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Abstract

The instruction learning paradigm—where a
model learns to perform new tasks from task
descriptions alone—has become popular in re-
search on general-purpose models. The capabil-
ities of large transformer models as instruction
learners, however, remain poorly understood.
We use a controlled synthetic environment to
characterize such capabilities. Specifically, we
use the task of deciding whether a given string
matches a regular expression (viewed as an in-
struction) to identify properties of tasks, in-
structions, and instances that make instruction
learning challenging. For instance, we find
that our model, a fine-tuned T5-based text2text
transformer, struggles with large regular lan-
guages, suggesting that less precise instructions
are challenging for models. Instruction execu-
tions that require tracking longer contexts of
prior steps are also difficult. We use our find-
ings to systematically construct a challenging
instruction learning dataset, which we call Hard
RegSet. Fine-tuning on Hard RegSet, our large
transformer learns to correctly interpret (with
at least 90% accuracy) only 65.6% of test in-
structions, and 11%-24% of the instructions in
out-of-distribution generalization settings. We
thus propose Hard RegSet as a challenging in-
struction learning dataset, and a controlled en-
vironment for studying instruction learning.1

1 Introduction

Recent years have seen an increased interest in
instruction learning (Weller et al., 2020) where a
model learns to perform unseen tasks at test time in
a zero-shot manner given only a prompt containing
instructions. This style of learning is an important
feature of flexible and general intelligent systems.

Instruction learning stands in contrast to the tra-
ditional machine learning paradigm of example
learning. In example learning, the model has ac-
cess to input-output pairs during training time. For

1Data: https://github.com/allenai/RegSet

Train Test
Instruction Data Result Instruction Data Result

(RegEx) (String) (T/F) (RegEx) (String) (T/F)

a∗b aaa F (a∗b)∗ aabab T
a∗b aab T (a∗b)∗ aba F
(ab)∗ aab F (a∗b)∗ aab T
(ab)∗ abab T a∗ aab F
(ab)∗ aabab F a∗ aaa T

Table 1: We test a model’s ability to learn an instruction
language (here, of RegExs) by training on examples of
instruction + data pairs, then testing on novel instruc-
tions. Each RegEx can be seen as an instruction for a
different matching task. Note that no examples of the
test RegExs are seen during training; rather the model
must interpret the RegEx instructions themselves to un-
derstand the test tasks.

instance, in sentiment analysis with the goal to clas-
sify product reviews, the model has access to many
examples of labeled reviews from which to learn
the task. In instruction learning, a model that has
never seen labeled sentiment analysis data must
perform sentiment analysis given only the explicit
instruction “Tell me whether this review is posi-
tive". In other words, the model learns to interpret
the instruction language (here English) in order to
execute an instruction for a task it has never seen.

Most recent work on instruction learning has
been conducted in the context of natural language
instructions (e.g., Wei et al., 2022; Mishra et al.,
2022; Sanh et al., 2022; Zhong et al., 2021). In
this context, the complexity of natural language
makes it difficult to draw clear conclusions about
the kinds of instructions transformers can learn to
interpret. To remedy this, we adopt a synthetic
approach by building a controlled instructional en-
vironment based on interpreting regular expres-
sions (RegExs), and use well-studied properties
of RegExs to characterize transformer instruction
learning capabilities. Importantly, while findings
on synthetic data do not necessarily translate to
the real world, our work identifies potentially in-
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teresting hypotheses that can be further investi-
gated on natural data. Previous work on datasets
such as SCAN (Lake and Baroni, 2018) and Rule-
Taker (Clark et al., 2020) has also taken a similar
approach of simplifying a difficult, fuzzy problem
into a synthetic one. Synthetic generation is a low-
cost alternative to large-scale dataset building that
allows a high level of formal precision that is in-
feasible with human-authored data. This allows us
to distill atomic characteristics of instruction fol-
lowing in the synthetic domain and make informed
conjectures about the natural language setting.

A RegEx is a specification of a formal language,
i.e., a set of strings of symbols. To avoid the confu-
sion between an instructional language such as En-
glish and a formal language specified by a RegEx,
we refer to the latter as an r-language (for regular
language). In our work, we view a RegEx as an
instruction for the task of deciding whether a string
belongs to the r-language of the RegEx. We choose
to study RegExs because they are well known, un-
ambiguous (the r-language decision problem is bi-
nary and always well-defined), and easy to com-
pute (there exist linear-time algorithms to recognize
whether a string belongs to a RegEx), while also
incorporating fundamental computational opera-
tions including iteration, disjunction, conjunction,
and nesting. This environment allows us to study
instruction learning phenomena more precisely.

We construct RegSet, a RegEx instruction learn-
ing dataset (§4) with instances of the form (RegEx,
string) → T/F, and find that a large T5-based
text2text model fine-tuned on RegSet is unable to
correctly interpret many instructions in the test set.
Inspecting the r-languages, RegExs, and string in-
stances, we identify a number of properties that
predict which RegEx instructions the model strug-
gles with (§6). Selecting RegExs with these prop-
erties, we construct a hard variant of the dataset
which we call Hard RegSet (§7). Our fine-tuned
model achieves good performance on only 65.6%
of the test RegExs in Hard RegSet, leaving room
for improvement.

We find that instruction learning models struggle
with non-starfree r-languages. This provides evi-
dence that even large Transformers struggle with
periodic r-languages, a theoretical limit of trans-
formers’ attention mechanism (Hahn, 2020) that
Bhattamishra et al. (2020) further study in smaller
models, in the example learning setting.

Our findings in §6 suggest four general implica-

tions that we expect will extend beyond the syn-
thetic RegEx environment. First, instruction learn-
ing is harder when the underlying tasks require
modular counting (e.g., keeping track of whether
a quantity is even or odd). Second, it gets harder
as the instructions themselves become less precise,
that is, they can be executed correctly in several dif-
ferent ways, forcing the execution engine to make
and track choices. Third, as expected, it’s harder
for instructions involving executing and compos-
ing many individual operations or steps. Lastly,
it’s harder when the correct execution of instruc-
tions requires keeping in memory a larger context
of the partial execution thus far and making choices
dependent on this longer history.

In summary, our main contributions are:
• We build the first (to our knowledge) fully

synthetic environment for systematically in-
vestigating instruction learning.

• We identify properties that make RegEx in-
struction learning hard for a large T5-based
model and suggest broader implications.

• We show that limitations known for small
transformers in example learning also apply
to large models in the instructional setting.

• We construct a challenging dataset (RegSet)
based on our findings to serve as a benchmark
for future instruction learning models.

2 Related work

Learning instructions. Large language models
like GPT3 (Brown et al., 2020) have some ability
to understand task instructions expressed in natural
language (Efrat and Levy, 2020). This has led to re-
search on whether models can be fine-tuned to fol-
low instructions reliably, creating the sub-field of
instruction learning. Our formulation and approach
aligns with Weller et al. (2020) who build ZEST, a
benchmark for natural language instruction follow-
ing, and report that a fine-tuned T5 model (Raffel
et al., 2020) does poorly. We differ in the use of
a highly-controlled synthetic environment that al-
lows analyzing formal properties of instructions.

Numerous studies (Mishra et al., 2022; Zhong
et al., 2021; Wei et al., 2022; Sanh et al., 2022) have
followed up with improved models. Though our
work differs in domain and goals, we adopt their
approach of fine-tuning on instruction-annotated
datasets to train an instruction learner.

Earlier work has shown that transformers can
emulate (the results of) deductive reasoning over
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a set of natural language-like rules with limited
expressivity (Clark et al., 2020). Similarly, RegEx
instructions include compositions of simple opera-
tions such as disjunction and concatenation as well
as more complex rules such as iteration (the Kleene
star “*” operator) and nesting (“()”).

Compositional generalization. Because instruc-
tion learning requires the model to generalize to
new tasks with new instructions, our work draws
on the rich body of literature on compositional gen-
eralization. For instance, the SCAN dataset (Lake
and Baroni, 2018) revealed significant shortcom-
ings in neural sequence models’ systematic gener-
alization ability. Subsequent work has attempted to
identify properties of datasets (Keysers et al., 2020;
Shaw et al., 2021) and instances (Bogin et al., 2022;
Tamari et al., 2021) that make generalization hard.
We build upon this by introducing the instructional
setting for studying compositional generalization.
In addition, we use our setting to test the hypothe-
sis put forward by Bogin et al. (2022) that unseen
local structures make generalization harder.

Richardson and Sabharwal (2022) use well-
studied computational problems (SAT) to sample
hard instances for deductive reasoning tasks. We
share the goal of using formal properties to gen-
erate hard examples. However, instead of using
known hardness characterizations to sample in-
stances, we investigate what makes examples hard.

RegEx expressions and transformers. A num-
ber of studies use formal language theory to in-
vestigate the computational power of transformers
(see Merrill (2021) for a review). This includes
theoretical work (Hahn, 2020) and empirical stud-
ies (Bhattamishra et al., 2020). Many of these stud-
ies focus on specific r-languages and give evidence
that certain types of r-languages are hard for trans-
formers to learn. The empirical studies tend to use
small, toy-sized transformers (e.g., Bhattamishra
et al., 2020). Our work investigates findings from
these empirical studies under a setting where in-
stead of learning a single r-language with a model,
we task the model with learning how to interpret
r-languages in general. Additionally, we use a com-
monly used large transformer model with much
higher capacity than the ones used in these studies.

3 RexEx instruction learning task

3.1 Regular languages and expressions

We use standard terminology for regular languages
and expressions (e.g., Harrison, 1978), briefly de-
scribing key concepts useful for understanding our
results. For completeness, Appendix A includes
formal definitions and relevant properties.

We work with strings over the alphabet {a, b}.
A set of such strings is called an r-language if it’s
the empty set; a singleton set containing a, b, or the
empty string ε; the union or element-wise concate-
nation of two r-languages; or the Kleene star of an
r-language, defined as zero or more occurrences of
elements from that r-language.

A regular expression (RegEx) is an succinct, non-
unique specification of an r-language. Its string
nature makes it suitable for text2text models. We
denote the language specified or “expressed” by
a RegEx r as Lr. The RegEx a represents the
singleton r-language {a} (similarly for b and ε),
r|s represents the union of Lr and Ls, rs represents
the element-wise concatenation of Lr and Ls, and
r∗ represents the Kleene star of Lr. Parentheses
indicate the order of operations, e.g., in (a|bab)b∗.
We refer to union, concatenation, and Kleene star
as compositional operators.

3.2 Instruction learning formalism

We formalize instruction learning, in contrast to the
paradigm of learning from input-output examples.

We view instruction learning as the ML approach
to instruction following, which seeks to interpret
an instruction language to solve novel tasks. Both
instruction following and instruction learning re-
quire an instruction languageR that can be used to
describe tasks, and a set of tasks T = {t1, . . . , tm}.
Each task tj ∈ T is paired with an instruction rj ∈
R and examples Dj = {(xji, yji) | 1 ≤ i ≤ Nj}.
Thus instruction following maps the description
rj of a novel task and an input xji to the correct
output yji according to the task.

Instruction learning learns this mapping by train-
ing a model on data. A key aspect that makes this
feasible is compositionality inR, i.e., pieces ofR
can be learned at training time and combined in
new ways at test time. The training data for instruc-
tion learning consists of a subset T train ⊊ T of
the tasks, where each task tj ∈ T train is specified
via its descriptive instruction rj ∈ R and input-
output examples Dj . At test time, one is given the
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description and an input for an unseen task from
T test = T \ T train.

In this notation, standard example learning cor-
responds to the (degenerate) case where T train =
T = {t1}, T test = T train, and r1 = ϵ is the empty
string denoting the null instruction. In other words,
the model has no descriptive instruction available
to help learn t1; it must be learned solely from
input-output examples.2 Prompt based zero-shot
models can be viewed as a (degenerate) case at the
other extreme, where each tj has the associated
prompt as the instruction rj , but no input-output
examples, i.e., Dj = ϕ. In this case, the model
must already understand the instruction (prompt)
languageR to perform. In practice, prompt models
are large pre-trained language models, andR is the
natural language it is trained on (e.g., English). In
turn, standard multi-task learning corresponds to T
having multiple tasks tj where instructions rj may
be either null or a short prefix identifying the task
(e.g., Raffel et al., 2020). However, test time tasks
are the same as those learnt during training time
(T test = T train).

Prior work on RegEx learning (Bhattamishra
et al., 2020) has focused on learning a model for a
specific RegEx (e.g., well-studied regular language
classes such as parity languages, which can be char-
acterized as a single RegEx). In our notation, this
corresponds to the single-task setup mentioned ear-
lier, where T train = T test = {t1} and r1 = ϵ.
Similarly, works such as SCAN (Lake and Baroni,
2018) can also be viewed naturally as one of two
(degenerate) extreme cases of instruction learning,
as follows. Let z1, z2, . . . denote SCAN inputs such
as “jump twice”. We can view SCAN as involving
only one meta-task (T = {t1}) with an (implicit)
instruction r1 conveying “convert the input to a
sequence of executable steps”, and with task in-
puts x1i = zi. Alternatively, one can view SCAN
as having as many distinct tasks T = {t1, t2, . . .}
as SCAN inputs, the associated instructions being
rj = zj , and the task inputs xji being null (i.e.,
Dj = ϕ) because, in this view, rj fully determines
the output yji (i.e., instruction rj can be executed
in exactly one way, leading to the output yji).

Applying our formalism to our setting, we view
R as the language consisting of all RegExs, i.e., an
instruction is a RegEx. Each task tj is associated
with a specific r-language Lj and involves deciding

2In standard learning, including an identical instruction
with every example is not helpful as it does not form a dis-
criminative feature.

whether an input string belongs to Lj . The instruc-
tion rj associated with tj is a RegEx3 describing
Lj . The input-output examples consist of strings
labeled as 1 (string is in Lj) or 0 (not in Lj).

4 RegEx datasets

Our datasets consist of collections of triples accord-
ing to the formulation given in §3.2, where each
triple contains a RegEx r, a string x ∈ {a, b}∗,
and a label ℓ ∈ {0, 1} indicating whether x ∈ Lr.
Some examples are given in Table 1. The task is to
predict ℓ given (r, x) as input.

We sample RegExs r such that all corresponding
r-languages Lr are distinct within the dataset. Fur-
thermore, r is chosen such that it uses the minimum
number of compositional operators needed to repre-
sent Lr. See Appendix B for details of our RegEx
sampling method. Constraining the RegExs to ex-
press unique r-languages avoids over-representing
only a few r-languages, as would happen with a
naive sample.

We limit number of compositional operators in
each RegEx to at most 6, sampling approximately
uniformly at random with respect to the number of
operators. For each r, we sample both strings that
match r and strings that do not.4 We limit string
length to at most 15 and sample from each length
approximately uniformly at random.

Exploration RegSet. To investigate which at-
tributes make RegEx instruction learning hard, we
construct an training set of RegExs and randomly
sample a large test set from it. We refer to this as
Exploration RegSet.

Our training set contains 1000 RegExs, each
with 20 strings. We choose our RegEx-to-string
ratio by selecting the best model given a budget
of 20K training examples. Because the number of
strings in (or not in) an r-language is sometimes
less than 10, it is impossible to fully balance the
data set. However, we choose the maximum num-
ber of strings from the minority class up to 10 so
that the dataset is as balanced as possible while
maintaining 20 strings per RegEx. We also set
aside 200 validation RegExs for model selection.

Our test set contains 500 RegExs, disjoint from
the training set. We sample more strings to approx-

3Our instructions are not natural language. In principle,
one can convert a RegEx instruction to an equivalent, if cum-
bersome, English description.

4For two special cases, the empty language and the lan-
guage of all strings, our sampled strings purely “do not match”
and “match” the RegEx, respectively.
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imate an exhaustive test for each RegEx, sampling
min(|Lr|, |Lc

r|, 1000) strings per RegEx.5 On av-
erage, each RegEx includes 200 strings.

We use the §6 analysis of Exploration RegSet
to create a hard version the dataset which we call
Hard RegSet, detailed in §7.

5 Experimental setup

Model. We select ByT5-Large (1.2B parame-
ters) (Xue et al., 2022) as our base model6. ByT5
is a T5-based pre-trained transformer model with
character-level tokenization—which is helpful in
avoiding issues with tokenizing synthetic strings.
We use a pre-trained model because pre-training of-
ten imbues performance benefits even for unrelated
tasks (Krishna et al., 2021; Maennel et al., 2020).7

We feed r x to the model as a string (separated
with a space), and train the model to output the
strings “True" or “False". We train for 200 epochs,
using validation accuracy to select the best model,
using a learning rate of 5 · 10−5 and batch size 32.8

Metrics. Consider a RegEx evaluation set D,
and a model M . We define M ’s accuracy on
an instance (r, x) ∈ D, denoted accM (r, x), as
1 if M correctly predicts whether x matches r,
and 0 otherwise. M ’s accuracy on a RegEx r is
accM (r) = meanx:(r,x)∈D accM (r, x).

To measure how well M learns to interpret each
RegEx we use metrics that operate at the level of
RegExs. Due to the synthetic—and thus noise-
free—nature of our datasets, we expect M to per-
fectly interpret every expression given sufficient
training data, at least in the i.i.d. setting and also in
reasonable generalization settings. To measure how
well M does relative to this upper bound, we define
two metrics that give equal weight to all RegExs in
D, regardless of how many test strings each has.

Our main metric is Mean RegEx Performance
at k, defined as the fraction of RegExs on which
M ’s accuracy is at least k (treated as a percentage):

perfM@k = mean
r∈D

I
(
accM (r) ≥ k

)
(1)

where I(·) denotes the indicator function9 and,
with slight abuse of notation, we use {r ∈ D}

5Lc
r denotes the complement of Lr

7In our experiments, we find that in-context learning with
GPT-3 (Brown et al., 2020) did no better than random guessing,
even when RegExs were converted to a more natural-language-
like form.

8Not surprisingly, ByT5 without such training does no
better than random guessing.

9I(c) is 1 if the condition c is satisfied and 0 otherwise.

Attribute Exploration Hard

Regexs (#) 1,000 1,000
Instances/RegEx (mean) 20 20
Starfree (%) 86.1 0
R-lang. size (med) 8 368
Compositions (mean) 4.9 6.0
ES (mean) 3.4 5.4
String length (mean) 7.6 10.5

Table 2: Attribute statistics for Exploration and Hard
training sets. Number of unseen sub-expressions is
omitted as it is defined for a test set w.r.t. a training set.

Attribute classes Class 1 Class 2

Starfree/non-starfree 91.9 71.9
Small/big r-language 95.1 57.5
Low/high composition 95.2 80.3
None/has unseen exprs 95.9 87.5

Table 3: Summary of perf@90 results for language-
level (top 2) and expression-level (bottom 2) attributes.
Language-level attributes we measure have a larger im-
pact on performance than expression-level attributes.

as a shorthand for {r | (r, x) ∈ D}. We will drop
the subscript M from perfM when the model is
clear from the context. perf@100 thus refers to the
fraction of RegExs r that are learned perfectly (as
assessed by all strings tested for r in D). Since this
metric is somewhat strict from a machine learning
perspective, we use perf@90 as our main metric,
and also track a more lenient metric, perf@80.

We also report a secondary metric, Mean RegEx
Accuracy, defined as M ’s accuracy on a RegEx
r, averaged across all r present in D: accM =
meanr∈D accM (r) . As before, we drop the sub-
script M from accM when the model is clear from
the context. Note that this metric does not distin-
guish the case of two RegExs learned to accuracies
of 90% and 50% from two RegExs learned to an
accuracy of 70% each. Further, when each RegEx
in the evaluation set has the same number of strings,
accM simplifies to the standard instance-level accu-
racy of the dataset rather than a RegEx-level metric.
For these reasons, this metric is less desirable, but
we include it for completeness.

6 Results: Which instructions are hard?

We train our model on the Exploration Train set
and evaluate on the Exploration Test set. The
model achieves a high mean RegEx accuracy acc
of 97.1%. The number of RegExs learned to at
least 90% accuracy (perf@90), however, is a more
modest 89.6%. By design, the Exploration test
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Figure 1: Non-starfree r-languages (Non-SF) are harder
for our model than starfree r-languages (SF). RegEx
accuracy depicted using a violin plot—the blue region
represents accuracy distribution across RexExs, with a
vertical blue bar showing the mean accuracy.

set’s large size allows us to analyze errors in detail
and assess which attributes contribute to the hard-
ness of instruction learning. Table 2 summarizes
attribute statistics within the dataset, and Table 3
summarizes perf@90 scores for various attributes.
We next define these attributes and discuss our find-
ings.

6.1 Language-level attributes

We coin “language-level attributes” to refer to
r-languages properties that are invariant to how
the r-language is expressed. For instance, a∗ and
aa∗|(aa)∗ express the same r-language, and thus
“presence of a union operator” is not a language-
level attribute. On the other hand, the number
of strings in the r-language is a language-level at-
tribute because it remains the same regardless of
how the language is expressed as a RegEx.

6.1.1 Non-starfree r-languages are hard.
A well-known r-language complexity measure is
whether it is starfree (McNaughton and Papert,
1971). An r-language is starfree if there exists a
RegEx for the r-language whose operators include
only union, concatenation, and set complement (no-
tably, these operators exclude the Kleene star). For
instance, a∗ can also be expressed as (∅cb∅c)c,10

so the r-language expressed by a∗ is starfree. Pre-
vious work (Bhattamishra et al., 2020) has shown
that small transformer models struggle to gener-
alize when trained on a non-starfree r-language
(whereas LSTMs are able to generalize perfectly).

10The r-language corresponding to rc is the set complement
of Lr , the r-language of r.
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Figure 2: The size of an r-language is highly predictive
of difficulty: mean accuracy decreases as language size
increases.

We find that non-starfree expressions are signifi-
cantly harder to interpret for our model, as shown
in Figure 1. We conjecture that these RegExs are
harder for our model for the same reason small
transformers fail to learn and generalize simple non-
starfree r-languages such as (aa)∗ (Bhattamishra
et al., 2020). This also aligns with the theoreti-
cal prediction that transformers struggle to model
periodicity—a common feature among non-starfree
r-languages (Hahn, 2020). As our own addition to
this body of work, our results show that, despite
increased capacity, large models (as used in prac-
tice, without simplifying assumptions) still strug-
gle with non-starfree r-languages under the instruc-
tional setting. Our results suggest that even large
transformers struggle with instructions that require
modeling periodicity and modular counting, e.g.,
keeping track of whether a quantity is even or odd.

6.1.2 Bigger r-languages are harder.

Since an r-language is a set of strings, one at-
tribute of interest is the size of the set. For many
r-languages, this size is infinite. For practicality
and to distinguish between r-languages of infinite
size, we define the size of an r-language to be the
number of strings in the set with length up to 15. By
this definition, the maximum size of an r-language
in our dataset is 215. The median r-language size
in the Exploration training set is 8.

Figure 2 shows that our model struggles with
r-languages with more strings: perf@90 drops
from 95.1 for small r-languages to only 57.5 for
large. Small r-languages have a very narrow scope
of interpretation (only a few strings match the spec-
ification). They can thus be viewed as relatively
precise instructions. Based on our findings, we
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Figure 3: Regex (a|bba)∗ contains sub-expression
a|bba, which contains sub-expression bba, etc.
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Figure 4: More compositions make expressions some-
what harder. High-composition RegExs (top violins)
have slightly lower accuracy than low-composition
RegExs (bottom).

postulate that more precise instructions with fewer
possible interpretations are, in general, easier for
models.

6.2 Expression-level attributes

Expression-level attributes are specific to a RegEx,
but not the r-language they express. For instance
a∗ and aa∗|(aa)∗ express the same r-language, but
only the latter uses a union operator. Thus having
a union operator is an expression-level attribute.

6.2.1 More composed expressions are harder.
RegExs are constructed by recursively composing
smaller RegExs together, e.g., Figure 3. To study
the effect of the amount of composition on RegEx
difficulty, we define the amount of composition
in an expression as the number of operators used
to construct it, e.g., the expression (a|bba)∗ has 4
compositions: 1 star, 1 union, and 2 concatenations.

Figure 4 shows that accuracy decreases only
slightly for expressions with more composition.

Any 4 5 6
Compositions

0.90

0.92

0.94

0.96

0.98

1.00

A
cc
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Seen
Unseen

Figure 5: Without controlling for amount of compo-
sition (left), unseen sub-expressions appear to make
expressions harder. However, controlling for amount
of composition (right clusters), these effects disappear.
Blue bars indicates mean accuracy for expressions with-
out unseen subexpressions, orange for ≥1.

This aligns well with intuition because more com-
posed strings tend to be longer and the complexity
of the RegEx string recognition algorithm scales
linearly with input length (Thompson, 1968).

Speculating beyond the RegEx domain, we hy-
pothesize that instructions composed of many sub-
instructions are more challenging for models like
T5 compared to less compositional instructions, but
that other factors (like specificity or periodicity)
likely play a larger role in determining difficulty.

6.2.2 Unobserved local structures do not
contribute significantly to hardness.

Prior work (Lake and Baroni, 2018; Keysers et al.,
2020; Bogin et al., 2022) shows that models often
fail to generalize to new compositions of atomic
components, even when all the components have
been seen during training time. To investigate this
in our own datasets, we define the unseen sub-
expressions of a RegEx w.r.t. a dataset as the set
of sub-expressions contained in the RegEx that are
not contained in any of the RegExs in the dataset.
33.4% of the expressions in the Exploration test set
contain sub-expressions not seen in the training set.

Upon first inspection, RegExs with unseen sub-
expression appear harder, which would support
for our hypothesis. However, there is a confound-
ing variable: deeper RegExs are more likely to
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Figure 6: Accuracy decreases for high-ES strings. We
group test set instances by ES and plot average accuracy
(filled in area shows standard error), leaving off groups
with fewer than 100 instances.

have unseen substructures. When we control for
the compositions in the RegEx, the observed ef-
fect disappears and even reverses11 (see Figure 5).
We conclude that unseen local structures do not
make instruction learning hard in the RegEx do-
main. There are many possible explanations for
this, including the possibility our model is able to
generalize well in settings like ours with very few
atomic symbols and operators.

6.3 Instance-level attributes

Instance-level attributes are attributes that depend
on the RegEx or r-language as well as the string.

6.3.1 Instances requiring many execution
states are hard.

An r-language can be equivalently defined as the
strings accepted by a deterministic finite automaton
(DFA). We define execution states (ES) of a string
x with respect to a RegEx r to be the number of
unique states in Lr’s minimal DFA that are visited
while recognizing x. This is closely related to the
notion of state-complexity (Yu, 2001). Since each
r-language has a unique minimal DFA, this prop-
erty is invariant with respect to the RegEx used to
express the r-language. We choose this metric as
a way to measure how much space is required to
execute the string recognition problem, with the
intuition that keeping track of more states is harder.

We observe in Figure 6 that performance de-
creases for RegEx-string pairs where many distinct
states are visited by the minimal DFA recognizing
the string. Interestingly, ambiguity, which can be

11This is an example of Simpson’s Paradox (https://en.
wikipedia.org/wiki/Simpsons_paradox).

Regex Accuracy (%)

b|(a|(a|b)b)∗ 34
aa(a(a|b))∗|a 44
(b(b|ab))∗a∗ 50
(a|bbb)∗b|a 57
(b(a∗aa|b))∗ 60
((b|(a|b)a)b)∗|a 61
b((b|a)a)∗a 62
b|(b(a|b))∗ 72

Table 4: The 8 lowest-scoring RegExs obtained by fil-
tering the Exploration test set for large non-starfree
r-languages paired with strings with high ES.

viewed as an expression-level version of ES, does
not produce a good predictor of hardness.

Intuitively, being in many different states means
that when processing the next character (say a),
one must act differently depending on how one
arrived at that point, i.e., depending on the prefix
of the string up till that character. More states
thus implies more of the prior context or history
must be remembered and taken into account when
processing the next character. Speculating beyond
RegExs, we hypothesize that instruction learning is
harder when determining the next valid step (while
following the instruction) requires considering a
longer context of prior steps.

7 Hard RegSet: A new challenge

Based on our findings, we select the attributes that
contribute most to difficulty, namely starfreeness
(or rather, non-starfreeness), r-language size, and
ES; following the idea of salient variable sampling
(Shin et al., 2019). In selecting attributes we bal-
ance the trade-off between accuracy reduction and
aggressiveness of the filter and ignore attributes
with small effects like number of compositions.
Filtering the Exploration test set for non-starfree
expressions with size > 64 and ES > 4 yields a rea-
sonable sized set of 785 instances from 16 RegExs
with accM = 72.2. The 8 lowest-scoring RegExs
from this group are shown in Table 4. We use these
same settings to generate Hard RegSet.

Hard RegSet is split into train, validation, and
test sets12 which match the sizes of the exploration
train, validation, and test sets.

12Unlike some prior studies (Hendrycks et al., 2021) that
only consider a hard test set, we also provide the correspond-
ing identically distributed hard training and validation sets.
This helps rule out confounding factors such as distribution
mismatch being the prime reason for the observed hardness.
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7.1 Performance on RegSet

Table 5 summarizes the performance of our model
on both Exploration and Hard sets. Recall that our
main metric in this instruction learning setup is
perf@90, i.e., how many RegEx instructions does
the model learn with an accuracy of at least 90%.
For completeness, we also include Mean RegEx
accuracy (acc). The Random baseline, which pre-
dicts 0/1 with an equal probability, has an accuracy
of 50% and perf@90 of zero.

We see that the model struggles on Hard RegSet
even in the in-distribution setting (IID), achieving
a perf@90 score of only 65.5%. As noted earlier,
the upper bound is essentially 100% due to the
programmatic nature of the task. Closing the 34.5%
gap thus remains a challenge.

Further, in our out-of-distribution (OOD) set-
tings, we train the model on the Exploration set
and test on the Hard set, and vice versa. Here the
model achieves perf@90 scores of only 23.4% and
11.0%, respectively. Even the raw accuracy scores
are quite low (77.2% and 66.8%) relative to the
Random baseline. In other words, the model really
struggles to generalize to OOD RegEx instructions,
even though these instructions use the same primi-
tives (the few basic RegEx operators) and have sim-
ilar syntactic properties (instruction length, etc.) as
what the model has seen during training. Notably,
the model trained on the Hard set performs very
poorly (11.0%) on the Exploration set, demonstrat-
ing that its reasonable performance on the Hard
set (65.5%) is not a good indication of it actually
learning and understanding the primitives of the un-
derlying instruction language, namely, all regular
expressions. Thus, generalization to OOD instruc-
tions remains an open challenge.

8 Conclusion

Instruction learning is an important step towards
general-purpose AI systems. Understanding the
limits and capabilities of current instruction learn-
ing models is key to improving them. Our Ex-
ploration RegSet dataset provide a controlled en-
vironment for discovering what makes instruction
learning hard for today’s transformers. We identify
several such attributes in our setting and use our
findings to make informed speculations about the
difficulty of instruction learning in general. We
also use our findings to systematically construct
Hard RegSet, a challenging synthetic instruction
learning benchmark. Our T5-large based model

Trng. Eval. perf perf perf
Set Set acc @80 @90 @100

– Expl. RND 50.0 0.0 0.0 0.0
– Hard RND 50.0 0.0 0.0 0.0

Expl. Expl. IID 97.1 96.4 89.6 69.9
Hard Hard IID 88.9 81.6 65.6 15.2

Expl. Hard OOD 77.2 52.8 23.4 2.0
Hard Expl. OOD 66.8 29.3 11.0 3.8

Table 5: Performance of the ByT5 model on Explo-
ration and Hard RegSet datasets, in both in-distribution
(IID) and out-of-distribution (OOD) settings. RND
denotes the uniform random baseline. acc denotes
Mean RegEx Accuracy (%) and perf@k the percent-
age of RegExs with model accuracy at least k% (§5).
perf@90 is our main metric, under which the model
struggles (65.6%) on the IID Hard RegSet and performs
very poorly (11.0%-23.4%) in the OOD settings.

leaves much room for improvement on this dataset,
failing to meet the 90% accuracy bar in over 34%
of the RegExs in an IID setting and faring much
worse in our OOD generalization settings. We offer
our dataset as a challenge to help the community
progress towards building reliable instruction learn-
ing systems.

9 Limitations

It is likely that there are attributes not considered
in this study that are correlated with the difficulty
or ease of RegEx instruction learning. This may
explain why our model attains perfect accuracy on
as many as 15% of the test RegExs from our Hard
RegSet benchmark.

While we make informed speculations about
which attributes may make instruction learning
hard in a general setting (beyond the RegEx en-
vironment), validating our general hypotheses in
a natural language instruction learning setting re-
mains an open problem which can only be done via
future empirical investigations on actual data.

Lastly, it is possible that much larger models
(e.g., T5-11B) will have different qualitative trends
on Hard RegSet. We have not evaluated such mod-
els. That said, as long as our qualitative findings
about which attributes make instruction learning
hard continue to hold, it should be possible to con-
struct a scaled up version of Hard RegSet (larger
RegExs, larger strings) that challenges even these
much bigger models.
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A Regular Languages and Expressions

Following standard definitions from formal lan-
guage theory (Harrison, 1978), we define a lan-
guage as a set of strings of symbols from some
alphabet Σ. The regular languages over an alpha-
bet Σ are defined as follows:

• The empty set ∅ is a regular language.
• For each symbol σ ∈ Σ, the singleton set {σ}

is a regular language.
• The singleton set {ε} is a regular language,

where ε is the empty string.
• If A and B are regular languages, then their

union A ∪B is a regular language.
• If A and B are regular languages, then the set
{ab | a ∈ A, b ∈ B} is a regular language.
This new set is called the concatenation of A
and B and is denoted A ·B

• If A is a regular language, then the set {ε} ∪
A ∪ AA ∪ AAA ∪ . . . is a regular language.
This new set is called the Kleene star of A and
is denoted A∗.

A regular expression (RegEx) is a specification
of a regular language. We denote the language
specified or “expressed” by a RegEx r as Lr. In
a RegEx, a symbol from Σ or the empty string
represents its own singleton set, e.g. RegEx a rep-
resents the language {a}. Given two RegExs r and
s, the RegEx r|s represents Lr ∪ Ls, the union of
the languages expressed by r and s. Likewise, rs
represents the concatenation of the two languages,
and r∗ represents the Kleene star of Lr. Parenthe-
ses are used to indicate order of operations, e.g.
(a|bab)b∗. We refer to union, concatenation, and
Kleene star as compositional operators.

Additionally, it has been shown that regular lan-
guages are closed under set complementation, e.g.
if L is a regular language, then the set {σ ∈ Σ∗ |
σ /∈ L} (denoted Lc) is a regular language. It fol-
lows that the complement of a any regular language
can be expressed without a dedicated complement
operator, however the RegEx may be verbose e.g.
(a|b)∗((b(a|b))|((a|b)b))(a|b)∗ expresses Lc

a∗|b.

B Sampling RegExs

Algorithm 1 details our method for sampling regu-
lar expressions. In summary, we find a RegEx with
the minimum number operators to express each lan-
guage expressible with up to D operators, then sam-
ple from this set uniformly at random with respect
to number of operators. We achieve this by generat-
ing 0-operator RegExs before moving to 1-operator

RegExs and so forth, tracking which r-languages
have been generated. To compare r-languages, we
use their minimal DFA representations which can
be constructed via Hopcrofts’ algorithm (Hopcroft,
1971). Formally, let Ln be the set of r-languages
expressible with n operators but not expressible
with less than n operators. For each n, we find all
L ∈ Ln and randomly choose an RegEx r with
n operators that expresses L. We limit the maxi-
mum number of compositional operators in each
r to 6, choosing RegExs approximately uniformly
at random with respect to the number of operators.
Specifically, we separate all possible RegExs into
bins based on the number of operators they have.
From each bin, we randomly sample the same num-
ber of RegExs, with the exception of small bins that
contain too few RegExs, in which case we sample
as many as we can.

Algorithm 1 Sampling N RegExs with at most D
operators. Rd is the set of RegExs with d composi-
tions.

procedure SAMPLE(D,N )
L← ∅
S ← ∅
for d ∈ 0, 1, . . . , D do

for r ∈ Rd do
if Lr /∈ L then

S ← S ∪ {r}
L← L ∪ {Lr}

end if
end for

end for
T ← ∅
for d ∈ 0, 1, . . . , D do

n← min
(

N
D−d , |S ∩Rd|

)

r1, r2, . . . , rn ∼ Unif(S ∩Rd)
T ← T ∪ {r1, r2, . . . , rn}

end for
return T

end procedure

C Other attributes

We use our results section to discuss RegEx at-
tributes for which we had a significant findings.
We did, however explore other attributes, and we
define them here.

Ambiguity. We define ambiguity as the maxi-
mum number of sub-expressions any token refers
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to, as a string is processed in either direction. For
instance, given RegEx r = a|ab|abb and string
x = abb, processing left to right, a . . . could refer
to any of the three disjoint sub-expressions, ab . . .
could refer to either of the last two sub-expressions
(ab|abb), and finally, abb . . . could refer only to
the last sub-expression (abb). The same can be
done considering x’s elements in reverse order. We
take the minimum value for the two directions to
be the ambiguity of x w.r.t. r. This metric is in-
tended as an expression-level analogue of ES, as
we measure the computational space complexity
of the execution, only here we do not allow the
implicit conversion to a minimal DFA. We do not
find that ambiguity has an significant impact on
RegEx difficulty.
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