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Abstract

Understanding narrative flow and text coher-
ence in long-form documents (novels) remains
an open problem in NLP. To gain insight, we
explore the task of chapter ordering, recon-
structing the original order of chapters in novel
given a random permutation of the text. This
can be seen as extending the well-known sen-
tence ordering task to vastly larger documents:
our task deals with over 9,000 novels with an
average of twenty chapters each, versus stan-
dard sentence ordering datasets averaging only
5-8 sentences. We formulate the task of recon-
structing order as a constraint solving problem,
using minimum feedback arc set and traveling
salesman problem optimization criteria, where
the weights of the graph are generated based
on models for character occurrences and chap-
ter boundary detection, using relational chapter
scores derived from RoBERTa. Our best meth-
ods yield a Spearman correlation of 0.59 on
this novel and challenging task, substantially
above baseline.

1 Introduction

Novels are a fundamental long-form medium for
storytelling, requiring understanding of narrative
flow for full comprehension of the text. Although
neural network-based language models demon-
strate amazing performance in comprehending
short text windows, the problems of understanding
long-form narrative texts such as summarization
remain largely open.

A major challenge in research on long-form nar-
ration is the cost of annotation: the mere act of
reading a novel generally requires a 10-15 hour
commitment on the part of the annotator, making it
clearly cost prohibitive to obtain full annotations of
a significant corpus of novels. Although published
summaries are available for up to a few hundred
popular books, annotation cost is the rate limiting
step for work in this area (Wu et al., 2021).

In this paper, we propose a new task that gets to
the heart of narrative flow analysis for novels, with-
out the need for human annotation. Most novels are
partitioned into chapters as a means of providing
thematic breakpoints for the reader. Randomly per-
muting the order of these chapters obviously ruins
the coherence of the narrative flow of the underly-
ing story. Here we propose the new task of chapter
ordering: reconstructing the original order of the
book given an input random chapter permutation
of the text.

This task is clearly related to the task of sen-
tence ordering (Lapata, 2003; Barzilay and Lapata,
2005, 2008), reconstructing a set of sentences in a
tiny story as to maximize their coherence. While
there is a large volume of prior work on sentence
ordering, to our knowledge, this is the first paper to
address chapter ordering. The natural approaches
for the sentence task cannot be readily applied to
chapter order. First, chapters in novels usually
contain several hundred sentences, which cannot
easily be encoded with the neural models applied
to sentence ordering. Second, the number of chap-
ters in a novel (an average of 21.6 chapters/novel
in our corpus) versus 5 to 8 sentences in popular
datasets. This matters, because the impressive per-
formances of the best sentence ordering models
show severe degradation with longer sequences. Fi-
nally, ordering sentences in a tiny story is a simpler
perceptual task for humans, whereas correctly or-
dering the chapters of even a single novel requires
hours of reading and analysis. The combination of
these factors makes chapter ordering a difficult task
that cannot be tackled with standard methods. The
overview of our approach can be found in Figure 1.

In this paper, we define the chapter ordering
problem and propose a variety of neural-based mod-
els to score the relative order of chapter-pairs. Our
main contributions1 include:

1Code and link to dataset found at https://github.com/
allenkim/chapter-ordering-in-novels
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Figure 1: High-level overview of the chapter ordering task: after partitioning and shuffling a novel’s chapters,
we define a network of coherence scores between chapter pairs, with the permutation reconstructed using an
optimization criteria combining the traveling salesman problem (TSP) and minimum arc feedback set.

• Definition of the Chapter Ordering Task, with
Associated Data Set – We define an acces-
sible new task relevant to study narrative
understanding on large texts, building on
our dataset of 9,007 text-cleaned, chapter-
permuted Project Gutenberg novels, each with
between 5 and 50 chapters per book and be-
tween five and two hundred paragraphs per
chapter. This is large enough to facilitate in-
teresting machine learning-based approaches,
and provides a standardized resource for fu-
ture studies of chapter ordering to start with.

• Neural-based Coherent Models of Narrative
Flow – We model the task of chapter order-
ing using weighted directed graphs, where
edge (x, y) receives a coherent score predict-
ing the likelihood that chapter x appears (im-
mediately) before y in the published work.
We propose several natural coherence notions
implicit in long-form narratives, including:

– Character entry/exit recognition: Track-
ing the life progression of characters
through a novel is essential to under-
standing of the flow of the story. We
train effective classifiers to recognize
each character’s introduction

– Identifying initial/concluding chapters:
There are subtle characteristics of the
start and end of a story that distinguishes
it from the middle of the narrative.

– Neighboring chapter detection: Narra-
tive flow implies that the events at the end
of one chapter are often connected to the
start of the next chapter. This direct cor-
relation provides strong reinforcement in

keeping certain chapters paired.
– Topic correlation: Generalizing beyond

chapter boundaries, the topical content in
nearby chapters is generally more closely
related than those further away.

• Optimization Techniques for Chapter Order-
ing – We present a method for finding the
chapter order that maximizes the coherence
score based on two classical problems on di-
rected weighted graphs: minimum arc feed-
back and traveling salesman problem. We
demonstrate that combining both objectives
simultaneously best exploits the variety of co-
herence constraints inherent in narrative anal-
ysis.

The paper is organized as follows. Section 2 sur-
veys related work in sentence ordering and whole
book-oriented NLP. Section 3 formalizes our task.
We present our methods for coherent scoring in
Section 4, and in Section 5 our optimization tech-
niques. We present our experimental results in
Section 6 before concluding with future directions
for research.

2 Related Work

The sentence ordering task was first proposed to
test coherence of sentences (Lapata, 2003; Barzi-
lay and Lapata, 2005, 2008). Traditionally, this
was tackled using human designed features and
classical machine learning techniques. This in-
cluded heuristics with Markov models (Barzilay
and Lee, 2004; Bollegala et al., 2005; Ji and Pul-
man, 2006), K-means clustering (Ji and Nie, 2008;
Zhang, 2011), support vector machines (Bollegala
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et al., 2006; Nahnsen, 2009; Peng et al., 2009;
Yanase et al., 2015) and others like latent semantic
analysis (Zhang et al., 2010) and conditional ran-
dom fields (Gella and Duong Thanh, 2012). We
also note the representation of sentence ordering
as a graph in many past works as well (Elsner and
Charniak, 2011; Li et al., 2011; Guinaudeau and
Strube, 2013). However, with advances in neural
modeling, other approaches have developed.

One category are pairwise ordering models,
which deal with ordering at a pairwise level and
combines the results to get a global ordering. Tra-
ditionally, the models used in these approaches
have been GRUs and LSTMs (Chen et al., 2016;
Agrawal et al., 2016; Moon et al., 2019), but
recently have moved towards Transformer-based
models like BERT (Kumar et al., 2020; Shen and
Baldwin, 2021). One common approach to sen-
tence ordering considers the sentences as a graph
and optimizes the weights using algorithms such as
topological sort (Prabhumoye et al., 2020) or the
asymmetric traveling salesman problem (Keswani
and Jhamtani, 2021). The main disadvantage is that
a pair-wise ordering of two sentences is determined
in isolation from the other sentences. It may be the
case that the other sentences provide context that
make the ordering sensible.

Thus, the other main category of sentence or-
dering deal with set-to-sequence models, which
deal with end-to-end encoder-decoder frameworks.
Most common are pointer networks for sequence
prediction (Gong et al., 2016; Cui et al., 2018; Yin
et al., 2020). This is often combined with other
methods such as recurrent neural networks (Lo-
geswaran et al., 2018; Oh et al., 2019). Recently,
works have been incorporating graph-related net-
works (Cui et al., 2020; Yin et al., 2021; Lai et al.,
2021) as well. Additionally, the task has been
considered as a text-to-marker generation prob-
lem using BART (Basu Roy Chowdhury et al.,
2021). These methods have the advantage that
all the sentences are taken in context, but lack the
interpretability of the previous models discussed.

We also rely heavily on literature in natural lan-
guage processing on books. Analysis of books have
been streamlined through pipelines like BookNLP
(Bamman et al., 2014) as well as datasets of entities
(Bamman et al., 2019). We also find other book-
related works that improve the quality of books as
well as understanding aspects such as time (Kim
et al., 2020, 2021). In particular, we focus on chap-

ters and require proper chapter segmentation (Pethe
et al., 2020).

3 Problem Formulation

The chapter ordering task can be formulated as
follows. Given a book of N chapters, let C =
[ c1, . . . , cN ] be the sequence of chapters where
each ci represents the text content of chapter i for
1 ≤ i ≤ N . Let o = [ o1, . . . , oN ] be a random
permutation of indices from 1 to N . Given a se-
quence of random chapters r = [ ro1 , . . . , roN ] , the
task is to find the correct order of chapter indices
o′ = [ o′1, . . . , o

′
N ] such that [ ro′1 , . . . , ro′N ] = C.

3.1 Dataset
Our dataset comes from Project Gutenberg (Guten-
berg, n.d.) filtered down to English fiction books of
which we collected 19,437. We follow Pethe, Kim,
and Skiena (2020) to clean and annotate chapters
using regular expressions on common chapter head-
ings. To filter out anomalies, we mandate that the
number of chapters have to be between 5 and 50.
Additionally, we restrict each chapter to be at least
5 and at most 200 paragraphs. As a final restriction,
we also require a numbering of chapters that start
from one, either in words or numeral form. This is
to avoid books that may be sequels or other parts
of a longer series. We note that the chapter title as
well as the chapter numbers are not included as part
of the input. Any books that do not follow these
requirements are filtered out of the dataset.

In total, we have 9,007 books with a mean chap-
ter length of 21.64 and standard deviation of 9.96.
The median chapter length is 21 with the min and
max being 5 and 50 respectively due to the filtering.
These were then randomly train-test split in an 8:2
ratio.

4 Coherence Scoring

In this section, we describe our observations of
books that help us quantify relations between chap-
ters. Since the goal is to provide a benchmark on
the feasibility of the chapter ordering task and not
an exhaustive comparison on the effectiveness of
different models, we primarily use RoBERTa (Liu
et al., 2019) as our main pretrained language model
for all relevant tasks.

Implementation Details. We use the Transform-
ers (Wolf et al., 2019) library for fine-tuning
RoBERTa. All models were run on a compute
server with 2.30 GHz CPU and TeslaV100 GPU.

3840



Intro (class 0) Middle (class 1) End (class 2)
F1 P R F1 P R F1 P R

Only Intro 15.67 8.50 100 - - - - - -
Only Middle - - - 90.71 82.99 100 - - -

Only End - - - - - - 15.67 8.50 100
Guessing 8.56 8.54 8.54 82.97 83.00 82.93 8.55 8.51 8.60
RoBERTa 52.45 43.71 65.58 87.20 91.21 83.52 41.33 36.30 47.99

GPT2 33.29 57.96 23.35 91.28 85.58 97.80 24.31 69.17 14.75

Table 1: Evaluation of Character Introduction / End Model with F1 score (F1), Precision (P), Recall (R) - guessing
was done proportional to the occurrence ratio

No hyperparameter tuning was done on any mod-
els; default values were run for all models.

4.1 Character Entry/Exit Recognition

Characters are a fundamental aspect of any story.
By tracking the life of a character through a book,
we can greatly improve our understanding of the
underlying story. In particular, characters are typ-
ically introduced into the story with physical de-
scriptions and also end up leaving the story with
details of their departure.

We define the task as follows: given an occur-
rence of a character and the context of text it ap-
pears in, we want to predict whether this is the first
time a character is introduced, the last time it is
mentioned, or some time in the middle. This is
treated as a three-class (intro, middle, end) classifi-
cation problem.

Data Preparation. For each book, we apply
named entity recognition with coreference reso-
lution using Stanza (Qi et al., 2020) to identify
characters. Afterwards, we cluster the same char-
acters together using naming convention heuristics
e.g. Sherlock Holmes and Mr. Holmes. For each
character occurrence in the text, we extract a 512
sub-token window around it. The names of the
character in question were replaced with a special
<main> token and every other character in the con-
text was replaced with a special <other> token.
These context windows were then used for fine-
tuning RoBERTa with a token classification head
with three classes. Only the first occurrence was
marked as class 0 (intro) and only the last occur-
rence was marked as class 2 (end); the majority of
the instances were marked as class 1 (middle).

Evaluation. Table 1 shows the results of the
model on the test set for each of the predicted
classes - Intro (first occurrence of character), Mid-
dle (some middle occurrence of a character), End
(last occurrence of a character). Each class is eval-
uated using standard metrics, where F1 represents
the F1 score, P represents precision, and R rep-
resents recall. In general, we see that RoBERTa
performs well in predicting introductions of charac-
ters and decently for ends as well. This is sensible
as when characters are introduced, there are more
descriptive adjectives and related signals in the text.
Typically, characters also leave the story at the end
of some event, which has its own signals as well.

4.2 Initial/Concluding Chapters

As in the case of sentence ordering, there are char-
acteristics of the start and end of a book that make
it more discernible as compared to the middle of
the book. Generally, there are "introducing" words
related to setting the scene in the beginning while
there are "concluding" words related to closing up
the story in the end, similarly to the introduction
and ends of characters.

We consider two tasks: first chapter prediction
and last chapter prediction. For first chapter predic-
tion, given text at the start of a chapter, the task is to
determine if it is the first chapter or not. Similarly,
for last chapter prediction, given text at the end of
a chapter, the task is to determine if it is the last
chapter or not. These are treated as two separate
binary classification models.

Data Preparation. For the first chapter predic-
tion task, for each book, we take the first 512 sub-
tokens of each chapter and use the first chapter as a
positive example and the others as negative. Analo-
gously, for the last chapter prediction task, for each
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Acc F1 P R
RoBERTa First 96.1 52.8 58.0 48.4
RoBERTa Last 97.2 65.7 74.6 58.7

GPT2 First 96.3 52.3 56.3 48.8
GPT2 Last 96.8 56.0 74.0 45.0

Table 2: First and last chapter prediction metrics, Accu-
racy, F1 score (F1), Precision (P), Recall (R), across all
chapters

First Chapter Last Chapter
P@1 0.577 0.675
P@3 0.737 0.817
P@5 0.802 0.875

Table 3: First and last chapter precisions across all 1,802
books in test set - P@k represents the presence of the
target in the top k

book, we take the last 512 sub-tokens of each chap-
ter and use the last chapter as the positive example.
Both these tasks were fine-tuned on RoBERTa with
a token classification head with two classes.

Evaluation. Tables 2 and 3 show results for the
first and last chapter predictions. In general, we
see that the model is able to predict the correct first
chapter for more than 57% of books and predict the
correct last chapter for more than 67% of books.
It is interesting to note the relatively better perfor-
mance of last chapter prediction to first chapter,
which indicates more common signals among book
endings as compared to introductions.

4.3 Boundary Scoring

The end of one chapter is typically connected to
the start of the next. This sequential correlation
provides strong reinforcement in keeping certain
chapters paired. We consider the following binary
classification task for a book: given the end of
chapter X and the start of a different chapter Y ,
does chapter Y directly follow X?

Data Preparation. As positive examples, we
concatenate the text at the end of a chapter with
the text at the start of the next chapter with a sep-
arator token. Every other combination is consid-
ered to be a negative example. Thus, a book with
N chapters contain N − 1 positive examples and
N(N − 1) − (N − 1) negative examples. Given
an input size of 512 sub-tokens, we concatenate
the last 256 tokens of one chapter and the first 256

tokens of another chapter as input to the model (ac-
counting for special tokens). We again fine-tune
RoBERTa with a token classification head for two
classes.

Evaluation. Table 4 shows the results for bound-
ary detection. In general, we find that this is a
difficult task in isolation with an F1 of up to 0.32
in the macro scale, but nevertheless, this provides
valuable signal chaining chapters together when
the model is confident.

4.4 Topic Overlap
Similar to chapter boundaries, the discussion of
content in one chapter is generally more closely
related to the content of a neighboring chapter as
opposed to one further away. We capture this with
a simple lemma overlap score between chapters.
We do so by counting the number of lemmas in one
chapter that is in common with another and nor-
malizing by the number of lemmas in the smaller
chapter. Lemmatization was done using Stanza.
Stop words were filtered out using NLTK (Loper
and Bird, 2002).

Figure 2 shows the average topic score for vary-
ing distances between chapter pairs. As expected,
we see that neighboring chapters share the most
overlap score while chapters further away decrease
in value.

Figure 2: Average Topic Overlap Scores as a function
of chapter distance - chapters closer together tend to
overlap in topic more than those further away

5 Constraint Solving Problem

Section 4 discussed different methods of measuring
coherence between chapters. For each method, we
construct a weighted matrix that provides chapter
pairwise scores. These matrices can then be used
as weights of a directed graph that we can optimize
to find an optimal ordering.
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Micro (Support: 1,019,744) Macro (Support: 1,802)
Accuracy F1 P R Accuracy F1 P R

Random 92.75 3.69 3.69 3.70 90.89 4.03 5.23 3.69
RoBERTa 96.574 27.86 66.74 17.61 94.81 23.78 57.17 17.03

GPT2 96.36 30.50 54.08 21.24 94.55 26.09 50.13 20.60

Table 4: Evaluation of Chapter Boundary Model with Accuracy, F1 score (F1), Precision (P), Recall (R) - Micro
shows results across all chapter order pairs while Macro shows averaged metrics across each book

5.1 Computing Coherence Matrices

For each method, we describe the details in how
the weights are constructed.

Character Introductions and Exits. Given a
model that can predict the first and last occurrences
of a character in a book, for each character, we
identify the chapter where the character was most
likely introduced as well as the chapter where the
character was most likely last seen. Given the best
guess of the first chapter and last chapter a character
appears in, we add a vote to each chapter pair from
first to others and others to the last chapter. We
then count the votes among all the characters in
the book, and normalize between disagreeing votes.
For example, if there are three characters that seem
to start at chapter X before chapter Y , but one
character that seems to start at chapter Y before
chapter X . The directed edge weight from node X
to Y would be 0.75, while the weight from Y to X
would be 0.25.

Boundary Scoring with First and Last Chap-
ter Prediction. For each chapter, we can directly
compute a score to every other chapter by directly
extracting the probabilities from the boundary scor-
ing model. To factor in first and last chapters, we
also consider sentinel nodes that act as the first and
last nodes and add weights from the first sentinel
node to every other non-sentinel node based on the
output from the first chapter model. Analogously,
we add weights from every non-sentinel node to
the last sentinel node based on the output from the
last chapter model.

Topic Overlap. For each pair of chapters, we
compute a lemma intersection score as described in
Section 4.4. As an example, a filtered chapter with
the words “walk happy park bench” would have
a score of 0.75 with a filtered chapter of “walk
happy park ball play”. This score directly defines
the weight edges between every pair of chapters.

5.2 Optimization Methods

We first consider optimal ways to find orderings
for each method individually, and then consider
approaches that combine them.

• Character introductions and ends - This can
be optimized by finding the order that mini-
mizes the sum of the weights of back edges,
i.e. edges that go from a node to an earlier
one in the given order.

• Chapter boundaries with first and last chap-
ters - This can be treated as finding a directed
path that visits each node exactly once and
maximizes the coherence scores in a weighted,
asymmetric graph.

• Topic overlap - This is the same as above, but
for a weighted, symmetric graph.

For these optimization tasks, we consider two
classical problems, both known to be NP-hard.

Minimum feedback arc set. A feedback arc set
is a subset of edges in the graph that contains at
least one edge out of every cycle in the graph. The
edge constraints from character entries/exit scores
imply entries before exits; the topological order
implicit after removing the feedback set minimizes
violated constraints.

Traveling salesman problem. Given a graph,
what is the shortest possible route that visits each
node exactly once? The weights from boundary,
first/ last chapter, and topic overlap scores naturally
define appropriate edge weights for TSP.

Solutions. Although these problems are NP-
complete, heuristic solutions are effective. For
minimum feedback arc set, we consider a heuris-
tic approach of local minimization using random
swaps. For the traveling salesman problem, we
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Figure 3: The left figure shows the feedback arc set
weights of the correct ordering (gold) versus the feed-
back arc set weights of our optimized ordering (heuris-
tic) while the right figure shows TSP scores of the cor-
rect ordering (gold) versus the TSP scores of our opti-
mized ordering (concorde).

employ an off-the-shelf exact solver, Concorde2

(Applegate et al., 2009), which employs branch
and bound techniques to make our task feasible
within a short time.

To show the effectiveness of our optimization,
we compare the scores we obtain using our methods
to the scores obtained applying the actual chapter
orders. Figure 3 shows the feedback arc set weights
as well as the TSP weights using our optimization
and the ones found through the gold standard. In
both cases, we see that our ordering generally has
lower feedback arc weight than that of the correct
order and has higher TSP scores than that of the
correct order, showing the optimality of Concorde
and our local search optimization.

The scale of TSP scores and feedback arc set
scores are quite different, so we normalize them
into z-scores before mixing them. This was done by
sampling 100 random orders and computing their
metrics to get sample mean and standard deviations.
The experiments reported in Table 5 show that em-
ploying both optimization criteria in a 50-50 mix
typically identifies the best order.

6 Experimental Results

6.1 Evaluation Metrics

We follow the same metrics used in works to evalu-
ate sentence ordering. For all of these metrics, let
N be the number of books in our test set.

Perfect Match Ratio (PMR). PMR measures the
fraction of books that were predicted to be exactly
the same as the original order. This is the strictest

2We note that Concorde only solves the symmetric TSP
problem, so we convert our asymmetric instances into sym-
metric ones by creating dummy nodes, doubling the number
of nodes (Jonker and Volgenant, 1983).

metric.

PMR =
1

N

N∑

i=1

1(oi = o′i)

where oi and o′i represents the correct order and
predicted order respectively.

Chapter Accuracy (Acc). Acc measures the av-
erage percentage of chapters for which the pre-
dicted absolute position was correct within each
book. This is also a strict metric.

Acc =
1

N

N∑

i=1


 1

ki

ki∑

j=1

1(oij = o
′i
j )




where ki represents the number of chapters in book
i, and oij and o

′i
j represents the correct and pre-

dicted chapter index for the j-th chapter in book i
respectively.

Kendall Tau (Tau). Tau quantifies the distance
between the predicted order and the correct order in
terms of the number of inversions (Lapata, 2006).

τ = 1− 2(# inversions)(
n
2

)

Spearman. Spearman measures the rank corre-
lation of the predicted order with the standard in-
creasing chapter order. The indices of the correct
order are remapped such that the indices are strictly
increasing before computing. Equation omitted as
this is a well-known metric.

Rouge-S. Rouge-S calculates the percentage of
chapter pairs for which the relative order is pre-
dicted correctly (Chen et al., 2016). There is no
penalty for gaps between the chapter pairs.

Rouge-S =
1(
ki
2

)
[
Pairs(oi) ∩ Pairs(o′i)

]

where ki represents the number of chapters in book
i, and Pairs(o) represents all

(
ki
2

)
relative ordering

pairs for order oi.

Longest Common Subsequence (LCS). LCS
measures the ratio of the longest common subse-
quence between the predicted order and the correct
order, computed using dynamic programming.
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Method Param PMR Acc Tau Spearman Rouge-S LCS

Random - 0.000 5.710 0.000 -0.192 50.142 33.590

Character - 0.777 18.012 10.446 55.251 72.022 49.699

Boundary Default 1.664 10.207 3.856 10.503 56.589 47.437
+First/Last chapter 3.163 18.150 11.517 28.500 63.160 52.236

c = 0.0 0.277 6.799 0.783 0.025 50.138 36.896
c = 0.25 3.219 19.994 12.990 32.452 64.662 53.102
c = 0.5 3.718 20.541 13.881 33.488 65.247 54.267

c· Boundary
with (1− c)·
Topic

c = 0.75 3.940 20.614 13.426 32.900 65.136 54.437

c = 0.0 0.333 11.927 5.084 17.870 58.124 46.205
c = 0.25 1.332 19.909 13.041 57.290 73.505 54.155
c = 0.5 1.332 19.846 11.780 57.375 73.496 54.151

c· Character
with (1− c)·
[best Boundary
+ Topic]

c = 0.75 1.48 19.916 12.648 57.758 73.703 54.237

c = 0.0 3.885 20.581 13.402 32.844 65.105 54.402
c = 0.25 1.387 22.010 14.071 59.204 74.469 55.361
c = 0.5 1.554 22.048 14.537 59.174 74.416 55.210
c = 0.75 1.498 21.684 14.270 59.493 74.518 55.157

c· Character
with (1− c)·
[best Boundary
+ Topic]
initialized with
best TSP c = 1.0 1.276 21.413 14.159 58.499 73.699 51.993

Table 5: Results of chapter ordering - Random refers to random ordering, Character refers to scores derived from
character introduction and ends and is optimized with local search for feedback arc set, Boundary tests boundary
scores with and without first and last chapter augmentations and optimized with Concorde, Boundary with Topic
refers to the augmented boundary scores jointly with the topic overlap score and optimized with Concorde. c = 1
is omitted as it is equivalent to Boundary. Character with best Boundary and Topic refers to character scores
jointly with the best Boundary with Topic scores (c = 0.75) and optimized with local search on both TSP and
feedback arc set. Again, c = 1 is omitted as it is equivalent to Character. The last section is the same as before, but
with the initial optimization being seeded with the optimal order found with Concorde in Boundary with Topic.

6.2 Analysis

Table 5 presents our final results as an ablation
study, giving a complete breakdown of differ-
ent model variations. We note that adding ini-
tial/conclusion chapter prediction to the boundary
matrix as all the metrics improve considerably. Our
strongest results combine all methods of coherence
scoring, with top performance when the boundary
scores are weighted more heavily than the topic
coherence score.

Figure 4 show the decline in our overall metrics
as the number of chapters increases. As previously
shown in the sentence ordering task, the problem
gets harder as the number of text units increases.

Figure 4: Performance metrics bucketed by chapter
count: the ordering task gets harder for longer books.

7 Conclusion

In this paper, we introduce a new task of chapter
ordering as an approach to study long-form narra-
tive understanding without cost-prohibitive human
annotation. The standard approaches used in the
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smaller-scale sentence ordering tasks do not ex-
tend directly to chapter ordering, because longer
texts exceed the capacity of current neural language
models.

Future work may include incorporating efficient
transformers that incorporate longer text windows,
although we believe that approaches which explic-
itly incorporate logical reasoning about events may
be necessary to achieve substantial progress. We
will release our full dataset on publication to en-
courage additional research on this task.

Limitations

To our knowledge, this is the first paper to intro-
duce chapter ordering, and while we present novel
methods to tackle it, we discuss limitations of our
approach.

First, our dataset is limited to English fiction
books that were generally written in the early 1900s
and earlier. This is largely due to copyright issues
involved with using more modern texts, and be-
cause of this, our models are inherently biased to
the language used in older texts. It is unclear how
well these models will perform on modern texts
given changes in writing style over time. Inher-
ently, there will also be model biases concerning
gender and race that originate from these older texts
as well.

Second, we use the base RoBERTa as our lan-
guage model of choice to produce coherence scores,
but we do not extensively survey other models pri-
marily due to memory and time constraints. As the
main bottleneck in our approach were the coher-
ence scores as opposed to the optimization, using
larger and more efficient language models should
improve performance. In particular, efficient trans-
formers such as Longformer (Beltagy et al., 2020)
that are capable of taking in longer windows of text
should show improved results for this task.

Finally, we present only one view of tackling this
problem, based on optimizing a graph generated
from coherence scores suggested by human obser-
vations on characters and story connection. All of
our relational scores were derived from analyzing
chapter pairs in isolation. However, it is possible
that certain chapter orderings make sense only with
other chapters as context, and this is not completely
captured with our approach. Scores may also show
improvement with a contrastive learning objective
that considers all chapters holistically.
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