–
925, Florence, Italy. Association for Computational
Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

Xinzhu Lin, Xiahui He, Qin Chen, Huaixiao Tou,
Zhongyu Wei, and Ting Chen. 2019. Enhancing dia-
logue symptom diagnosis with global attention and
symptom graph. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 5033–5042, Hong Kong, China. Association
for Computational Linguistics.

Qianlong Liu, Zhongyu Wei, Baolin Peng, Huaixiao
Tou, Ting Chen, Xuanjing Huang, Kam-Fai Wong,
and Xiangying Dai. 2018. Task-oriented dialogue
system for automatic diagnosis. In ACL, volume 2,
pages 201–207.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Shuang Peng, Mengdi Zhou, Minghui Yang, Haitao Mi,
Shaosheng Cao, Zujie Wen, Teng Xu, Hongbin Wang,
and Lei Liu. 2021. A dialogue-based information ex-
traction system for medical insurance assessment. In
Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021, pages 654–663, Online.
Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao
Tian, Hua Wu, and Haifeng Wang. 2020. Ernie 2.0:
A continual pre-training framework for language un-
derstanding. AAAI, pages 8968–8975.
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