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Abstract
Reproducibility is of utmost concern in ma-
chine learning and natural language processing
(NLP). In the field of natural language genera-
tion (especially machine translation), the semi-
nal paper of Post (2018) has pointed out prob-
lems of reproducibility of the dominant met-
ric, BLEU, at the time of publication. Nowa-
days, BERT-based evaluation metrics consider-
ably outperform BLEU. In this paper, we ask
whether results and claims from four recent
BERT-based metrics can be reproduced. We
find that reproduction of claims and results of-
ten fails because of (i) heavy undocumented
preprocessing involved in the metrics, (ii) miss-
ing code and (iii) reporting weaker results for
the baseline metrics. (iv) In one case, the prob-
lem stems from correlating not to human scores
but to a wrong column in the csv file, inflating
scores by 5 points. Motivated by the impact of
preprocessing, we then conduct a second study
where we examine its effects more closely (for
one of the metrics). We find that preprocessing
can have large effects, especially for highly in-
flectional languages. In this case, the effect of
preprocessing may be larger than the effect of
the aggregation mechanism (e.g., greedy align-
ment vs. Word Mover Distance).

1 Introduction

Reproducibility is a core aspect in machine learn-
ing (ML) and natural language processing (NLP).
It requires that claims and results of previous work
can independently be reproduced and is a prereq-
uisite to trustworthiness. The last few years have
seen vivid interest in the topic and many issues of
non-reproducibility have been pointed out, leading
to claims of a “reproducibility crisis” in science
(Baker, 2016). In the field of evaluation metrics
for natural language generation (NLG), the sem-
inal work of Post (2018) has demonstrated how
different preprocessing schemes can lead to sub-
stantially different results when using the dominant
metric at the time, BLEU (Papineni et al., 2002).

Thus, when researchers employ such different pre-
processing steps (a seemingly innocuous decision),
this can directly lead to reproducibility failures of
(conclusions regarding) metric performances.

Even though BLEU and similar lexical-overlap
metrics still appear to dominate the landscape
of NLG (particular MT) evaluation (Marie et al.,
2021), it is obvious that metrics which measure
surface level overlap are unsuitable for evalua-
tion, especially for modern text generation systems
with better paraphrasing capabilities (Mathur et al.,
2020). As a remedy, multiple higher-quality met-
rics based on BERT and its extensions have been
proposed in the last few years (Zhang et al., 2019;
Zhao et al., 2019). In this work, we investigate
whether these more recent metrics have better re-
producibility properties, thus filling a gap for the
newer paradigm of metrics. We have good rea-
son to suspect that reproducibility will be better:
(i) as a response to the identified problems, recent
years have seen many efforts in the NLP and ML
communities to improve reproducibility, e.g., by re-
quiring authors to fill out specific check lists.1 (ii)
Designers of novel evaluation metrics should be
particularly aware of reproducibility issues, as re-
producibility is a core concept of proper evaluation
of NLP models (Gao et al., 2021).

Our results are disillusioning: out of four met-
rics we tested, three exhibit (severe) reproducibility
issues. The problems relate to (i) heavy use of
(undocumented) preprocessing, (ii) missing code,
(iii) reporting lower results for competitors, and
(iv) correlating with the wrong columns in the eval-
uation csv file. Motivated by the findings on the
role of preprocessing and following Post (2018),
we then study its impact more closely in the second
part of the paper (for those metrics making use of
it), finding that it can indeed lead to substantial
performance differences also for BERT-based met-

1E.g., https://aclrollingreview.org/
responsibleNLPresearch/.
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rics. The code for this work is available at https:
//github.com/cyr19/Reproducibility.

2 Related Work

Relevant prior work to this work includes BERT-
based evaluation metrics (Section 2.1) and repro-
ducibility in NLP (Section 2.2).

2.1 BERT-based Evaluation Metrics

In recent years, many strong automatic evalua-
tion metrics based on BERT (Devlin et al., 2018)
or its variants have been proposed. It has been
shown that those BERT-based evaluation metrics
correlate much better with human judgements than
traditional evaluation metrics such as BLEU (Pa-
pineni et al., 2002). Popular supervised BERT-
based evaluation metrics include BLEURT (Sel-
lam et al., 2020) and COMET (Rei et al., 2020),
which are trained on segment-level human judge-
ments such as DA scores in WMT datasets. Un-
supervised BERT-based evaluation metrics such
as BERTScore (Zhang et al., 2019), MoverScore
(Zhao et al., 2019), BaryScore (Colombo et al.,
2021) and XMoverScore (Zhao et al., 2020) do
not use training signals, thus potentially may gen-
eralize better to unseen language pairs (Belouadi
and Eger, 2022). MoverScore, BaryScore, and
BERTScore are reference-based evaluation met-
rics. In contrast, reference-free evaluation metrics
directly compare system outputs to source texts.
For MT, popular such metrics are Yisi-2 (Lo, 2019),
XMoverScore, and SentSim (Song et al., 2021).

2.2 Reproducibility in NLP

Cohen et al. (2018) define replicability as the abil-
ity to repeat the process of experiments and repro-
ducibility as the ability to obtain the same results.
They further categorize reproducibility along 3 di-
mensions: (1) reproducibility of a conclusion, (2)
reproducibility of a finding, and (3) reproducibil-
ity of a value. In a more recent study, Belz et al.
(2021) categorize reproduction studies according
to the condition of the reproduction experiment:
(1) reproduction under the same condition, i.e., re-
using as similar as possible resources and mimick-
ing the authors’ experimental procedure as closely
as possible; (2) reproduction under varied condi-
tions, aiming to test whether the proposed methods
can obtain similar results with some changes in the
settings; (3) multi-test and multi-lab studies, i.e.,
reproducing multiple papers using uniform meth-

ods and multiple teams attempting to reproduce the
same paper, respectively.

In the first part of this work, our reproductions
follow the first type described by Belz et al. (2021),
i.e., we adhere to the original experimental setup
and re-use the resources provided by the authors
whenever possible, aiming at exact reproduction.
The second part falls into the second category of
reproduction study described by Belz et al. (2021),
i.e., to change some settings on purpose to see if
comparable results can be obtained.

According to Fokkens et al. (2013) and Wieling
et al. (2018), the main challenge for reproducibility
is the unavailability of the source code and data.
Dakota and Kübler (2017) study reproducibility
for text mining. They show that 80% of the failed
reproduction attempts were due to the lack of infor-
mation about the datasets. To investigate the avail-
ability of source data, Mieskes (2017) conducted
quantitative analyses on the publications from five
conferences. They found that though 40% of the
papers reported having collected or changed exist-
ing data, only 65.2% of them provided the links to
download the data; 18% of them were invalid. Sim-
ilarly, Wieling et al. (2018) assessed the availability
of both source code and data of papers from two
ACL conferences (2011 and 2016). When com-
paring 2016 to 2011, the availability of both data
and code increased, suggesting a growing trend of
sharing resources for reproduction. However, even
using the same code and data, they could only recre-
ate identical values for one paper. More recently,
Belz et al. (2021) analyzed 34 reproduction stud-
ies under the same condition (re-using the original
resources when possible) for NLP papers. They
found that only a small portion (14.03%) of val-
ues could be exactly reproduced and the majority
(59.2%) of the reproduced values lead to worse
results. Moreover, 1/4 deviations are >5%.

In NLG, Post (2018) attests to the non-
comparability of BLEU (Papineni et al., 2002)
scores across different papers. He argues that
there are four causes. First, BLEU is a parameter-
ized approach; he shows that on WMT17 (Bojar
et al., 2017), the BLEU score for en-fi, increases
by roughly 3% Pearson from changing parameters
regarding multiple references. The second issue,
which is regarded as the most critical, is the use
of different preprocessing schemes. Among these,
tokenization of the references plays a key role. The
third problem is that preprocessing details are of-
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ten omitted in papers. The fourth problem is dif-
ferent versions of datasets, in his case a particular
problem with the en-de language pair in WMT14
(Macháček and Bojar, 2014). The reproducibil-
ity issue of BLEU has also been verified by Belz
et al. (2022), using their novel approach, which is
designed to quantify the degree of reproducibility.

3 Datasets & Metrics

In our reproduction experiments (Section 4), fol-
lowing Zhang et al. (2019), Zhao et al. (2019) and
Colombo et al. (2021), we use WMT15-18 (Stano-
jević et al., 2015; Bojar et al., 2016, 2017; Ma et al.,
2018) for MT evaluation. Besides, we follow Zhao
et al. (2019) to use TAC20082 and TAC20093 for
text summarization evaluation, MSCOCO (Guo
et al., 2018) for image captioning (IC) evalua-
tion, and BAGEL (Wen et al., 2015) and SFHO-
TEL (Mairesse et al., 2010) for data-to-text gen-
eration (D2T) evaluation. For the reference-free
metric SentSim, we will mainly report results on
the MLQE-PE dataset (Fomicheva et al., 2020b).
In further experiments (Section 5), we consider
WMT19 (Ma et al., 2019) for MT as well. The
datasets for each NLG task are described in detail in
the appendix (Section A.1). For our reproduction
attempts, we consider MoverScore, BERTScore,
BaryScore, and SentSim.

Metrics MoverScore measures semantic similar-
ity between reference and hypothesis by aligning
semantically similar words and computing the dis-
tance between these words using the Word Mover
Distance (Kusner et al., 2015). BERTScore cal-
culates the cosine similarity (of BERT represen-
tations) for each token in the reference with each
token in the hypothesis, and uses greedy alignment
to obtain the similarity scores between sentences.
It has three variants: Recall, Precision, and F1.
BaryScore computes the Wasserstein distance (i.e.,
Earth Mover Distance (Rubner et al., 2000)) be-
tween the barycentric distribution (Agueh and Car-
lier, 2011) of the contexual representations of refer-
ence and hypothesis to measure the dissimilarity be-
tween them. SentSim has both reference-free and
-based versions; we experiment with its reference-
free version in this work, which combines sentence-
(based on Reimers and Gurevych (2020)) and word-
level models (extending a.o. BERTScore to the

2https://tac.nist.gov/2008/
3https://tac.nist.gov/2009/

multilingual case) to score a pair of source text and
hypothesis.

4 Reproduction Attempts

Our main focus will be to reproduce the results on
machine translation (MT) reported in Zhang et al.
(2019), Zhao et al. (2019), Colombo et al. (2021)
and Song et al. (2021).

4.1 Reproduction on MT

At first, we examine the three reference-based met-
rics. MoverScore, BaryScore and BERTScore were
all originally evaluated on MT but with different
WMT datasets (Stanojević et al., 2015; Bojar et al.,
2016, 2017; Ma et al., 2018). Zhang et al. (2019)
used WMT18 (Ma et al., 2018) as the main evalua-
tion dataset. Zhao et al. (2019) reported the results
on WMT17 (Bojar et al., 2017) for both Mover-
Score and BERTScore-F1. Colombo et al. (2021)
compared their metric BaryScore with MoverScore
and BERTScore-F1 on WMT15 (Stanojević et al.,
2015) and WMT16 (Bojar et al., 2016). Mover-
Score claims to outperform BERTScore (which
was published earlier on Arxiv), and BaryScore
claims to outperform the earlier two.

We evaluate the three metrics with the same
BERT model (BERT-base-uncased) on all MT
datasets mentioned above, using the reproduction
resources provided by the authors of each met-
ric. We also evaluate MoverScore and BaryScore
on a BERT model finetuned on NLI (Wang et al.,
2018) (as in the original papers). The code and data
for reproduction were released on their respective
githubs.4 In our reproduction experiments, we use
the metrics with the configurations found in their
evaluation scripts or papers. Although Zhao et al.
(2019) also reported the results for BERTScore-F1,
they did not provide information about the used pa-
rameter settings. Similarly, Colombo et al. (2021)
evaluated the other two metrics on WMT15-16, but
except for the model choice, all other settings are
unclear. Moreover, except for Zhang et al. (2019),
who explicitly state which results were obtained
using IDF-weighting, the authors of the other two
approaches did not mention this in their papers.

4BERTScore (WMT18): https://github.com/
Tiiiger/bert_score/tree/master/reproduce;
MoverScore (WMT17): https://github.com/
AIPHES/emnlp19-moverscore/tree/master/
examples; BaryScore (WMT15-16): https:
//github.com/PierreColombo/nlg_eval_
via_simi_measures/tree/main/raw_score.
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metric cs-en de-en et-en fi-en ru-en tr-en zh-en avg

Reproduced
BaryScore-W 0.360 0.525 0.379 0.280 0.322 0.254 0.252 0.339
MoverScore-1 0.362 0.529 0.391 0.297 0.338 0.288 0.244 0.350
BERTScore-F1 0.376 0.538 0.393 0.295 0.341 0.290 0.244 0.354

Reported BERTScore-F1 0.375 0.535 0.393 0.294 0.339 0.289 0.243 0.353

Table 1: Reproduction: Segment-level Kendall’s τ on WMT18 to-English language pairs using the evaluation
script provided by Zhang et al. (2019). Reported values are taken from Zhang et al. (2019). Values in green
denote reproduced results that are better than the reported. Bold values refer to the best reproduced results with the
BERT-base-uncased model.

metric cs-en de-en fi-en lv-en ru-en tr-en zh-en avg

Reproduced

BaryScore-W 0.646 0.652 0.819 0.689 0.697 0.737 0.719 0.709
MoverScore-1 0.660 0.690 0.806 0.685 0.736 0.732 0.720 0.718
BERTScore-F1 0.655 0.682 0.823* 0.713 0.725 0.718 0.712 0.718
MoverScore-1+ 0.670* 0.708* 0.821 0.717* 0.738* 0.762* 0.744* 0.737*

Reported
MoverScore-1+ 0.670 0.708* 0.835* 0.746* 0.738* 0.762* 0.744* 0.743*
BERTScore-F1 0.670 0.686 0.820 0.710 0.729 0.714 0.704 0.719

Table 2: Reproduction: Segment-level Pearson’s r on WMT17 to-English language pairs using evaluation script
provided by Zhao et al. (2019). Reported results are cited from Zhao et al. (2019). + refers to using the finetuned
BERT-based-uncased model on MNLI. Values in green/red denote the reproduced results are better/worse than
the reported. Bold values refer to the best results with BERT-base-uncased model. Values with * denote the best
reproduced/reported results.

For unclear metric configurations, we keep them at
default. The configurations used here are:

• BERTScore We report the reproduced results
for BERTScore-F1 that uses BERT-base-uncased,
with the default layer 9 of the BERT representa-
tion for this model, and IDF-weighting.

• MoverScore We report the reproduced results
for unigram MoverScore (MoverScore-1) using
BERT-base-uncased or its finetuned version on
MNLI, the last five layers from BERT aggre-
gated by power means (Rücklé et al., 2018), IDF-
weighting, punctuation removal and subwords re-
moval (only keep the first subword in each word).

• BaryScore We report the reproduced results
for BaryScore5 that makes use of BERT-base-
uncased or its finetuned version on MNLI6, the
last five layers aggregated using Wasserstein
Barycenter, and IDF-weighting.

The metrics with finetuned models are marked with
+ in the following.

Results As Table 1 shows, we do not obtain iden-
tical results for BERTScore-F1 with Zhang et al.

5BaryScore outputs scores relying on Wasserstein distance
and those relying on Sinkhorn distance (Cuturi, 2013) together.
We report the results for Wasserstein distance, which are de-
noted as BaryScore-W or Bary-W.

6As the authors of BaryScore did not release their finetuned
model, we use the NLI model released by the authors of
MoverScore for BaryScore.

(2019) on WMT18 to-English language pairs. The
maximal deviation between the reported and repro-
duced results can be seen on the evaluated data for
de-en – around 0.003 absolute Pearson’s r. Most
of the deviations are about 0.001. This might be
because of tiny differences in rounding strategies
and random seeds7 etc. Further, among the three
evaluation metrics, BERTScore-F1 performs best,
whereas BaryScore is worst.

Table 2 displays the reproduction results on
WMT17 to-English language pairs, leveraging
the resources from Zhao et al. (2019). As for
MoverScore-1+, 5 out of 7 values can be perfectly
reproduced (excluding the average value). The un-
reproducible results on fi-en and lv-en are 0.012
and 0.031 lower than the reported, respectively. On
personal communication, the authors told us that
they changed the preprocessing for these settings,
which is impossible to identify from the released
paper or code. We obtain comparable average value
for BERTScore-F1 with Zhao et al. (2019) (0.718
vs. 0.719), but the results on individual language
pairs differ. Except for fi-en, MoverScore-1+ cor-
relates better with humans than BERTScore-F1,
which is in line with the observation from Zhao
et al. (2019). When applying the same BERT
model, BaryScore performs slightly worse than

7We noted that this evaluation script produces different
results every time, but the discrepancy across different runs in
the averaged correlations is tiny (∼0.001-0.002).
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WMT15 WMT16
metric cs-en de-en fi-en ru-en avg cs-en de-en ru-en fi-en ro-en tr-en avg

BERT-F 0.750 0.733 0.752 0.745 0.745 0.747 0.640 0.672 0.661 0.723 0.688 0.689
Mover-1 0.734 0.731 0.743 0.731 0.735 0.740 0.633 0.676 0.655 0.714 0.693 0.685
Bary-W 0.751 0.731 0.769 0.740 0.748 0.735 0.672 0.659 0.673 0.715 0.709 0.694
Mover-1+ 0.745 0.755* 0.774 0.765* 0.760 0.765* 0.676 0.696* 0.707* 0.742* 0.736 0.720*

Reproduced

Bary-W+ 0.753* 0.755 0.787* 0.763 0.764* 0.758 0.700* 0.677 0.706 0.732 0.744* 0.720

BERT-F 0.743 0.722 0.747 0.740 0.738 0.741 0.653 0.651 0.654 0.702 0.707 0.685
Mover 0.688 0.718 0.700 0.686 0.698 0.674 0.609 0.644 0.631 0.642 0.661 0.644
Bary 0.742 0.741 0.766 0.737 0.747 0.742 0.646 0.675 0.671 0.725 0.693 0.692
Mover+ 0.710 0.711 0.722 0.673 0.704 0.707 0.624 0.640 0.645 0.664 0.663 0.657

Reported

Bary+ 0.759* 0.758* 0.799* 0.776* 0.773* 0.766* 0.685* 0.694* 0.702* 0.743* 0.738* 0.721*

Table 3: Reproduction: Segment-level Pearson’s r on WMT15-16 using evaluation script provided by Colombo et al.
(2021). Reported values are cited from Colombo et al. (2021). + represents using the fine-tuned BERT-base-uncased
model on MNLI. Values in green/red denote the reproduced results are better/worse than the reported. Bold values
refer to the best results with BERT-base-uncased model. Values with * denote the best reproduced/reported results.

the other two metrics, except for tr-en.
Table 3 shows the results of the reproduction at-

tempts on WMT15-16 based on the code and data
provided by Colombo et al. (2021). Colombo et al.
(2021) reported Pearson, Spearman and Kendall
correlation with human ratings; we relegate the
reproduction results for Kendall and Spearman
correlation, which are similar to those for Pear-
son correlation, to Section A.2. We are not able
to reproduce identical values for any evaluation
metric, even for BaryScore. However, the repro-
duced results for BaryScore and BaryScore+ are
comparable with the reported – around 0.001 Pear-
son off the reported average values in 3 out of 4
cases. For BERTScore-F1, the reproduced aver-
age values are around 0.005 Pearson better than
the reported, while for MoverScore/MoverScore+,
they are about 0.05 Pearson better. Colombo et al.
(2021) observed that BaryScore+ performs best
on all language pairs in WMT15-16, which is in-
consistent with our observation: MoverScore-1+

outperforms BaryScore+ on half the language pairs
in these two datasets. With BERT-base-uncased,
BaryScore performs best among the three evalua-
tion metrics on these two datasets, however — it
achieves the highest correlation on 6 out of 10 lan-
guage pairs.

Summary We can rarely reconstruct identical
values but obtained comparable results for the three
discussed metrics, even when some of the metric
configurations are missing. However, we can over-
all not reproduce the conclusions for three main
reasons: (i) authors report lower scores for competi-
tor metrics; (ii) authors selectively evaluate on spe-
cific datasets (maybe omitting those for which their
metrics do not perform well?); (iii) unlike the au-

thors of BERTScore, the authors of BaryScore and
MoverScore do not provide a unique hash, making
reproduction of the original values more difficult;
(iv) undocumented preprocessing involved.

Following the three reproduction attempts, we
cannot conclude that the newer approaches are bet-
ter than the prior ones (BertScore), as Zhao et al.
(2019) and Colombo et al. (2021) claim. We also
point out that the three metrics perform very simi-
lar when using the same underlying BERT model;
using a BERT model fine-tuned on NLI seems to
have a bigger impact. This casts some doubt on
whether the more complicated word alignments (as
used in BaryScore and MoverScore) really have a
critical effect.

SentSim For reference-free evaluation, Song
et al. (2021) use MLQE-PE as their primary eval-
uation dataset. They compare SentSim to so-
called glass-box metrics which actively incorpo-
rate the MT system under test into the scoring pro-
cess (Fomicheva et al., 2020a).

Using the original model configuration, we were
able to exactly reproduce the reported scores for all
SentSim variants on MLQE-PE. However, we no-
ticed that the provided code for loading the dataset
does not retrieve human judgments but averaged
log-likelihoods of the NMT model used to generate
the hypotheses. Since computing correlations with
model log-likelihoods is not meaningful and the
z-standardized means of the human judgments that
should have been used instead are in an adjacent
column of the dataset, we assume that this is an
off-by-one error.

Table 4 shows how much fixing this error af-
fects the achieved correlations of BERTScore- and
WMD-based SentSim. The baselines were not af-
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metric en-de en-zh ru-en ro-en et-en ne-en si-en avg

SentSim(BERTScore-based) 6.15 22.23 47.30 78.55 55.09 57.09 51.14 45.36
Fixed

SentSim(WMD-based) 3.86 22.62 47.46 77.72 54.60 57.00 49.79 44.72

SentSim(BERTScore-based) 48.40 42.70 47.50 72.70 55.30 39.20 42.60 49.80
Reported

SentSim(WMD-based) 47.20 42.70 47.60 72.40 55.30 39.00 42.60 49.50

D-TP 25.90 32.10 — 69.30 64.20 55.80 46.00 48.90
Baselines

D-Lex-Sim 17.20 31.30 — 66.30 61.20 60.00 51.30 47.90

Table 4: Correlations of SentSim on MLQE-PE with model log-likelihoods (Reported), as erroneously done in
the official paper, and with human judgments (Fixed). The green and red highlighted results on human judgments
indicate that they are better or worse than the corresponding results computed with log-likelihoods. We cite baseline
scores from Fomicheva et al. (2020a).

fected by this, as Song et al. (2021) copied their
scores from their original papers. Evaluation on
human judgments leads to vast score differences
on many language pairs. This is especially no-
ticeable for English-German and English-Chinese
language pairs, where the correlations achieved
with our fixed implementation are substantially
worse. This result is much more in line with
the findings of related research, which also notes
very poor performance for these languages on this
dataset (Fomicheva et al., 2020b; Specia et al.,
2020). We note that after fixing the error, SentSim
falls below the baselines, which it had otherwise
outperformed.

4.2 Reproduction for other tasks

In Section A.3, we reproduce results for other tasks,
especially summarization, image captioning and
data-to-text generation, with a focus on Mover-
Score. We find that we can only reproduce the
reported results for summarization, and our results
are on average 0.1 Pearson’s r (-12.8%) down for
IC and 0.06 Spearman’s ρ (-27.8%) down for D2T
generation. A reason is that the authors of Mover-
Score did not release their evaluation scripts and we
can only speculate as to their employed preprocess-
ing steps. As long as these are not reported in the
original papers or released code, claims regarding
performance of the metrics are hard to verify.8

5 Sensitivity Analysis

In the previous section, we have seen that prepro-
cessing may play a vital role for obtaining state-
of-the-art results (at least for some of the metrics).
Similar to the case of BLEU (Post, 2018), we now

8We cannot rule out the possibility that we made mistakes
in our reproduction attempts (e.g., incorrect evaluation scripts
or use of datasets), but the unavailability of the resources
makes the detection of potential errors difficult.

examine this aspect in more detail.
According to the papers and evaluation scripts,

MoverScore uses the following main preprocessing
steps (besides those handled by BERT): (i) Sub-
words Removal: discard BERT representations
of all subwords except the first. (ii) Punctuation
Removal: discard BERT representations of punc-
tuations. (iii) Stopwords Removal: discard BERT
representations of stopwords (only for summariza-
tion).9 The preprocessing steps for BERTScore
and BaryScore are only related to lowercasing and
tokenization, both of which are handled by BERT.
We observe that (i) MoverScore uses much more
preprocessing than BERTScore and BaryScore on
WMT datasets; (ii) authors may take different pre-
processing steps for different tasks, e.g., Zhao et al.
(2019) remove stopwords for summarization but
not for MT.

Besides preprocessing in a narrower sense, all
three considered evaluation metrics use parameters.
This makes them more flexible, but also compli-
cates reproduction: the difference in one param-
eter setting can lead to reproduction failure. We
study the impact of the parameters related to IDF-
weighting. IDF-weighting measures how critical
a word is to a corpus; thus, it is corpus-dependent.
The choice of corpus may lead to deviations of
metric scores.

MoverScore is the main experiment object in
the remainder. Compared to the other metrics, its
authors took more preprocessing steps to achieve
the results in their paper, suggesting that it is more
likely to obtain uncomparable scores across dif-
ferent users when using MoverScore. We will
also investigate the sensitivity of BERTScore to
the factors discussed above; we omit BaryScore
and SentSim from further consideration. Impor-

9In Section A.4, we describe subword removal and stop-
word and punctuation removal used in MoverScore.
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tantly, we move beyond English-only evaluation,
as reported in the original MoverScore paper. This
will estimate how much uncertainty there is from
preprocessing when a user applies MoverScore to
a non-English language pair, which requires new
IDF corpora, new stopword lists and may have
higher morphological complexity (which is related
to choice of subwords).

We use two statistics to quantify the sensitivity
of the evaluation metrics. When there are only
two compared values a, b, we compute Relative
Difference (RD) to reflect the relative performance
variation regarding a certain parameter. When there
are more than two compared values, we compute
Coefficient of Variation (CV) to reflect the extent
of variability of the metric performance:

RD(a, b) =
a− b

b
∗ 100%,

CV(x) =
σ

µ
∗ 100%

where σ is the standard deviation and µ is the mean
of a set of values x. Larger absolute values of the
statistics indicate higher sensitivity of the evalua-
tion metrics.

We only consider MT and summarization eval-
uation in this part. In each experiment, we only
adjust the settings of the tested factors and keep the
others default (given in Section A.5). In addition to
English (“to-English”), we consider MT evaluation
for other 6 languages (“from-English”), for which
we use multilingual BERT: Chinese (zh), Turkish
(tr), Finnish (fi), Czech (cs), German (de), and Rus-
sian (ru). Note that in these cases, we compare
a Chinese reference to a Chinese hypothesis and
analogously for the other languages.

5.1 Stopwords Removal

In this experiment, we consider 4 stopword set-
tings including disabling stopwords removal and
applying 3 different stopword lists for the exam-
ined languages. We obtain the stopword lists from
the resources listed in Section A.6. We inspect
the sensitivity of MoverScore-1, MoverScore-2
(MoverScore using bigrams) and BERTScore-F1
to stopword settings, despite that BERTScore does
originally not employ stopwords.

For English MT, we calculate CV of the corre-
lations with humans over the 4 stopword settings
for each language pair in the datasets, then aver-
age CVs over the language pairs in each dataset

Figure 1: From top to bottom: CVSTOP, CVIDF, CVSUB.
WMT17-19, segment-level evaluation, MoverScore-1.
x-en denotes the average results on all to-English lan-
guage pairs (where metrics operate on English texts).

to obtain the average CV per dataset. For summa-
rization, we calculate CV of the correlations over
the 4 stopword settings for each criterion on each
dataset.10

Results On segment-level MT, as Figure 1 (top)
shows, the sensitivity varies across datasets and
languages. Most of the CVSTOP are in range of 2-
4%. This leads to 6-11% absolute variation of the
metric performance when the average correlation
is, for example, 0.7 (95% confidence interval). For
some datasets and languages, the variation is even
more pronounced: for example, for Russian on
WMT17, the CVSTOP is above 10%.

Among the examined metrics, MoverScore-2 be-
haves slightly more sensitively than MoverScore-1,
whereas BERTScore-F1 is much more sensitive
than MoverScore-1 on Chinese and English. Com-
pared to other tasks, stopwords removal has the
largest (but negative) impact in segment-level MT
evaluation (cf. Section A.7).

10TAC datasets have human judgements according to two
criteria: Responsivenss and Pyramid; details are given in
Section A.1.
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(a) RD(dis,ori)

(b) RD(dis,pr)

Figure 2: RD(dis,ori) (for IDF weighting), RD(dis,pr)
(for punctuation removal). WMT17-19, segment-level
evaluation, MoverScore-1. The top graphs in (a) and
(b) are the results on to-English language pairs (where
metrics operate on English texts), whereas the bottom
ones are those on from-English language pairs (where
metrics operate on texts in other languages).

5.2 IDF-weighting

In this test, we first disable IDF-weighting for the
evaluation metrics (idfdis), and compare the metric
performance to that when applying original IDF-
weighting11 (idfori) by calculating the RD between
them. We denote this statistic as RD(dis,ori); neg-
ative values indicate idfori works better and vice
versa. Next, to inspect the sensitivity to varying
IDF-weighting corpora, we apply IDF-weighting
from four randomly generated corpora to the eval-
uation metrics additionally (idfrand): each corpus

11The original IDF weights for MoverScore are ex-
tracted from the reference and hypothesis corpus; those for
BERTScore are computed using the reference corpus.

consists of 2k English segments randomly selected
from the concatenated corpus of all tested datasets.
The corresponding variability of the metric perfor-
mance is quantified by the CV of the correlations
with humans over the 5 IDF-weighting corpus se-
lections (idfori + 4 idfrand), marked with CVIDF. We
examine the sensitivity regarding IDF-weighting
of MoverScore-1, MoverScore-2, and BERTScore-
F1. Subsequently, we test the IDF-weighting from
large-scale corpora (idflarge). These corpora are
obtained from Hugging Face Datasets.12

Results As seen in Figure 2(a), RD(dis,ori) is
positive on only one to-English language pair
(WMT19 kk-en), but on three from-English lan-
guage pairs (WMT17 en-de, en-zh, and en-tr).
Overall, IDF-weighting is thus beneficial. The
maximal performance drops are on WMT19 de-
en ( >35%) and en-de ( >10%), respectively. Most
RD(dis,ori) have absolute values <5%. This means,
suppose the correlation is 0.7, the performance
can fall by around 0.035 because of disabling IDF-
weighting.

Next, CVIDF for segment-level MT is presented
in Figure 1 (middle). In English evaluation, the
maximal variation is also caused by the result for
de-en in WMT19, where idfori yields considerably
better result than idfrand (0.22 vs. 0.17 Kendall’s
τ ). While en-de has CV values above 4.5%, most
CVIDF are smaller than 1%.

BERTScore-F1 is less sensitive to IDF-
weighting than both MoverScore variants. Among
the evaluation tasks, the metrics are again most
sensitive on segment-level MT, where for English,
idfori works best for MoverScore (even idflarge can-
not improve its performance), while idfrand and
idfori are almost equally effective for BERTScore-
F1 (cf. Section A.9).

5.3 Subwords & Punctuation

In this experiment, we evaluate the sensitivity to
(i) subword selection and (ii) punctuation removal
(PR). (i) In addition to the original two selections
of subwords (keeping the first subword and keep-
ing all subwords), we also average the embeddings
of the subwords in a word to get the word-level
BERT representations. To quantify the sensitiv-
ity to subword selection, we calculate CV of the
correlations with humans over the 3 subword se-
lections, denoted as CVSUB. (ii) We measure the

12https://huggingface.co/datasets. The cor-
pora used here are listed in Section A.8.
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performance change from using to disabling PR by
calculating the RD between them, which we denote
as RD(dis,pr); negative values indicate MoverScore
with PR performs better and vice versa. We inspect
the corresponding sensitivity of MoverScore-1.

Results Figure 2(b) shows that most RD(dis,pr)
have absolute values <1%, while both values for
en-tr are >3%. Further, the CVSUB for segment-
level MT is presented in Figure 1 (bottom). The
average CVSUB over all datasets for most languages
are <2%, whereas highly inflectional languages
such as Turkish and Russian are considerably more
sensitive, with average values >4%.

Similar as for stopwords and IDF weight-
ing, MoverScore-1 behaves most sensitively on
segment-level MT, where the default configuration
of PR and subwords, which uses the first subword
and removes punctuations, works best for English.
However, for other languages, only in 2 out of 16
cases is it best to select the default configuration
(cf. Section A.10). As the authors of MoverScore
only reported the results on English data, they may
thus select an optimal preprocessing strategy only
for that case.

5.4 Discussion

We summarize the findings from the previous ex-
periments along 4 dimensions.

Evaluation Tasks: Among the considered NLG
tasks, BERT-based evaluation metrics are more
likely to generate inconsistent scores in segment-
level MT evaluation. Their sensitivity is less
pronounced in system-level MT and summariza-
tion. In the latter two cases, average scores are
considered, over the translations within one sys-
tem or over the multiple references. Thus, some
of the variation in metric scores will cancel out,
leading to a less fluctuating metric performance
from varying preprocessing schemes. Evalua-
tion metrics: Among the two variants of Mover-
Score, MoverScore-2 are more sensitive to param-
eter settings. BERTScore-F1 behaves less sensi-
tively to IDF-weighting than MoverScore while it
behaves much more sensitively to stopwords in the
evaluation of Chinese and English compared with
MoverScore-1. Languages: Overall, the consid-
ered evaluation metrics have different sensitivities
in different languages. Furthermore, highly inflec-
tional languages such as Turkish and Russian as
well as German often become “outliers” or obtain
extrema in our experiments. Importance of fac-

tors: Stopwords removal has the largest but mostly
negative impact. IDF-weighting positively impacts
evaluation metrics in English evaluation but its con-
tribution is much less stable in the evaluation of
other languages. MoverScore benefits from sub-
words and punctuation removal in segment-level
MT evaluation for English, but on other tasks or
for other languages, no configuration of PR and
subword selection consistently performs best.

6 Conclusion
We investigated reproducibility for BERT-based
evaluation metrics, finding several problematic as-
pects, including using heavy undocumented pre-
processing, reporting lower scores for competitors,
selective evaluation on datasets, and copying cor-
relation scores from wrong indices. Our findings
cast some doubts on previously reported results
and findings, i.e., whether more the complex align-
ment schemes are really more effective than the
greedy alignment of BERTScore. In terms of pre-
processing, we found that it can have a large ef-
fect depending (a.o.) on the languages and tasks
involved. For a fairer comparison between met-
rics, we recommend to (1) additionally report the
results on the datasets that the competitors used,
(2) check whether the used versions of the com-
petitor metrics can obtain comparable results as in
the original papers, and (3) minimize the role of
preprocessing (ideally employing uniform prepro-
cessing across metrics). On the positive side, as
authors are nowadays much more willing to pub-
lish their resources, it is considerably easier to spot
such problems, which may also be one reason why
critique papers such as ours have become more pop-
ular in the last few years (Beese et al., 2022). In a
wider context, our paper contributes to addressing
the “cracked foundations” of evaluation for text
generation (Gehrmann et al., 2022) and to better
understanding their limitations (Leiter et al., 2022).

In the future, we would like to reproduce more
recent BERT-based metrics — e.g., with other ag-
gregation mechanisms (Chen et al., 2020), normal-
ization schemes (Zhao et al., 2021), different de-
sign choices (Yuan et al., 2021; Chen and Eger,
2022), or metrics that use supervision (Rei et al.,
2020; Sellam et al., 2020; Rony et al., 2022) — to
obtain a broader assessment of reproducibility is-
sues in this context. We would also like to quantify,
at a larger scale, the bias in research induced from
overestimating one’s own model vis-à-vis competi-
tor models.
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7 Limitations

Limitations of our work include (1) a limited num-
ber of explored evaluation metrics, (2) a restricted
focus on MT only and (3) reliance on author-
provided reproduction resources.

(1) Although we did point out very important is-
sues, we only reproduced four metrics. Further, the
sensitivity analysis only concerned two evaluation
metrics. In the future, we would like to include
more reproducibility studies on recent BERT-based
evaluation metrics for a broader analysis. It is pos-
sible that our particular sample is representative of
more severe underlying problems in the community
or that it is particularly affected by reproducibility
issues.

(2) Our reproduction attempts, with the excep-
tion of MoverScore, focused only on MT. For exam-
ple, the authors of BaryScore also reported results
on summarization, IC, and D2T generation, which
(for computational costs) we did not considered in
this work. While we believe that our findings gen-
eralize from MT to other tasks, we did not confirm
this expectation experimentally.

(3) Our reproduction attempts were mainly based
on the author-provided resources, such as the code
and datasets they released, with which we could
obtain comparable results in most instances. Nev-
ertheless, we did not investigate their legitimacy,
e.g., whether the implementation of the approach
is in accordance with the description in its paper or
whether the datasets uploaded by the authors are
the official ones, etc.
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A Appendix

A.1 Datasets

A.1.1 Machine Translation
Each WMT dataset contains evaluation data for
different pairs of source and translation languages.
Two types of human judgments serve as the golden
standard. The first one is Direct Assessment (DA),
which contains human scores for each translation.
The second one is DArr, which consists of con-
clusions about one translation being better than
another drawn from DA scores. According to Bo-
jar et al. (2017), Ma et al. (2018) and Ma et al.
(2019), when there is insufficient amount of DA
scores for each individual translation (smaller than
15), DArr is then considered. In this work, We
follow the official instructions to calculate corre-
lations of evaluation metrics with DA judgments
using absolute Pearson’s r, and with DArr judg-
ments using Kendall’s τ -like formulation proposed
by Bojar et al. (2017). On those datasets, DA al-
ways serve as the golden truth for system-level
evaluation. For segment-level evaluation, WMT18
and WMT19 use DArr, WMT15 and WMT16 rely
on DA, and WMT17 uses DA for all to-English and
2 from-English languages pairs (en-ru and en-zh)
and DArr for the remaining from-English language
pairs.

A.1.2 Text Summarization
Each TAC dataset contains several clusters each
with 10 news articles. There are more than 50 sys-
tem and 4 reference summaries with fewer than
100 words for each article. Each system summary
receives 4 human judgements according to two
criteria: 1) Pyramid, which reflects the level of
content coverage of the summaries; and 2) Respon-
sivenss, which measures the response level to the
overall quality of linguistic and content of the sum-
maries. The difference between these two datasets
is the fact that TAC2008 contains 48 clusters and
summaries from 57 systems, while TAC2009 con-
tains 44 clusters and summaries from 55 systems.
Zhao et al. (2019) calculated Pearson and Spear-
man correlation with summary-level human judg-
ments when evaluating MoverScore. In addition,
We compute Kendall correlation as well, allowing
for a comparison among the three correlations.

A.1.3 Image Captioning
Following Cui et al. (2018), Zhao et al. (2019)
evaluated MoverScore on the validation set of

MSCOCO, which contains roughly 40k images
each with 5 reference and 12 system captions. Be-
sides, there are system-level human judgements
about 5 criteria: M1-M5 (Anderson et al., 2016).
In the reproduction experiment, following the ex-
periment setup of Zhao et al. (2019), We calcu-
late Pearson correlation with M1 and M2 scores,
which refer to the ratio of captions better or equal
to human captions and the ratio of captions indis-
tinguishable from human captions, respectively.

A.1.4 Data-to-Text Generation
There are 202 Meaning Representation (MR) in-
stances in BAGEL and 398 MR instances in SFHO-
TEL datasets. Multiple references and about two
system utterances exist for each MR instance. The
datasets provide utterance-level human judgments
according to 3 criteria: 1) informativeness, which
measures how informative the utterance is; 2) nat-
uralness, which refers to the similarity extent be-
tween a system utterance and an native speaker-
generated utterance; 3) quality, which reflects the
fluency and grammar level of a system utterance
(Novikova et al., 2017). In the reproduction exper-
iment, We follow Zhao et al. (2019) to calculate
Spearman correlation with utterance-level human
judgements about these 3 criteria.

A.2 Reproduction on WMT15-16

Table 5 and 6 display the reproduced Spearman and
Kendall correlations on WMT15 and WMT16.

A.3 Reproduction of other tasks

Zhao et al. (2019) released the evaluation scripts for
WMT17 and TAC2008/2009 and the correspond-
ing datasets on a github13. We take them as the
resources for reproduction. As for IC and D2T
generation evaluation, we write our own evaluation
scripts and download those datasets on our own.
We obtained MSCOCO, BAGEL, and FSHOTEL
datasets from an open question14 on its Github
page, where Zhao et al. (2019) provided the links
to download them. Since Zhao et al. (2019) did not
provide much information about how they evalu-
ated on MSCOCO, we also inspect the BERTScore
paper (Zhang et al., 2019), where the authors gave
details of the evaluation process. As each system
caption in MSCOCO has multiple references, it

13https://github.com/AIPHES/emnlp19-
moverscore

14https://github.com/AIPHES/emnlp19-
moverscore/issues/16
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WMT15 WMT16
metric cs-en de-en fi-en ru-en avg cs-en de-en ru-en fi-en ro-en tr-en avg

BERT-F1 0.750* 0.720 0.731 0.712 0.728 0.749 0.643 0.661 0.660 0.706 0.666 0.681
Mover-1 0.728 0.721 0.722 0.696 0.717 0.737 0.626 0.671 0.650 0.696 0.669 0.675
Bary-W 0.747 0.705 0.757 0.709 0.730 0.730 0.650 0.649 0.660 0.699 0.671 0.676
Mover-1+ 0.737 0.741* 0.753 0.733 0.741 0.755* 0.662 0.685* 0.700 0.722* 0.702* 0.704*

Reproduced

Bary-W+ 0.744 0.734 0.771* 0.734* 0.746* 0.751 0.680* 0.667 0.701* 0.719 0.702 0.703

BERT-F1 0.735 0.707 0.725 0.705 0.718 0.736 0.646 0.646 0.641 0.676 0.671 0.669
Mover 0.701 0.694 0.700 0.655 0.688 0.695 0.591 0.628 0.622 0.654 0.640 0.638
Bary 0.738 0.722 0.745 0.706 0.728 0.743 0.642 0.664 0.664 0.714 0.671 0.683
Mover+ 0.711 0.682 0.720 0.647 0.690 0.704 0.607 0.622 0.626 0.660 0.607 0.638

Reported

Bary+ 0.752* 0.745* 0.787* 0.750* 0.759* 0.762* 0.677* 0.683* 0.695* 0.730 0.705 0.709*

Table 5: Reproduction: Segment-level Spearman correlation on WMT15-16 using evaluation script provided by
Colombo et al. (2021). Reported values are cited from Colombo et al. (2021). + represents using the fine-tuned
bert-base-uncased model on MNLI. Values in green/red denote the reproduced results are better/worse than the
reported. Bold values refer to the best results with bert-base-uncased model. Values with * denote the best
reproduced/reported results.

WMT15 WMT16
metric cs-en de-en fi-en ru-en avg cs-en de-en ru-en fi-en ro-en tr-en avg

BERT-F1 0.559* 0.541 0.547 0.532 0.545 0.564 0.474 0.483 0.484 0.520 0.485 0.502
Mover-1 0.537 0.538 0.540 0.515 0.532 0.552 0.458 0.488 0.475 0.510 0.487 0.495
Bary-W 0.551 0.528 0.566 0.525 0.543 0.543 0.477 0.471 0.484 0.513 0.491 0.496
Mover-1+ 0.544 0.556* 0.569 0.546* 0.554 0.566* 0.486 0.499* 0.513 0.533* 0.518* 0.519*

Reproduced

Bary-W+ 0.549 0.553 0.580* 0.546* 0.557* 0.561 0.499* 0.485 0.516* 0.529 0.518 0.518

BERT-F1 0.543 0.529 0.541 0.525 0.535 0.555 0.463 0.469 0.470 0.495 0.490 0.490
Mover 0.520 0.503 0.523 0.469 0.504 0.526 0.442 0.448 0.451 0.482 0.437 0.464
Bary 0.549 0.531 0.563 0.532 0.544 0.563 0.479 0.481 0.483 0.529 0.514 0.508
Mover+ 0.520 0.503 0.529 0.473 0.506 0.534 0.448 0.452 0.458 0.486 0.449 0.471

Reported

Bary+ 0.569* 0.562* 0.597* 0.567* 0.574* 0.575* 0.500* 0.513* 0.509* 0.545* 0.524* 0.528*

Table 6: Reproduction: Segment-level Kendall correlation on WMT15-16 using evaluation script provided by
Colombo et al. (2021). Reported values are cited from Colombo et al. (2021). + represents using the fine-tuned
bert-base-uncased model on MNLI. Values in green/red denote the reproduced results are better/worse than the
reported. Bold values refer to the best results with bert-base-uncased model. Values with * denote the best
reproduced/reported results.

is critical to know how to obtain the caption-level
scores. Zhang et al. (2019) clearly state that they
use the maximal score for each caption as its fi-
nal score. According to the evaluation scripts for
TAC2008/2009 from Zhao et al. (2019), they av-
eraged the scores for each summary to obtain the
summary-level scores, so we assume they might
apply the same strategy on MSCOCO. Therefore,
we test these two strategies in the reproduction
experiment for IC. To check the reliability of our
evaluation script, we use it to reproduce the re-
sults reported in the BERTScore paper as well. If
one can get comparable correlations and the other
can not, it may suggest that the authors did extra
processing to achieve the results, such as more pre-
processing steps on the dataset. The configurations
of the evaluation metrics used here are the same as
in reproduction attempts on MT.

dataset BAGEL SFHOTEL
criteria Inf Nat Qual Inf Nat Qual

original 0.285 0.195 0.158 0.207 0.270 0.183
reproduced 0.244 0.145 0.092 0.223 0.167 0.065
reproduced (stopwords) 0.230 0.135 0.078 0.208 0.145 0.042

Table 7: Reproduction: Utterance-level Spearman corre-
lations of MoverScore-1 on BAGEL and SFHOTEL
datasets. Original results are citet from Zhao et al.
(2019). Bold values refer to the reproduced resutls that
are better than the original.

Results Overall, we could only reconstruct the
identical values for summarization in these 3 repro-
duction attempts.

Table 7 displays the reproduction results for D2T
generation. The reproduced scores with/without
stopwords removal go down 0.1/0.08 on average.
The maximum deviation is reached in the evalua-
tion of quality on SFHOTEL, down up to 0.14 ab-
solute Spearman correlation. Only two reproduced

2979



metric MoverScore-1 BERTScore-R
criteria M1 M2 M1 M2

original 0.813 0.810 0.834 0.783
reproduced (mean) 0.687 0.674 - -
reproduced (max) 0.690 0.714 0.851 0.793
reproduced (mean+stopwords) 0.707 0.709 - -
reproduced (max+stopwords) 0.686 0.718 - -

Table 8: Reproduction: System-level Pearson correla-
tions of MoverScore-1 and BERTScore-R on MSCOCO
dataset. Original results are citet from Zhao et al. (2019)
and Zhang et al. (2019). Bold values refer to the repro-
duced resutls that are better than the original.

values are higher than the original, which are the
results for informativeness on SFHOTEL dataset.
Besides, the reproduced values also deviate least in
the assessment of this criterion on both datasets. As
for IC, as Table 8 shows, the correlations for Mover-
Score are down by over 0.1 across all evaluation
setups. Nevertheless, BERTScore-Recall performs
even on average 0.03 better in our evaluation. This
kind of inconsistency between the reproduction re-
sults for these two evaluation metrics may suggest
that Zhao et al. (2019) did more preprocessing in
the evaluation of IC, which is impossible for others
to identify if the authors neither document them
nor share the relevant code. In contrast, although
different preprocessing schemes were applied to
MT and summarization evaluation, it is possible to
reproduce most of the values because Zhao et al.
(2019) released the evaluation scripts. All of the
facts mentioned imply the importance of sharing
code and data for reproducibility. However, even
with the author-provided code and datasets, there
is no guarantee that the results can be perfectly re-
produced. The authors may ignore some details of
the evaluation setup or metric configurations.

A.4 Subwords, Stopwords, Punctuation

Subword Removal BERT leverages a subword-
level tokenizer, which breaks a word into subwords
when the full word is excluded from its built-in
vocabulary (e.g., smarter → smart, ##er). BERT
automatically tags all subwords except the first one
with ##, so we can easily remove them. There are
two advantages to doing so. Firstly, it can speed
up the system due to the smaller number of embed-
dings to process. Secondly, it is sometimes equally
effective to lemmatization or stemming. E.g., the
suffix er of the word smarter can be removed with
this. In some cases, it may keep a less informative
part; e.g., the prefix un in the word unhappy.

Stopwords Removal & Punctuation Removal
Both of these two common preprocessing tech-
niques aim to remove less relevant parts of the
text data. A typical stopword list consists of func-
tion words such as prepositions articles and con-
junctions. As an example, MoverScore achieves
a higher correlation with human judgments when
removing stopwords on text summarization.

A.5 Default configuration of evaluation
metrics

• MoverScore For English evaluation, we use
the released version of MoverScore, which
makes use of 1) BERT base uncased model
finetuned on MNLI dataset, 2) the embeddings
of the last five layers aggregated by power
means, 3) punctuation removal and the first
subword, and 4) IDF-weighting from refer-
ences and hypotheses separately. we disable
stopwords removal in the whole experiment
except stopwords tests. For other languages,
we replace the model with multilingual BERT
base uncased, to keep in line with English
evaluation.

• BERTScore For English evaluation, we use
BERTScore incorporating with BERT base
uncased model, the default layer 9, and IDF-
weighting from the references. For other lan-
guages, similar to MoverScore, we replace the
model with multilingual BERT base uncased
model.

A.6 Stopword lists
For English, the first stopword list is obtained from
the Github repository of MoverScore15, which con-
tains 153 words. Since users may first choose ex-
isting stopword lists from popular libraries, we
consider the stopword lists from NLTK (Bird et al.,
2009) and SpaCy (Honnibal and Montani, 2017),
which consist of 179 and 326 words, respectively.

We obtain the stopword lists for other languages
from:

I. NLTK (Bird et al., 2009);

II. SpaCy (Honnibal and Montani, 2017);

III. a Github repository containing stopword lists
for many languages; 16

15https://github.com/AIPHES/emnlp19-
moverscore/blob/master/examples/
stopwords.txt

16https://github.com/orgs/stopwords-
iso/repositories?type=all
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Segment-level System-level
Metric WMT17-r WMT18-τ WMT19-τ AVG WMT17-r WMT18-r WMT19-r AVG

Mover-1 2.18% 2.00% 1.42% 1.87% 0.44% 0.20% 0.12% 0.25%
Mover-2 2.09% 2.04% 1.99% 2.04% 0.14% 0.16% 0.20% 0.17%
BERT-F1 8.74% 8.18% 6.24% 7.72% 0.16% 0.48% 0.25% 0.30%

Table 9: CVSTOP on WMT17-19 to-English language pairs.

IV. a dataset on Kaggle containing stopword lists
for many languages 17;

V. a Github repository containing Chinese stop-
word lists 18;

VI. a web containing stopword lists for many lan-
guages 19.

Below are the size of each stopword list and its
resource:

• tr: 551(II); 53(I); 504(III);

• de: 543(II); 231(I) 620(III);

• ru: 264(II); 151(I) 556(III);

• cs: 423(III); 405(VI) 256(IV);

• fi: 747(VI); 847(III) 229(IV);

• zh: 747(V); 1891(II) 794(III);

A.7 Other results for stopwords

Table 9 and Figure 3 display the CVSTOP in English
evaluation. We can observe that: (i) Among the
three evaluation metrics, MoverScore-1 is least sen-
sitive to stopwords removal, while BERTScore-F1
behaves most sensitively. (ii) The metrics are most
sensitive in segment-level MT evaluation among
the examined evaluation tasks. (iii) Kendall’s τ
varies most with changing stopword settings, while
Pearson is least sensitive. In other language en-
vironment, we can also observe that the metrics
are more sensitive at segment-level than at system-
level (Figure 8, 10 and 12 (top)). Further, except
for Chinese and English, where BERTScore-F1 be-
haves much more sensitively than MoverScore-F1,
the difference between their sensitivity is less pro-
nounced (see Figure 1 and 10 (top)).

17https://www.kaggle.com/heeraldedhia/
stop-words-in-28-languages

18https://github.com/goto456/stopwords
19https://countwordsfree.com/stopwords/

metric BERTScore-F1 MoverScore-1
dataset WMT17 WMT18 WMT19 WMT17 WMT18 WMT19

en 0 0 0 0 0 0
zh 0 0 0 0 0 0
de 0 0 0 0 0 0
ru 0 0 0 0 0 0
fi 0 0 0 0 0 229
cs 0 0 - 0 0 -
tr 504 551 - 504 551 -

Table 10: Distribution of the best stopword settings for
all tested languages in segment-level MT evaluation.
Values indicate the size of the stopword lists.

Figure 4 illustrates the distribution of the best
stopword settings for English. In segment-level
MT evaluation (Figure 4(a)), there is only one case
that the best result is achieved by removing stop-
words, which takes place on MoverScore-1. In con-
trast, the best stopword lists for system-level MT
evaluation can be any of the settings for all evalua-
tion metrics (Figure 4(b)). However, in about 50%
of the test cases, MoverScore still performs best
when disabling stopwords removal. In Pyramid
evaluation (Figure 4(c)), MoverScore-1 achieves
the best results using the original stopword list
for all test cases, whereas disabling stopwords re-
moval is still the best choice for MoverScore-2
and BERTScore-F1. In the evaluation of Respon-
siveness ((Figure 4(d))), two cases (33.3%) can
be seen that MoverScore-1 applying the original
stopword list performs best; this happens only once
on MoverScore-2 (16.7%). BERTScore-F1 never
benefit from stopwords removal on all evaluation
tasks.

Further, in Table 10, we present the best
stopword setting for all examined languages in
segment-level MT evaluations. Except Finnish
and Turkish, disabling stopwords removal is al-
ways the best choice for all other languages. For
Finnish, only on one dataset, MoverScore-1 per-
forms better using stopwords removal, whereas,
for Turkish, both evaluation metrics achieve the
best performance applying the same stopword lists.
The reason might be that both Turkish and Finnish
belong to agglutinative languages, and those lan-
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Figure 3: CVSTOP on TAC2008-2009.

Figure 4: Distribution of the best stopword setting of each evaluation metric on each evaluation task for English.
The rings from the inside to the outside represent MoverScore-1, MoverScore-2 and BERTScore-F1. For MT, each
language pair in WMT datasets is regarded as a test case, resulting in 21 test cases (3 datasets times 7 language
pairs). For summarization tasks, each type of correlation is regarded as a test case for each criterion, resulting in 6
test cases (3 correlations times 2 datasets). The MoverScore (153) and SpaCy (179) stopword lists yield exactly the
same results.
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Segment-level System-level
Metric WMT17-r WMT18-τ WMT19-τ AVG WMT17-r WMT18-r WMT19-r AVG

Mover-1 0.13% 0.67% 2.56% 1.12% 0.05% 0.06% 0.21% 0.11%
Mover-2 0.78% 1.19% 3.84% 1.94% 0.25% 0.17% 0.49% 0.30%
BERT-F1 0.20% 0.32% 0.41% 0.31% 0.05% 0.02% 0.08% 0.05%

Table 11: CVIDF for WMT17-19 to-English language pairs.

Pyramid Responsiveness
TAC2008 TAC2009 TAC2008 TAC2009

Metric r ρ τ r ρ τ r ρ τ r ρ τ

Mover-1 0.11% 0.15% 0.40% 0.08% 0.04% 0.43% 0.13% 0.27% 0.31% 0.14% 0.33% 0.37%
Mover-2 0.13% 0.23% 0.27% 0.11% 0.31% 0.35% 0.19% 0.37% 0.39% 0.13% 0.42% 0.46%
BERT-F1 0.19% 0.42% 0.51% 0.06% 0.24% 0.34% 0.21% 0.32% 0.31% 0.17% 0.21% 0.19%

Table 12: CVIDF for TAC2008-2009.

guages tend to have a high rate of affixes or mor-
phemes per word, which means there may exist
more noise in word embeddings.

Corpora WMT18-AVG WMT19-AVG
ORI 0.355 0.333

Wili_2008(117500) 0.349 0.323
Wikipedia(100000) 0.350 0.320
Wikipedia(1000000) 0.351 0.320
Wikipedia(2500000) 0.351 0.320
Wikipedia(5000000) 0.350 0.320
Wikipedia(7500000) 0.351 0.320
Wikipedia(10000000) 0.351 0.320
IMDB_train(25000) 0.347 0.323
Wikitext(23767) 0.350 0.324
Wiki40b(2926536) 0.347 0.324

Table 13: Average segment-level Kendall correlation
of MoverScore-1 using idflarge with human judgements
in WMT18-19 to-English language pairs. Bold values
refer to the best results. Number in bracket represents
the number of documents in this corpus.

A.8 IDF Corpora
• Wikipedia20 (Foundation) Wikipedia dataset

contains clean full articles of Wikipedia pages
but with many non-content segments such as
citations, links and so on. Due to memory
limit, we can only test a few segments in this
dataset.

• Wiki40b21 (Guo et al., 2020) This dataset
20https://huggingface.co/datasets/

wikipedia
21https://huggingface.co/datasets/

wiki40b

aims at entity identification task, and is
cleaned up by excluding ambiguation and non-
entity pages from Wikipedia, and non-content
and structured part from each page.

• WikiText22 (Merity et al., 2016) This is a
language modelling dataset, containing texts
extracted from the set of verified good and
featured articles on English Wikipedia.

• Wili_200823 (Thoma, 2018) The goal of this
dataset is to train and test language identifica-
tion models. It contains short paragraphs of
many languages from Wikipedia.

• IMDB24 (Maas et al., 2011) This dataset con-
tains movie reviews and their sentiment label,
aiming at binary sentiment classification for
English data.

A.9 Other results for IDF-weighting
As shown in Figure 5 and 6, in English evaluation,
the metric performance of the three evaluation met-
rics drop most from disabling IDF-weighting in
segment-level MT evaluation, where the varying
IDF corpora also have the largest impact among
the examined evaluation tasks (see Table 11 and
12). Among the three metrics, BERTScore-F1 is
least sensitive to IDF-weighting, to which idfori and
idfrand are almost equally effective, whereas idfori
yields considerably better results than idfrand for

22https://huggingface.co/datasets/
wikitext#wikitext-2-raw-v1-1

23https://huggingface.co/datasets/wili_
2018

24https://huggingface.co/datasets/imdb
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MoverScore-1/2; MoverScore-2 behaves slightly
more sensitively than MoverScore-1 (see Figure 7).
Moreover, unlike in English evaluation, the contri-
bution of IDF-weighting seems less stable for other
languages (see Figure 2(a) and 11).

Further, Table 13 presents the results for idflarge
in English evaluation. First, the size of those cor-
pora is much larger than the original corpora, but
MoverScore still performs better with original IDF-
weighting. Secondly, the results for Wikipedia
shows that the metric performance does not en-
hance with the increasing size of IDF corpora.
Thirdly, although those corpora contain articles in
many domains, they do not provide more applica-
ble IDF-weighting neither. In conclusion, no IDF-
weighting from large-domain and large-scale cor-
pora works as well as the original IDF-weighting
in segment-level MT evaluation for English, where
MoverScore-1 behaves most sensitively to IDF.
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(a) Segment-level

(b) System-level

Figure 5: RD(dis,ori), WMT17-19, MT evaluation, MoverScore-1/2 and BERTScore-F1. Negative values indicate
idfori works better.

Figure 6: RD(dis,ori), TAC2008-2009, summary-level summarization evaluation, MoverScore-1/2 and BERTScore-
F1. Negative values indicate idfori works better.
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(a) MoverScore-1

(b) MoverScore-2

(c) BERTScore-F1

Figure 7: RD(dis,ori), RD(rand,dis), and RD(rand,ori); WMT17-19, segment-level MT evaluation, MoverScore-1/2
and BERTScore-F1. Negative values indicate the latter idfx works better.
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A.10 Best settings of subword selection + PR

WMT17 WMT18 WMT19
de zh ru fi tr cs de zh ru fi tr cs de zh ru fi

first !

all ! ! ! ! !

ave-all ! ! ! !

first+PR* ! !

all+PR ! ! ! !
ave-all+PR

Table 14: Best configuration of MoverScore-1 regarding subwords and punctuations for other languages. WMT17-
19, segment-level MT evaluation. We mark the default configuration of MoverScore with ∗.

Table 15: Best configuration of MoverScore-1 regarding subwords and punctuations for English. WMT17-19 and
TAC2008-2009. We mark the default configuration of MoverScore with ∗.
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Figure 8: From top to bottom: CVSTOP, CVIDF, CVSUB. WMT17-
19, system-level evaluation, MoverScore-1.

Figure 9: RD(dis,ori), RD(dis,pr). WMT17-
19, system-level evaluation, MoverScore-1.
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Figure 10: From top to bottom: CVSTOP, CVIDF. WMT17-19, segment-level
evaluation, BERTScore-F1.

Figure 11: RD(dis,ori). WMT17-19,
segment-level evaluation, BERTScore-
F1.

Figure 12: From top to bottom: CVSTOP, CVIDF. WMT17-19, system-level
evaluation, BERTScore-F1.

Figure 13: RD(dis,ori). WMT17-19,
system-level evaluation, BERTScore-F1.
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