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Abstract

Vision Transformers (ViTs) have been widely
used in large-scale Vision and Language Pre-
training (VLP) models. Though previous VLP
works have proved the effectiveness of ViTs,
they still suffer from computational efficiency
brought by the long visual sequence. To tackle
this problem, in this paper, we propose an effi-
cient vision-and-language pre-training model
with Text-Relevant Image Patch Selection,
namely TRIPS, which reduces the visual se-
quence progressively with a text-guided patch-
selection layer in the visual backbone for ef-
ficient training and inference. The patch-
selection layer can dynamically compute text-
dependent visual attention to identify the at-
tentive image tokens with text guidance and
fuse inattentive ones in an end-to-end manner.
Meanwhile, TRIPS does not introduce extra
parameters to ViTs. Experimental results on a
variety of popular benchmark datasets demon-
strate that TRIPS gain a speedup of 40% over
previous similar VLP models, yet with compet-
itive or better downstream task performance.

1 Introduction

In recent years, Vision-Language Pre-training
(VLP) (Tan and Bansal, 2019; Chen et al., 2019;
Lu et al., 2019; Huang et al., 2020; Su et al., 2020;
Li et al., 2020; Chen et al., 2020; Zhou et al., 2020;
Li et al., 2021b; Yu et al., 2021; Li et al., 2022)
has developed at an astonishing rate and become a
prevalent paradigm to tackle VL tasks. Traditional
VLP models (Tan and Bansal, 2019; Chen et al.,
2019; Lu et al., 2019; Li et al., 2020) utilize pre-
trained object detectors (Ren et al., 2015; Redmon
et al., 2016; He et al., 2017) to extract region-based
image features but suffer from extensive annota-
tion and expensive computation of object detector
training. Inspired by the success of the Vision
Transformer (ViT) (Dosovitskiy et al., 2021) and
its variants (Liu et al., 2021; Wu et al., 2021; Wang

∗corresponding author.

et al., 2021a) in computer vision field, more recent
VLP models (Li et al., 2021b; Radford et al., 2021;
Kim et al., 2021; Wang et al., 2021b; Singh et al.,
2021) have adopted ViT as the visual encoder or
cross-modal fusion encoder without using region
features from the pre-trained object detector.

However, these ViT-based VLP methods are re-
quired to model long visual sequences from high-
resolution images for good vision understanding,
with quadratic computational complexity to the
length of the visual sequence. Moreover, recent
efforts (Dosovitskiy et al., 2021; Touvron et al.,
2021) have also begun to explore vision-language
foundation models, which scale up the model and
data size. This raises the necessity to decrease the
high computational cost of ViT-based VLP models.
As shown in Figure 1(a), we find that removing
the inattentive patch tokens of the image [CLS]
token will generally not affect the result of Visual
Question Answering (VQA) (Agrawal et al., 2015)
prediction. Based on the observation, we conjec-
ture that not all image tokens in the visual encoder
contribute positively to the final prediction result
of VLP models, and large numbers of redundant
image tokens exist.

There have been some recent studies (Rao et al.,
2021; Xu et al., 2021b; Zong et al., 2021; Liang
et al., 2022) focusing on ViT model accelerations
by reducing unrelated image tokens. However,
these methods are specially designed for computer
vision tasks (e.g., image recognition) and remove
the redundant tokens based on visual semantics,
ignoring the aligned knowledge in text modality,
and thus are not suitable for VL tasks. As shown
in Figure 1(b), without the guidance of text knowl-
edge, directly removing patch tokens based on the
image [CLS] token will lead to a wrong answer.
This observation motivates us to reduce the image
tokens by fusing the less informative patch tokens
with the guidance of aligned text context.

In this work, we propose an efficient VLP model
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Q:What is on the mountain tops?

 Image patches selected by the 
image [CLS] token.

A: Trees. (False)

 Image patches selected by 
TRIPS.

A: Snow and cloud. (True)

Origin image

Q:Can you see any trees? A: No. (False) A: Yes. (True)Q:Is there a sun in the sky?

Q:What color is the person's' jacket? A: Red. (True)

  Image patches selected by the image 
[CLS] token.

 Attention Heatmap of image [CLS] 
token to other tokens.Origin image

A: Yes. (True)

(a) (b)

Figure 1: The sub-figure (a) shows the VQA cases of the ALBEF (Li et al., 2021b) finetuned on the VQA task,
in which the input image tokens are directly selected with the guidance of attention weight of the image [CLS]
token to other image tokens. We visualize the attention distribution of the image [CLS] token. As we can see,
the [CLS] token attention naturally focuses on the objects in images and ignores the image backgrounds. If the
question is about the objects in the images, we can still get the correct prediction. The sub-figure (b) shows the
VQA predictions comparison between ALBEF, which directly selects image tokens with the guidance of the image
[CLS] token, and our model TRIPS. As we can see, the questions are about the image backgrounds, and the former
predicts the wrong answers, yet the latter can give the correct answer as it preserves the text-relevant image tokens.

with Text-Relevant Image Patch Selection (TRIPS),
to progressively reduce the redundant image to-
kens with text guidance. TRIPS selects text-
consistent image tokens through the text-aware
patch-selection layer, reducing the computational
cost of the visual encoding and cross-modal fusion.
The patch-selection layer can preserve the atten-
tive image tokens with text guidance and fuse the
inattentive tokens into a single one by dynamically
computing text-dependent visual attention, in an
end-to-end way. In this way, we gradually decrease
the number of image tokens as the visual backbone
goes deeper to alleviate the computational cost of
the visual encoder while improving the efficiency
of cross-modal fusion due to the reduction of visual
sequences. Besides, the model efficiency can be
flexibly controlled via the keep rate of image tokens
in the patch-selection layer where no additional pa-
rameters are introduced. We evaluate TRIPS on
various representative VL tasks, including visual
question answering, natural language visual reason-
ing, and cross-modal retrieval. The efficiency of
TRIPS can be increased by 40% compared to pre-
vious similar VLP models, yet with competitive or
better downstream task performance. For instance,
TRIPS can speed up the baseline model 40.98%
and even improve by 0.1 on the VQA test-dev and
0.2 on the NLVR Dev with the same experimental
settings (see Table 6). Furthermore, by increasing
the input image resolution with the same compu-

tational cost, TRIPS can improve 0.4 on the VQA
test-dev and 0.6 on the NLVR Dev. Our contribu-
tions can be summarized as three-fold:

• We propose an efficient vision-and-language
pre-training model with Text-Relevant Image
Patch Selection (TRIPS). As far as we know,
this is the first exploration that decreases the
computational cost of VLP models by reduc-
ing image tokens with the help of linguistic
context.

• We propose a text-relevant patch-selection
layer, which can dynamically compute text-
dependent visual attention to identify the at-
tentive image tokens and fuse inattentive ones
with text guidance in an end-to-end manner.

• Extensive experiments indicate that our
TRIPS can boost the VLP model efficiency
at a lower computational cost than the un-
accelerated baseline model. Furthermore, by
increasing the input image resolution, TRIPS
benefits from taking more image tokens to
achieve better performance without increas-
ing computational costs.

2 Related Work

2.1 Vision-Language pre-training
Previous Vision-Language pre-training (VLP)
methods (Lu et al., 2019; Li et al., 2019; Tan and
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Bansal, 2019; Li et al., 2020; Chen et al., 2019;
Yu et al., 2021) mainly take a two-step training
pipeline approach, which first extracts visual fea-
tures by a pre-trained object detector and then trains
the cross-modal pre-training model to align text
and visual features. Some region-based methods
reduce the computation cost with the lightweight
model architecture (Wang et al., 2020a; Gan et al.)
and knowledge distillation (Fang et al., 2021). The
main challenge for these methods is to balance ef-
fectiveness and efficiency. More recent CNN-based
(Huang et al., 2020; Xu et al., 2021a) and ViTs-
based (Li et al., 2021a; Kim et al., 2021; Radford
et al., 2021; Wang et al., 2021b) methods (espe-
cially the patch-based ViT) removes the compli-
cated object detector in feature extraction to con-
ducts end-to-end VL learning. However, there is
no work decreasing the high computational cost of
ViT-based VLP models. In this work, we propose
a novel method to decrease the computation cost
of VLP models, which reduces the visual sequence
progressively with a text-guided patch-selection
layer in the visual backbone for efficient training
and inference.

2.2 ViTs Acceleration

To accelerate the computation of the trans-
former(Vaswani et al., 2017) based model, many
studies focus on proposing more efficient atten-
tion mechanisms (Wang et al., 2020b; Kitaev et al.,
2020; Choromanski et al., 2021) or compress Trans-
former structures (Liu et al., 2021; Heo et al., 2021;
Wang et al., 2021a). Recently, some approaches
have focused on accelerating ViTs by reducing the
number of tokens involved in the inference of ViTs.
For example, to expedite ViTs, Ryoo et al. (2021)
proposed TokenLearner, in which a relatively small
amount of tokens are learned by aggregating the
entire feature map weighted by dynamic attention.
Rao et al. (2021) introduces a method to reduce
tokens for a fully trained ViT, where an extra learn-
able neural network is added to ViT to select a
subset of tokens. Liang et al. (2022) propose to
reduce the computational overhead of inference by
proposing a token reorganization method to reduce
and reorganize image tokens progressively. How-
ever, those methods are unsuitable for VLP as they
reduce the image tokens without considering the
text context.

3 Method

In this section, we will first introduce TRIPS with
the acceleration module of the text-relevant patch-
selection layer, and then give the details of the
pre-training objectives.

3.1 Model Architecture

As shown in Figure 2 (a), TRIPS contains a visual
encoder with text-relevant patch-selection layer, a
text encoder, and a multimodal fusion encoder. The
visual encoder takes a Vision Transformer (ViT),
where text-relevant patch-selection layers are used
to progressively reduce and reorganize image to-
kens, namely ViT-TRIPS. The text encoder adopts
BERTbase transformer (Devlin et al., 2019). Sim-
ilar with (Li et al., 2021b), the multimodal fusion
encoder is a transformer encoder that performs the
cross-modal interaction and fusion through a cross-
attention mechanism.

Formally, given an input image-text pair, we
first feed the input text to the text encoder and
represent it as a sequence of embeddings T =
{tcls, t1, t2, · · · , tm}, where tcls is the embedding
of the text [CLS] token to summarize the in-
put text. Then, we divide the input image into
patches P = {pcls, p1, p2, · · · , pu}, and encode
them with the image encoder ViT-TRIPS. It takes
the text [CLS] embedding tcls and image patches
{pcls, p1, p2, · · · , pu} as input, and outputs the im-
age sequence V = {vcls, v1, v2, · · · , ve}. Note
that e < u, since we apply the text-relevant patch-
selection layer to select the text-aware image to-
kens and fuse the redundant tokens, allowing us to
reduce total visual sequence length for efficiency.
Finally, the text features {tcls, t1, t2, · · · , tm} and
the image features {vcls, v1, v2, · · · , ve} encoded
by the image encoder are fused by cross attention
at each layer of the multimodal encoder as in AL-
BEF (Li et al., 2021b). The output of the multi-
modal encoder is used to pre-train and finetune
downstream tasks.

3.2 Text-Relevant Image Patch Selection

Existing works in computer vision (Rao et al., 2021;
Liang et al., 2022) select patches by using only the
image [CLS] token from the ViT backbone. How-
ever, as shown in Figure 1 (b), the selection of im-
age tokens in cross-modal tasks is closely related
to textual context, and different texts for a single
image may focus on different parts of the visual
content. Selecting the image tokens with the guid-
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Figure 2: (a) The overall architecture of our VLP model (TRIPS) in this paper. (b) An overview of the ViT applied
with a Text-Relevant Image Patch Selection module (ViT-TRIPS). Suppose the ViT-TRIPS contain 12 layers, with
the 5-th and 10-th layer as the patch selection layers. (c) Illustration of Text-Relevant Image Patch-Selection layer.

ance of aligned textual content can help the VLP
model focus on the key parts of the image for more
effective and efficient cross-modal fusion. Here,
we present a text-relevant patch-selection layer that
can dynamically select the image patches with the
guidance of textual input, yet with no additional
parameters introduced.

As shown in Figure 2 (b), for a ViT with L
standard Transformer layers and t patch-selection
layers in total, the interval length is obtained as
s = L/(t + 1). Then, we choose the layer index
j = i∗s+1 as the ith patch-selection layer, so that
patch-selection layers are uniformly inserted into
the ViT-TRIPS backbone. In each patch-selection
layer, as shown in Figure 2(c), we adopt standard
self-attention (SA), Text-aware Dynamic Atten-
tion (TD-ATT), and Inattentive Token Fusion (ITF)
modules to progressively reduce image tokens.

Specifically, for the ith patch-selection layer, im-
age features vj−1 = {vj−1

cls , vj−1
1 , · · · , vj−1

n } are
first fed to the jth visual self-attention layer:

vj = LN(SA(vj−1) + vj−1) (1)

where LN is short for layer normalization, and n
is the number of patch tokens in j − 1 visual trans-
former layer.

Next, we will illustrate how to use the Text-
aware Dynamic Attention mechanism (TD-ATT) to
select the text-aware image patch tokens. The text
[CLS] embedding tcls is linearly projected to the

query vector denoted as qtext by the shared query
linear layer of the jth visual self-attention layer. We
compute the text-to-image attention feature map
excluding the image [CLS] token as follows:

acls = softmax(
qtext · vj [1 :]T√

d
) (2)

We identify and preserve the attentive image
tokens corresponding to the k largest elements in
the attention map acls = {a1, ..an}, where k =
n × r, and r is the keep rate of this layer. The
selected image tokens are kept and the un-selected
image tokens are further fused by an inattentive
token fusion operation ITF.

The remaining inattentive patch tokens
{vz1 , vz2 , · · · , vzn−k

} are treated as text-irrelevant
tokens. However, the fixed keep rate may remove
some useful tokens, so we fuse inattentive tokens
to one token vf by a weighted sum operation to
supplement attentive ones as follow:

vf =
n−k∑

i=1

acls,zi · v̂zi (3)

After fusing the inattentive patch tokens, we
reconstruct the jth visual sequence as vj =[
vjcls, v

j
1, · · · , vjk, v

j
f

]
, which consists of the im-

age [CLS] token embedding, the selected text-
aware image patch embedding, and fused inatten-
tive patch embedding. Then the new visual se-
quence is fed to the feed-forward network (FFN).
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Extension to Single-stream Model. The pro-
posed Text-Relevant Image Patch Selection layer
can be also extended to the single-stream model
(TRIPS-S), which employs the [CLS] token of the
multimodal encoder to preserve the attentive image
tokens and fuses the inattentive tokens to speed
up the training and inference. While parameter-
efficient, it may be difficult to learn uni-modal
and multi-modal interactions concurrently. There-
fore, its performance lags behind two-stream per-
formance on downstream VL tasks.

3.3 Pre-training Objectives

We pre-train our model with three standard ob-
jectives: Image-Text Contrastive learning (ITC),
Image-Text Matching (ITM), and Masked Lan-
guage Modeling (MLM). These pre-training tasks
are optimized jointly.
Image-text Contrastive (ITC) For TRIPS, We
follow the (Li et al., 2021b) and apply ITC to align
the image representation and text representation
from the unimodal encoders. For the image, the
image feature corresponding to the image [CLS]
token is chosen as the image representation. For
the text, the text token feature corresponding to the
text [CLS] token is the text representation.
Image-Text Matching (ITM) The goal of image-
text matching is to predict whether the input image
and text are matched. We follow the design of (Li
et al., 2021b) and select hard negative image-text
pairs based on the contrastive text-image similarity.
We take the text [CLS] embedding of the multi-
modal encoder’s output as the joint representation,
followed by a Multi-Layer Perceptron (MLP) layer
for prediction.
Masked Language Modeling (MLM) The task
setup is basically the same as in BERT (Devlin
et al., 2019), where we randomly mask 15% of
tokens in text and the model is asked to predict
these masked words with the cross-modal represen-
tations.

4 Experiment Settings

4.1 Implementation Details

We pre-train the TRIPS for 30 epochs with a to-
tal batch size of 512 on 8 NVIDIA V100 GPUs.
We initialize the visual encoder by CLIP (ViT-
B/16) (Radford et al., 2021) pre-trained on 400M
noisy image-text pairs and we use the AdamW
(Loshchilov and Hutter, 2019) optimizer with a
weight decay of 1e-2. The learning rate is warmed-

up to 1e-5 (ViT-B/16) and 1e-4 (BERTbase) in the
first 1000 iterations. During pre-training, we take
the image with the resolution of 256×256 as input
and increase the image resolution during finetun-
ing. We use a 6-layer Transformer for both the
text encoder and the cross-modal fusion network.
As (Li et al., 2021b), the text encoder is initialized
using the first 6 layers of the BERTbase (Devlin
et al., 2019) model and the cross-modal network is
initialized using the last 6 layers of the BERTbase.
For the image-text contrastive learning, the queue
size is set as 65,536 and the momentum coefficient
is set as 0.995.

4.2 Pre-training Datasets

We construct our pre-training data using two
web datasets (Conceptual Captions (Sharma et al.,
2018), SBU Captions (Ordonez et al., 2011)) and
two in-domain datasets (MSCOCO (Lin et al.,
2014) and Visual Genome (Krishna et al., 2016)).
The total number of unique images is 4.0M, and
the number of image-text pairs is 5.1M.

5 Experiment Results

5.1 Main Result

We evaluate our model TRIPS on three widely
explored vision-language downstream tasks: Vi-
sual Question Answering (VQA), Cross-modal Re-
trieval, and Natural Language for Visual Reasoning
(NLVR). For the proposed model TRIPS, we take
the 5-th and 10-th as the patch-selection layer in
ViT encoder and set the keep rate of each layer to
70%, achieving the desired trade-off between the
downstream task performance and the model infer-
ence speed. Details of the datasets and fine-tuning
hyperparameters are in Appendix B. Details of the
comparison methods are in Appendix A.

5.1.1 Visual Question Answering

The VQA task (Agrawal et al., 2015) requires the
model to answer natural language questions given
an image. We follow (Li et al., 2021b) and con-
sider VQA as an answer generation problem. We
report test-dev and test-std scores by submitting our
results to the evaluation server1 in Table 2. Com-
pared with the VLP baselines, TRIPS can improve
the performance on the VQA task. The results
demonstrate the effectiveness of TRIPS.

1https://eval.ai/web/challenges/challenge-
page/830/overview
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Models
Flickr30K (1K test set) MSCOCO (5K test set)

TR IR TR IR
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

E2E-VLP 86.2 97.5 98.92 73.6 92.4 96.0 - - - - - -
UNITER 87.3 98.0 99.2 75.6 94.1 96.8 65.7 88.6 93.8 52.9 79.9 88.0
OSCAR - - - - - - 70.0 91.1 95.5 54.0 80.8 88.5
VinVL - - - - - - 74.6 92.6 96.3 58.1 83.2 90.1
ViLT 83.5 96.7 98.6 64.4 88.7 93.8 61.5 86.3 92.7 42.7 72.9 83.1

ALBEF 94.3 99.4 99.8 82.8 96.7 98.4 73.1 91.4 96.0 56.8 81.5 89.2
ALBEF-C 96.1 99.8 100.0 86.1 97.8 98.9 77.8 94.3 97.4 60.3 84.7 91.0

TRIPS 96.3 99.8 100.0 85.8 98.1 99.0 78.1 94.8 97.6 61.3 84.3 91.4

Table 1: Image-text retrieval results on Flickr30K and COCO datasets. −indicate that the result is unreported.
.

Models
VQA NLVR

Test-dev Test-std dev Test-P
ViLBERT 70.55 - - -
LXMER 72.42 - 74.90 74.50
UNITER 72.70 72.91 77.18 77.85
OSCAR 73.16 73.44 78.07 78.36
VinVL 75.95 76.12 82.05 83.08

E2E-VLP 73.25 73.67 77.25 77.96
ViLT 71.26 - 75.70 76.13

ALBEF 74.54 74.70 80.24 80.50
ALBEF-C 76.12 76.32 82.21 83.11

TRIPS 76.23 76.48 82.35 83.34

Table 2: Evaluation Results on VQA test set and NLVR2.
− indicates that the result is unreported. ALBEF-C is
our implementation of ALBEF with a visual encoder
initialized by CLIP (ViT-B/16). TRIPS takes the same
model architecture and experimental setting as ALBEF-
C.

5.1.2 Natural Language for Visual Reasoning
The NLVR2 (Suhr et al., 2019) task requires the
model to predict whether a sentence describes a
pair of images which is a binary classification task.
We follow (Li et al., 2021b) and use two cross-
attention layers to process the two input images,
and their outputs are merged and fed to a Feed
Forward Network (FFN). An MLP classifier is then
applied to the output embedding of the text [CLS]
token. As shown in Table 2, TRIPS has a better
performance than existing VLP methods.

5.1.3 Image-Text Retrieval
We conduct experiments for both image-to-text
retrieval (TR) and text-to-image retrieval (IR) on
MSCOCO (Lin et al., 2014) and Flickr30K (Plum-

Models FLOPs Throughput Latency
UNITER 949.90 6.42 870ms
OSCAR 956.40 6.35 860ms
VinVL 1023.30 7.32 640ms

E2E-VLP 144.3 80.23 70ms
ViLT 55.40 247.530 15ms

ALBEF-C 36.63 197.52 21ms
TRIPS 20.89 343.05 11ms

Table 3: The comparison of the efficiency of different
models. Here, we report FLOPs, throughput and latency.
The FLOPs results of the baselines come from (Kim
et al., 2021). Since FLOPs are proportional to input
size, for a fair comparison, we keep same the input size
with (Kim et al., 2021) which is 197 for image patches
length and 40 for text tokens length. We keep the same
setting when calculating throughput and latency.

mer et al., 2015) datasets. We jointly optimize the
ITC loss and the ITM loss during fine-tuning. The
results are reported in Table 1. As shown in Table 1,
the experimental results show that our model gets
comparable performance with other VLP baselines.

5.2 Efficiency of TRIPS

To investigate the efficiency of Text-Relevant Im-
age Patch Selection, we first compare the compu-
tational complexity of different models. We report
the Floating Point Operations Per second (FLOPs),
a widely used evaluation metric for model com-
putational complexity. Besides, to evaluate the
computational speed of our model, we compare the
throughput and latency of different models. We
use a Xeon Platinum 8163 CPU and an NVIDIA
V100 GPU to calculate the latency and through-
put. As shown in Table 3, TRIPS not only has the
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Locations Keep rates Overall Keep rate VQA test-dev NLVR dev FLOPs (G) Throughput
- - 100% 76.12 82.35 76.03 79.32

[2] 50% 50% 75.60 81.26 42.17 161.26
[10] 50% 50% 76.19 81.84 63.84 96.66
[2,4] 50% %25 74.21 79.93 28.00 238.41
[4,8] 50% %25 74.93 80.65 38.82 165.30
[5,10] 50% %25 75.29 81.17 44.22 143.37
[6,12] 50% %25 75.48 81.04 49.63 126.46
[2,4] 70% %49 74.87 80.45 43.96 153.92
[4,8] 70% %49 75.94 81.96 51.72 125.55
[5,10] 70% %49 76.23 82.35 55.60 115.01
[6,12] 70% %49 76.24 82.48 59.48 106.07

[2,6,10] 70% %34 74.92 80.61 42.66 156.13
[3,6,9] 70% %34 75.09 80.75 43.49 151.40
[4,8,12] 70% %34 75.23 81.12 49.74 129.81

Table 4: Results of pre-training and finetuning TRIPS with different locations and keep rates. we report the text-dev
score results of VQA, FLOPs and Throughput. In this table, we set the input image size to 384 × 384 and the length
of input text is 40. The throughput (image-text/s) is measured on an NVIDIA V100 GPU using the largest possible
batch size for our model.

lowest computational complexity (e.g., 20.89 of
FLOPs) but also the fastest computational speed
(e.g., 343.05 of Throughput and 11ms of Latency).

5.3 The Impact of Location and Keep Rate

To validate the impact of patch-selection layer lo-
cation and keep rate on the efficiency and effec-
tiveness of the model, we train TRIPS with dif-
ferent patch-selection locations and numbers of
selected tokens. The results in Table 4 demonstrate
two findings. First, moving the patch-selection
layer into shallower layers reduces computational
complexity but deteriorates the accuracy. For ex-
ample, the accuracy drops considerably with the
remarkable throughput increasing when the patch-
selection layer is placed before the third layer (i.e.,
at the second layer). A possible explanation is that
the attention maps between the text [CLS] embed-
ding and the input tokens can be unreliable during
the early processing of input tokens in shallow lay-
ers. Second, too many image tokens fused in the
patch-selection layer will considerably drop the
downstream task performance. For example, if we
take the 2-nd and 4-th layers in ViT as the patch-
selection layer and set the keep rate to 50%, the
performance will decrease to 74.21 on the VQA
task, compared to 76.12 of the model without the
patch-selection layer.

5.4 Finetuning on Higher Resolution Images

We can control the computational cost by fusing
different numbers of inattentive tokens. Therefore,
we finetune TRIPS on the VQA and NLVR tasks,
which take images with varying resolutions as input.
We report the results in Table 5. The experimen-
tal results show that by increasing the input image
resolution, we can facilitate the model by taking
more image tokens to gain better performance. For
example, by finetuning TRIPS with the images of
456×456, we can achieve the score of 76.54 on
VQA, outperforming the baseline finetuned with
images of 384×384 yet keeping similar computa-
tional complexity.

5.5 Effectiveness of Text-Relevant Image
Patch Selection

To verify the effectiveness of Text-Relevant Im-
age Patch Selection, we first implement the single-
stream model TRIPS-S as we present in subsection
3.2. Then, we examine the downstream task perfor-
mance, computational complexity, and inference
speed of TRIPS and TRIPS-S (both with and with-
out Text-Relevant Image Patch Selection). The
results are shown in Table 6, and we find that for
both TRIPS and TRIPS-S, we can see a consis-
tent improvement in the inference speed and down-
stream task performance by incorporating the text-
relevant image patch selection mechanism. These
results suggest that the proposed image patch se-
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Selection Layer Keep rate image size VQA test-dev NLVR dev FLOPs(G) Troughout

- - 384× 384 76.12 82.35 76.03 79.32
[5,10 ] 70% 224× 224 75.23 80.83 20.89 343.05
[5,10 ] 70% 256× 256 75.84 81.24 26.61 258.03
[5,10 ] 70% 304× 304 76.13 81.72 36.62 189.07
[5,10 ] 70% 384× 384 76.23 82.35 55.60 115.01
[5,10 ] 70% 456× 456 76.54 83.02 74.83 81.0

Table 5: Results of TRIPS finetuning on VQA and NLVR task with different resolution images. When calculating
FLOPs, the input length of the text is kept at 40 and the settings for calculating throughput are the same as Table4.

Models Selection Layer Keep rate FLOPs(G) Throughput
VQA NLVR

Test-dev Test-std dev Test-P
TRIPS-S [5,10] 70% 59.42 216.74 71.48 71.52 75.89 76.47
-w/o PS - - 104.42 135.25 71.26 71.29 75.18 76.23
TRIPS [5,10] 70% 55.60 115.01 76.23 76.48 82.35 83.34

-w/o PS - - 76.03 79.32 76.12 76.32 82.21 83.11

Table 6: Ablation results of TRIPS and TRIPS-S on VQA test set and NLVR2.w/o PS indicates that we remove the
patch-selection module in ViT. The setting for calculating FLOPs and throughput is the same as Table4.

lection mechanism is not only efficient but also
effective. Notably, compared with the dual-stream
model TRIPS, TRIPS-S is faster in inference due to
the parameter efficiency of the single-stream model.
However, its performance lags behind state-of-the-
art performance on downstream VL tasks.

5.6 Ablation Study

model VQA FLOPs(G) Throughput

TRIPS 76.23 57.20 111.83
-w/o ITF 75.92 57.15 112.04
-w/o TD-ATT 75.23 56.4 117.21

Table 7: The result of ablations. We finetune TRIPS
on VQA and report test-dev results. The setting for
calculating FLOPs and throughput is the same as Table
4. The same with the settings of TRIPS we present in the
main results, we select the 5-th and 10-th as the patch
selection layer, and each layer will keep 70% image
tokens.

We also perform ablation studies to investigate
the effects of inattentive image token fusing and
Text-aware Dynamic Attention. In Table 7, w/o
ITF indicates the inattentive tokens are directly dis-
carded without fusing. As shown in Table 7, fusing
inattentive tokens outperforms the model without
inattentive tokens. Although the improvement is
small, there is no additional computational over-

head introduced. We also verify the impacts of
Text-aware Dynamic Attention (TD-ATT). Specifi-
cally, w/o TD-ATT indicates that we remove the
TD-ATT in the patch-selection layer and select the
image tokens based on the image [CLS] token. As
shown in Table 7, selecting the image patch tokens
with the image [CLS] token without considering
the linguistic context will degrade the model’s per-
formance. This result supports our motivation that
directly removing patch tokens based on image
[CLS] without incorporating the text knowledge is
unsuitable for VLP models.

5.7 Visualization

The proposed TRIPS accelerates VLP by a novel
patch selection module that selects the text-
consistent image tokens in the vision backbone and
preserves the attentive image tokens. To further
investigate the interpretability of our model, we
visualize the procedure of text-relevant image path
selection in Figure 3. It can be seen that as the net-
work deepens, the inattentive tokens are gradually
removed or fused, while the text-relevant tokens
are selected and preserved. Besides, we present
more visualization results in Figure 4 to show the
effectiveness of the text-relevant image patch selec-
tion module. We take different text words as the
input and visualize the text-aware image patches
selected by the text-relevant image patch selection
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module. As shown in Figure 4, the selected image
patches are highly relevant to the query texts and
thus enable our model to make a correct prediction.

6 Conclusion

We have presented TRIPS, an efficient VLP model
with Text-Relevant Image Patch Selection to pro-
gressively reduce the redundant image tokens with
text guidance. TRIPS introduces a novel patch
selection module to select the text-consistent im-
age tokens in the vision backbone, which preserve
the attentive image tokens with text guidance and
fuses the inattentive tokens into one token by dy-
namically computing text-dependent visual atten-
tion in an end-to-end way. The experiment shows
our method not only decreases the computation
cost of VLP but also improves the efficiency of
cross-modal fusion due to the reduction of visual
sequences, while keeping or even improving the
performance of downstream image-text tasks.

7 Limitations

Despite the effectiveness and efficiency of TRIPS
across a wide range of downstream image-text
tasks, our model still has several limitations. First,
in our current settings, we pre-train TRIPS with
only 4M image-text pairs. It is unclear how well
the performance will be if we pre-train TRIPS on a
larger pre-training dataset with other available data
types, such as text-only, image-only data, and some
labeled data. Second, we provide a novel perspec-
tive for the efficient training and inference of VLP
models, which reduces the visual sequence progres-
sively with a text-guided patch-selection layer in
the visual backbone. In our method, the number
of selected text-aware image patches in each patch-
selection layer is fixed, and there can be a more
ingenious technical design that can dynamically
select different numbers of image patches.
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Figure 3: The visualization of the selected text-aware image patches in different selection layers. We set the 5-th
and 10-th layers in the vision backbone as the patch-selection layer and we keep 70% image patches in each layer.

Human Tree Sky

Bike Flower Tree

Human Mountain Bridge

Human Wall House

Figure 4: The visualization of the selected text-aware image patches with different text words. We set the 5-th and
10-th layers in the vision backbone as the patch-selection layer and we keep 70% image patches in each layer. We
visualize the selected text-aware image patches output by the 10-th layer.
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A Comparison Methods

LXMERT (Tan and Bansal, 2019): is the first two-
stream region-based VLP model, which consists of
an object relationship encoder, a language encoder
and a cross-modality encoder.

E2E-VLP (Xu et al., 2021a): proposes the first end-
to-end VLP method for both V+L understanding
and generation, with a unified Transformer encoder-
decoder architecture.

VILT (Kim et al., 2021): adopts linear projection
and word embedding as the visual and textual en-
coders, and uses the visual transformer as the cross-
modal encoder to align and fuse the features of
both modalities in an end-to-end manner.

OSCAR (Li et al., 2020): proposes to use object
tags detected in images as anchor points to the
learning of cross-modal alignments.

VinVL (Zhang et al., 2021): pre-trains a large-
scale object-attribute detection model with much
larger amounts of supervised data to extract better
region-based visual features.

ALBEF (Li et al., 2021b): adopts a contrastive
loss to align the image and text representations,
then fuses them through cross-modal attention in
an end-to-end manner.

UNITER (Chen et al., 2019): proposes a new word-
region alignment pre-training task via the use of
optimal transport to help fine-grained alignment
between words and image regions.

ViLBERT (Lu et al., 2019): proposes one of the
first work that extend the BERT architecture to a
multi-modal two-stream region-based VLP model.

B Downstream Task Details

We evaluate TRIPS on the three downstream vision-
language tasks. The hyperparameters that we use
for finetuning on the downstream tasks are listed
in Table 8. Following (Li et al., 2021a), all tasks
adopt RandAugment, AdamW optimizer with a
weight decay of 0.05 and a cosine learning rate
schedule. Next we introduce the dataset settings in
detail.

Task LR (ViT-B/BERTbase) batch size epochs

VQA 2e-5/5e-6 1024 8
Retrieval 1e-5/2e-6 256 5
NLVR2 5e-5/5e-6 256 15

Table 8: Finetuning hyperparameters for downstream
tasks.

VQA. The VQA task (Agrawal et al., 2015)
requires the model to answer natural language
questions given an image. We conduct experi-
ment on the VQA2.0 dataset (Agrawal et al.,
2015), which contains 83k/41k/81k images for
training/validation/test. Following (Li et al.,
2021a), we use both training and validation splits
for training, and incorporate additional training
data from Visual Genome (Suhr et al., 2019).

Image-Text Retrieval. We conduct experiments
for both image-to-text retrieval (TR) and text-
to-image retrieval (IR) on COCO (Lin et al.,
2014) and Flickr30K (Plummer et al., 2015)
datasets. We take the widely-used Karpathy split
(Karpathy and Fei-Fei, 2015) for both COCO and
Flickr30K. COCO contains 113k/5k/5k images
for train/validation/test, and Flickr30K contains
29k/1k/1k images for train/validation/test.

NLVR2. The NLVR2 (Suhr et al., 2019) task re-
quires the model to predict whether a sentence.
We conduct experiments following the original
train/val/test split in (Suhr et al., 2019).
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