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Abstract

Multimodal Machine Translation (MMT) fo-
cuses on enhancing text-only translation with
visual features, which has attracted consider-
able attention from both natural language pro-
cessing and computer vision communities. Re-
cent advances still struggle to train a sepa-
rate model for each language pair, which is
costly and unaffordable when the number of
languages increases in the real world. In other
words, the multilingual multimodal machine
translation (Multilingual MMT) task has not
been investigated, which aims to handle the
aforementioned issues by providing a shared
semantic space for multiple languages. Be-
sides, the image modality has no language
boundaries, which is superior to bridging the
semantic gap between languages. To this end,
we first propose the Multilingual MMT task
by establishing two new Multilingual MMT
benchmark datasets covering seven languages.
Then, an effective baseline LVP-M3 using vi-
sual prompts is proposed to support translations
between different languages, which includes
three stages (token encoding, language-aware
visual prompt generation, and language trans-
lation). Extensive experimental results on our
constructed benchmark datasets demonstrate
the effectiveness of LVP-M3 method for Multi-
lingual MMT.

1 Introduction

Multimodal Machine Translation (MMT) extends
the conventional text-based machine translation
by taking corresponding images as additional in-
puts (Lin et al., 2020; Li et al., 2022) to mitigate
the problems of data sparsity and ambiguity (Ive
et al., 2019; Yang et al., 2022) when compared
with purely text-based machine translation. Simi-
lar to other multimodal tasks (e.g., visual question
answering (Antol et al., 2015; Shih et al., 2016),
image captioning (Vinyals et al., 2015; Jia et al.,
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Figure 1: Comparison of MMT and Multilingual MMT.
(a) For MMT, we need to train different MMT models
to support translations between different language pairs
(e.g., “En-De” represents to translate the English to
German). (b). For Multilingual MMT, we only need
one single model to translate the source language to
different target languages.

2015) and video-text retrieval (Liu et al., 2022d)),
MMT aims to exploit the effectiveness of vision
information for the machine translation task.

Moreover, MMT has broad applications (Zhou
et al., 2018), such as multimedia news and movie
subtitles in different languages.

However, as shown in Fig. 1(a), previous MMT
models (e.g., DCCN (Lin et al., 2020)) can handle
a single language translation pair (e.g., English →
German, English → French) well, but training a
separate model for each language pair is unafford-
able considering there are thousands of languages
in the world. A straightforward solution to reduce
computational cost is to use one model for handling
the translations of multiple languages as shown in
Fig. 1(b). Meanwhile, multilingual machine trans-
lation has been investigated for many years (Con-
neau et al., 2020), but these existing methods only
consider the language as the input, where the vi-
sion context has been ignored. Therefore, in our
work, we first propose the Multilingual Multimodal
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Machine Translation (Multilingual MMT) task to
achieve the translations for multiple languages us-
ing one single model.

To eliminate the above limitations, we propose
a simple and effective LVP-M3 method, including
Token Encoding, Language-aware Visual Prompt
Generation (LVPG), and Language Translation.
Specifically, in the token encoding stage, we use
the pre-trained vision encoder to extract the visual
tokens. Then, we follow (Johnson et al., 2017) to
utilize the Transformer to encode the textual to-
kens. In LVPG, inspired by (Yang et al., 2019) and
(Tian et al., 2020), a controller network in Fig. 3 is
leveraged to dynamically generate the parameters
of the mapping network conditioned on the target
language. Further, the mapping network outputs
the language-aware visual prompts. After that, dur-
ing the language translation, following the works
(e.g., ViLBERT (Lu et al., 2019)), we utilize co-
Transformer to generate the vision-guided language
tokens. Then the Transformer decoder is adopted
to predict the translation results.

Extensive experiments are conducted on our pro-
posed benchmark datasets for LVP-M3. Results
show that our model achieves the state-of-the-art
performance in all translation directions, especially
outperforming the text-only multilingual model by
4.3 BLEU scores on average.

The contributions of this work are summarized
as follows:

• We first propose the Multilingual Multimodal
Machine Translation (Multilingual MMT) to
handle the translations for multiple language
pairs, which investigates the effect of vision
modality for multilingual translation and re-
duces the computation costs of existing MMT
methods for multiple languages.

• For Multilingual MMT, we propose an effec-
tive language-aware visual prompt generation
strategy to produce different visual prompts
for different target languages based on the vi-
sion modality and type of the target language.

• We establish two Multilingual MMT bench-
mark datasets to nourish the further research
on Multilingual MMT, and extensive experi-
ments on these datasets demonstrate the effec-
tiveness of our proposed LVP-M3 method.

2 Related Works

Multimodal Machine Translation. The multi-
modal context plays a key role in Multimodal Ma-
chine Translation (MMT). Recent MMT methods
can be divided into three categories: (1) Using
global visual features directly (Calixto and Liu,
2017). For instance, Huang et al. (2016) proposes
to concatenate global and regional visual features
with source sequences. (2) Exploiting visual fea-
tures via attention scheme (Libovickỳ and Helcl,
2017; Helcl et al., 2018). Calixto et al. (2017) in-
troduces the visual features into the MMT model by
using an independent attention module. (3) Com-
bining other vision tasks with the translation task by
multitask learning (Calixto et al., 2019; Yin et al.,
2020). Elliott and Kádár (2017) decomposes mul-
timodal translation into two sub-tasks (i.e., transla-
tion and visual grounding). Recently, (Huang et al.,
2020) focuses on unsupervised setting for MMT,
which utilizes pseudo visual pivoting and visual
content to improve the cross-lingual alignments
in latent space. In contrast, LVP-M3 considers
fully-supervised multilingual setting by mapping
vision embeddings into different feature spaces and
achieving the purpose of using one MT model for
handling translations of multiple languages. Be-
sides, reducing computation cost is vital for many
tasks (Liu et al., 2021, 2022c,a) and we focus on
the Multilingual MMT task by using one single
model for efficiency.
Multilingual Language Models. Pre-trained mul-
tilingual Transformer-based language models (e.g.,
mBERT (Kenton and Toutanova, 2019) and XLM-
R (Conneau et al., 2020)) utilize the same pre-
training strategies as their respective monolingual
counterparts (e.g., BERT (Kenton and Toutanova,
2019) and RoBERTa (Liu et al., 2019)). They are
pre-trained via the masked language modeling ob-
jective (MLM) Strategy. Artetxe et al. (2020) pro-
poses a method to transfer monolingual representa-
tions to new languages in an unsupervised fashion
and provide new insights into the generalization
abilities of multilingual models. Hu et al. (2020)
introduces the Cross-lingual Transfer Evaluation
of Multilingual Encoders (XTREME) benchmark
to evaluate the cross-lingual generalization capa-
bilities, Karthikeyan et al. (2020) also provides
a comprehensive study of the contribution of dif-
ferent components in M-BERT to its cross-lingual
ability. Rust et al. (2021) shows that monolingually
adapted tokenizers can robustly improve the mono-
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lingual performance of multilingual models. Over-
all, when compared with these methods, we focus
on the multilingual setting for MMT, which has not
been investigated before.
Vision-Language Models. The success of vision-
language models can be credited to the following
three important reasons: Transformers (Liu et al.,
2022b; Vaswani et al., 2017), contrastive repre-
sentation learning (Radford et al., 2021; Li et al.,
2020), and large-scale training datasets (Sharma
et al., 2018; Miech et al., 2019). Previous
Transformer-based multimodal models ( (Tan and
Bansal, 2019; Chen et al., 2020; Gan et al., 2020;
Bugliarello et al., 2021)) jointly encode text to-
kens and image region features by preprocessing
images using object detection models. The image
region features are projected into the joint embed-
ding space of the multimodal Transformer, and
then the multi-head attention attends to all text
and image inputs to learn a joint representation of
both modalities. Besides, Kamath et al. (2021)
avoids using object detectors as a black box for
pre-extracting these region features and incorpo-
rates the object detector end-to-end with the multi-
modal Transformer to achieve flexibility and better
representation capacity. Recently, a representative
approach CLIP (Radford et al., 2021) is proposed,
which trains two neural network-based encoders
using a contrastive loss to match pairs of images
and texts. After consuming 400 million data pairs,
the CLIP model demonstrates a remarkable zero-
shot image recognition capability, and has been
applied to many downstream tasks. For example,
Shen et al. (2022) proposes to leverage the CLIP
model for different vision-language models across
various tasks (e.g., image caption, visual question
answering). In our work, we aim to investigate
the effectiveness of the multimodal information for
Multilingual MMT.

3 Datasets

We introduce two Multilingual MMT benchmark
datasets (i.e., M3-Multi30K, M3-AmbigCaps) us-
ing Multi30K (Elliott et al., 2016) and Ambig-
Caps (Li et al., 2021). Here, we descried the details
of the M3-Multi30K and M3-AmbigCaps.
Data Construction. The widely-used Multi30K
dataset for the MMT task is based on the Flickr30K
Entities dataset (Plummer et al., 2017). For each
image of Multi30K, one of the English (En) descrip-
tions is selected in Flickr30K Entities. Currently,

En: A child is splashing in the water
De: Ein Kind plantscht im Wasser
Cs: Dítě se šplouchá ve vodě
Tr: Bir çocuk suya sıçratıyo
Hi: एक ब�ा पानी म� छ�टे मार रहा है
Lv: Bērns plunčājas ūdenī
Fr: Un enfant éclabousse dans l'eau

Figure 2: Example of an image with its descriptions of
seven different languages.

Language ISO Family Speakers
English En Germanic 400M
German De Germanic 95M
French Fr Romance 250M
Czech Cs Slavic 11M
Hindi Hi Indo-Aryan 800M

Turkish Tr Turkic 65M
Latvian Lv Baltic 2M

Table 1: Languages covered by our proposed M3-
Multi30K and M3-AmbigCaps datasets.

the English description of each image is translated
into German (De), French (Fr), and Czech (Cs) (El-
liott et al., 2017; Barrault et al., 2018). To support
more languages from different language families
and various language distributions for Multilingual
MMT, we extend the existing Multi30K dataset
with additional three languages as shown in Table 1,
where one sample of the M3-Multi30K dataset is
shown in Fig. 2.

Specifically, in the annotation process, based
on the recent state-of-the-art multilingual machine
translation model XLM-R (Conneau et al., 2020),
we first translate the English description into Hindi
(Hi), Turkish (Tr), and Latvian (Lv) for each im-
age in Multi30K. Then, we hire independent native
speakers to verify and improve the quality of the
translation results of different languages. In addi-
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Figure 3: The overall framework of our proposed LVP-M3 method for Multilingual MMT task, which includes three
stages (i.e., token encoding and language-ware visual prompt generation (LVPG) and language translation). Here,
we take an example by translating English (En) to German (De). “TRM” and “Co-TRM” represent the Transformer
and co-Transformer models, respectively.

tion, as the original AmbigCaps (Li et al., 2021)
dataset only contains two types of languages, we
use a similar way to extend AmbigCaps into addi-
tional five languages in M3-AmbigCaps.
Data Splits. In M3-Multi30K, the number of
image-translation pairs for training and testing data
are 29000, 1000, respectively. In M3-AmbigCaps,
the number of image-translation pairs for training
and testing data are 89600, 1000, respectively. We
will released these datasets.

4 Method

4.1 Multilingual MMT
Supposing we have M languages {Lm}Mm=1 and N
bilingual corpora {Dn}Nn=1 under the multilingual
setting, the dataset Dn consists of K parallel sen-
tences {(xkLi

, xkLj
)}Kk=1 between language Li and

Lj , where K is the number of training instances
and each instance has the corresponding image
zk. Given the corpora, we can train a Multilingual
MMT model that enables the translation among dif-
ferent languages with the help of image modality.
The training objective of the Multilingual MMT is
learnt with a combination of different languages:

Lmt = −
∑

i,j,k

1ogP(xkLi
;xkLj

; zk), (1)

where the Multilingual MMT model uses a com-
plete shared model for all translation directions.
In this work, we adopt Transformer as the back-
bone model for language encoding and pre-trained
vision branch of the CLIP model (Radford et al.,
2021) for vision modality. A target language token
tLj is prefixed to each source sentence to indicate
the translation direction (Johnson et al., 2017).

4.2 LVP-M3

As shown in Fig. 3, our proposed LVP-M3 method
includes three stages: token encoding, language-
aware visual prompt generation and language trans-
lation. Specifically, in training, give each image
zk, the parallel sentences {(xkLi

;xkLj
)} from source

language Li and target language Lj , and the target
language token embedding tLj , in token encoding
stage, we first use the vision encoder to extract
the visual token features {vm}Mm=1 based on zk,
where M is the number of visual tokens. Then,
we utilize the Transformer encoder to extract the
source language tokens {sf}Ff=1, where F is the
number of language tokens. In language-aware vi-
sual prompt generation (LVPG) stage, we map the
{vm}Mm=1 into the language-aware visual prompt
{pm}Mm=1 conditioned on tLj to generate differ-
ent visual prompts for different target languages,
where we propose to adopt the controller network
to dynamically generate the parameters of the map-
ping network. In language translation stage, we
first adopt the co-attention strategy to generate the
vision-guided language tokens {qf}Ff=1 based on
{pm}Mm=1 and {sf}Ff=1. Then, we use the {qf}Ff=1

as the input of the Transformer decoder to pre-
dict the translation results and compute the loss in
Eq. 1 using the predicted translation results and the
ground-truth target language xkLj

.

4.2.1 Token Encoding

For each image zk, we directly use the vision back-
bone (e.g., the pre-trained vision branch of the
widely-used CLIP model (Radford et al., 2021))
as the vision encoder to extract the visual tokens
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for zk as follows:

{vm}Mm=1 = H(zk), (2)

where H denotes the vision encoder and M is the
number of visual tokens.

Similarly, given the source language xkLi
, based

on the Transformer encoder E , the source language
tokens {sf}Ff=1 are extracted as follows:

{sf}Ff=1 = E(xkLi
), (3)

where F is defined as the number of source lan-
guage tokens.

4.2.2 Language-aware Visual Prompt
Generation

In language-aware visual prompt generation stage
of Fig. 3, motivated by recent works (e.g., dy-
namic filter networks (Jia et al., 2016) and Cond-
Conv (Yang et al., 2019)) based on conditional
convolutions, where the filters of conditional con-
volutions are conditioned on the input and are dy-
namically generated by another network to improve
the capacity of the neural network, we extend this
idea to generate the visual prompt conditioned on
the target language type tLj (e.g., German) to map
the extracted the visual tokens into different embed-
ding spaces for different target language. Specif-
ically, in Fig. 3, based on the embedding of the
target language token tLj , we utilize a controller
network C implemented by two fully-connected
layers with ReLU (Nair and Hinton, 2010) activa-
tion function to generate the parameters θ of the
mapping network M as follows:

θ = C(tLj ). (4)

After that, we generate the language-aware visual
prompt {pm}Mm=1 as follows:

{pm}Mm=1 = M({vm}Mm=1, θ). (5)

θ is the generated parameters in Eq. 4, which is
assigned to the mapping network M. In this way,
when translating source language into different tar-
get languages, the θ will be generated according
to type of target language tokens, and the visual
tokens {vm}Mm=1 can be mapped into different vi-
sual prompts according to the type of the target
language.

4.2.3 Language Translation
In Fig. 3, based on the source language to-
kens {sf}Ff=1 and language-aware visual prompt
{pm}Mm=1, we first generate the vision-guided
source language tokens based on co-attention strat-
egy, which are widely used for fusing the infor-
mation from another modality in vision-language
models (Lu et al., 2019). Then, we predict the
translation results using the Transformer decoder.

Specifically, we utilize the Transformer module
implemented by self-attention to fuse the informa-
tion from other tokens within each modality for
{sf}Ff=1 and {pm}Mm=1, respectively, and we repre-
sent the updated source language tokens and visual
prompt as S and P, respectively. Then, we take S
as the query, and the P as the key and value in the
co-attention module to generate the vision-guided
source language tokens {qf}Ff=1 as follows:

{qf}Ff=1 =
H∥∥

h=1

SF

(
ϕh
Q(S)ϕ

h
K(P)⊤√
C

)
ϕh
V (P),

(6)
where ∥Hh=1 is the concatenation of the H atten-
tive features along the channel dimension. SF rep-
resents the softmax operation. ϕh

Q(·),ϕh
K(·) and

ϕh
V (·) are the corresponding linear projection op-

erations of the h-th head for the query, the key
and the value, respectively. C denotes the num-
ber of feature channels. After the operation of
Eq. 6, other operations (e.g., FFN, layer normal-
ization (Ba et al., 2016)) of standard attention
scheme (Vaswani et al., 2017) are used.

Finally, at inference, based on {qf}Ff=1, we use
the Transformer decoder to predict the target lan-
guage sequence in our LVP-M3.

5 Experiments

We evaluate our proposed LVP-M3 method on the
multilingual dataset including 7 languages and 6
translation directions. In all experiments, English
(En) is treated as the pivot language for Multilin-
gual MMT setting.

5.1 Experimental Setting
Implementation Details. Our implementation is
based on the Fairseq (Ott et al., 2019) toolbox.
We utilize Sentencepiece tokenizer. The model in
Fig. 3 consists of 6 Transformer encoder/decoder
layers. The number of attention heads in all Trans-
former layers is set as 12. For training, we take
the Adam optimizer (Kingma and Ba, 2015) with

2866



Model (En→X) Fr Cs De Lv Hi Tr Avgall

Text-only Multilingual MT Systems

Text Transformer (Fan et al., 2021) 61.8 32.8 40.6 51.2 59.0 53.8 49.8

Multilingual MMT Systems

Vision Matters (Gated fusion) (Li et al., 2021) 62.5 32.9 41.2 52.1 59.6 54.2 50.4
Vision Matters (Concatenation) (Li et al., 2021) 59.7 33.1 39.8 50.3 57.6 51.4 48.6
LVP-M3 (w/o LVPG) 62.2 33.4 40.9 51.6 59.3 54.0 50.2
LVP-M3 (Our method) 63.7 34.6 43.2 53.5 61.4 55.6 52.0

Table 2: The BLEU scores of different methods on M3-Multi30K test set. Five multilingual baselines are compared
by us. The bottom part shows the results of the multilingual models trained with text and vision modalities. The
best results are highlighted.

Model (En→X) Fr Cs De Lv Hi Tr Avgall

Text-only Multilingual MT Systems

Text Transformer (Fan et al., 2021) 62.3 47.8 49.0 46.6 52.4 35.9 49.0

Multilingual MMT Systems

Vision Matters (Gated fusion) (Li et al., 2021) 64.3 50.3 51.2 48.5 54.1 38.7 51.2
Vision Matters (Concatenation) (Li et al., 2021) 62.6 47.6 48.7 45.9 52.7 36.0 48.9
LVP-M3 (w/o LVPG) 63.4 49.2 50.3 47.9 52.4 37.1 50.1
LVP-M3 (Our method) 65.7 52.9 53.7 51.6 56.3 42.7 53.8

Table 3: The BLEU scores of different methods on M3-AmbigCaps test set. Five multilingual baselines are compared
by us. The bottom part shows the results of the multilingual models trained with text and vision modalities.The best
results are highlighted.

β1 = 0.9 and β2 = 0.98. The learning rate warms
up from 1e-7 to 1e-4 in 2000 steps and then de-
cays based on the inverse square root of the update
number. The maximum number of tokens in each
mini-batch is 4096. Dropout and label-smoothing
rate are set as 0.3 and 0.1, respectively. For vision
encoder, by default, we adopt the vision branch of
CLIP based on the ViT-L/14 model. The effect of
different vision backbones is discussed in our ab-
lation study. All models are trained for 30 epochs
and evaluated on one single linux machine with 8
NVIDIA A100 GPUs (80G).
Evaluation. We compute the cumulative 4-gram
BLEU scores to evaluate the quality of translation.
During inference, the beam search strategy is per-
formed with a beam size of 5 for the target sentence
generation. We set the length penalty as 1.0.
Baseline Methods. As we are the first multilin-
gual method in this area, we reproduce methods
including Text Transformer (Fan et al., 2021), the
Vision Matters (Gated fusion) (Li et al., 2021),
and the Vision Matters (Concatenation) (Li et al.,

2021) in the multilingual translation setting for a
fair comparison. Besides, we also report the results
of LVP-M3 (w/o LVPG), where we directly adopt
the co-attention strategy in Lu et al. (2019) to gen-
erate the vision-guided language tokens using the
source tokens with the visual features.

5.2 Results on M3-Multi30K

To demonstrate the effectiveness of LVP-M3, we
compare our method with baseline methods on
M3-Multi30K under the multilingual MMT set-
ting in Table 2. It should be mentioned that the
Vision Matters (Gated fusion) and the Vision Mat-
ters (Concatenation) are originally proposed in the
bilingual setting, and we reproduce these meth-
ods in the multilingual setting for a fair compar-
ison. In Table 2, our LVP-M3 achieves the best
BLEU scores in all translation directions. Specifi-
cally, first, when compared with text Transformer
with only text information, LVP-M3 outperforms
by +2.2 BLEU scores on average, which demon-
strates the effectiveness of visual context for Multi-
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Model (En→X) Fr Cs De Lv Hi Tr Avgall

LVP-M3 (Static) 62.0 33.1 41.1 51.7 59.6 54.2 50.3
LVP-M3 (LVPG) 63.7 34.6 43.2 53.5 61.4 55.6 52.0

Table 4: Comparison of different vision prompt generation methods with BLEU scores.

Model (En→X) Fr Cs De Lv Hi Tr Avgall

LVP-M3+ResNet50 62.3 33.3 41.7 52.3 61.1 54.0 50.8
LVP-M3+ResNet101 62.8 33.8 42.1 52.5 60.7 54.2 51.1
LVP-M3+ViT-L/14 63.7 34.6 43.2 53.5 61.4 55.6 52.0

Table 5: Comparison different visual backbones with BLEU scores.

lingual MMT. Second, when compared with base-
line method LVP-M3 (w/o LVPG), LVP-M3 also
achieves better performance on all settings, which
verifies the effectiveness of our proposed language-
aware prompt generation module for Multilingual
MMT. Among all translation directions, the task of
En→De achieves the most improvement. Because
English and German are from the same language
family, both languages can share the similar seman-
tic knowledge by cross-lingual transfer.

5.3 Results on M3-AmbigCaps
Results of M3-AmbigCaps are presented in Table
3. When compared with other baseline methods,
we observe that our proposed LVP-M3 method also
achieves significant performance improvements in
all translation directions. In Table 3, we observe
that our proposed method LVP-M3 outperforms
by +4.8 BLEU scores on average when the visual
modality is used, which is larger than that in M3-
Multi30K.

5.4 Ablation Study
In this section, we conduct comprehensive ablation
study to demonstrate the effectiveness of different
components in our proposed LVP-M3 method on
the test set of M3-Multi30K.

Effect of LVPG. In Table 2 and Table 3, we ob-
serve that our language-aware visual prompt gener-
ation (LVPG) brings significant improvements for
Multilingual MMT. To demonstrate the effective-
ness of LVPG, we further propose two alternative
methods (i.e., LVP-M3 (Static) and LVP-M3 (Co-
CoOp)) to generate the visual prompts in Table 4.
Specifically, in LVP-M3 (Static), we directly gen-
erate visual prompts by mapping the visual tokens
{vm}Mm=1 using the mapping network, where the

parameters of the mapping network are static after
training and not conditioned on the target language
token embedding tLj . In Table 4, we observe that
our LVP-M3 outperforms these alternative methods
a lot, which guides the visual clues to bridge the
semantic gap between multiple languages.

Effect of Different Vision Backbones. In Ta-
ble 5, we compare the results of LVP-M3 by using
the visual tokens extracted by different vision back-
bones (He et al., 2016; Dosovitskiy et al., 2020)
in CLIP. In Table 5, we observe that our LVP-M3

achieves best results when using ViT-L/14 as the
vision encoder. Thus, we use ViT-L/14 as the vi-
sion encoder by default. Moreover, we observe
that the performance is better when the capacity of
the vision backbone is better. It is also reasonable
because the quality of the visual tokens is better
when using more powerful vision backbones.

5.5 Further Analysis
Visualization of Different Masking Ratios. As
shown in Fig. 4, we compare our LVP-M3 method
with the alternative method LVP-M3 (w/o vision)
to analyze the effectiveness of visual context when
using different masking ratios on the source lan-
guage. Specifically, in LVP-M3 (w/o vision), we
only use the Transformer encoder to process the
source language with the target language embed-
ding and then adopt the Transformer decoder to
predict the target language for multilingual MT,
where the vision encoder and LVPG are both not
used in LVP-M3 (w/o vision).

In Fig. 4, we report the results of these meth-
ods by translating from English (En) to French (Fr)
and Turkish (Tr). First, when the ratio of masking
increases, BLEU scores drop whether the visual
contents are added or not, and our LVP-M3 still
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(a) En-Fr (b) En-Tr

Figure 4: Translation results of LVP-M3 under different masking ratios on the source language. Results are evaluated
on the M3-Multi30K test set by translating English (En) to other languages (i.e., Fr and Tr).

SRC (En) : A man in a pink shirt is sitting in the grass and a ball is in the air. 

                              SRC (En) with MASK: A [MASK] in a [MASK] shirt is sitting in the grass and a [MASK] is in the air. 

TGT (De): Ein Mann in einem pinken Hemd sitzt auf dem Gras und ein Ball ist in der Luft.
PRE (De): Ein Mann in einem rosa Hemd sitzt im Gras und ein Ball liegt in der Luft. 

TGT (Fr): Un homme en polo rose est assis dans l'herbe et un ballon est en l'air..

PRE (Fr): Un homme en chemise rose est assis dans l'herbe et la balle est en l'air.

Figure 5: A qualitative example by translating English (En) to German (De) and French (Fr) with the help of vision
modality. Tokens in red denotes correct translation. Tokens in blue denotes good synonyms, which have the similar
meaning with the ground-truth of target language. SRC denotes the source language. MASK means the masked
contents in the source language. PRE and TGT represent the predicted translation results and the ground-truth of
the target language, respectively.

outperforms LVP-M3 (w/o vision) a lot. Second,
the performance gap between LVP-M3 and LVP-
M3 (w/o vision) is larger when the mask ratio is
between 20% and 40%, which shows that the vi-
sual information improves the robustness of the
translation model. Third, when the mask ratio is
larger, the results of these methods on all settings
degrade. When the mask ratio is set as 80%, the
results of LVP-M3 (w/o vision) are close to those
of LVP-M3. It is also reasonable, because most
tokens in each source language are masked and it
is difficult to translate well for both methods under
these extreme scenarios.

Qualitative Analysis. To further explore the ne-
cessity of visual modality for machine translation,
we compare the predictions results (i.e., De and
Fr) of a sample source language (i.e., En) with the
ground truth of these target languages in Fig. 5.
Specifically, the “man” (noun), “pink” (adjective),

and “ball” (noun) are masked, and these masked
tokens describe the saliency regions in the corre-
sponding left image. We have the following ob-
servations. First, we observe that even though
the “man” is masked, the prediction results of Ger-
man and French on this token are still right, which
means that visual modality is complementary rather
than redundant if the text is insufficient. Second,
our model translates some tokens to their synonyms
in the target language. For example, although the
translated word “rosa” in German is evaluated as a
bad translation for the masked token “pink” in En-
glish, it represents the same meaning as the word
“pinken” in German. Besides, “la balle” in French
is also the synonym of “ball” in English, which
further demonstrates the effectiveness of the vision
modality.
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5.6 Discussion on LVP-M3

In our proposed LVP-M3 method, first, both en-
coders (vision and text) and decoder are shared
for all language pairs, while previous methods on
MMT usually adopt different models for different
language pairs. Second, to generate different vi-
sual prompts for different language pairs with min-
imal additional parameters, we just use controller
network to generate the parameters of mapping
network to map the vision embeddings. Third, dif-
ferent language translation directions are used in
training, where the target language token is also
prefixed to each source sentence for denoting the
translation direction. Last, training separated mod-
els will result in huge training costs when compared
with the multilingual models as discussed in many
multilingual methods.

6 Conclusion

In our work, we first propose the Multilingual
MMT task to support the multilingual multimodal
machine translations between different language
pairs using one single model. Then, we propose an
effective LVP-M3 baseline method for the Multilin-
gual MMT task, where a language-aware prompt
generation module is proposed to generate visual
prompts for different target languages dynamically.
Comprehensive experimental results on our es-
tablished Multilingual MMT benchmark datasets
demonstrate the effectiveness of our proposed LVP-
M3 method for Multilingual MMT.

7 Limitations

Although our proposed LVP-M3 method has
achieved substantial improvements for Multilin-
gual MMT, we find that there still exists some
hyper-parameters (e.g., the number of encoder and
decoder layers,) to tune for better results, which
may be time-consuming. Besides, in our estab-
lished datasets, we support seven languages cur-
rently, and we will extend to support more lan-
guages and more translation directions for Multi-
lingual MMT in the future work.
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