PROCEED]NGS OF THE"

SIXTH INTERNATIONAL WORKSHOP
ON PARSINQTENCHNOLOGIES

IWPT,, zooo

LS
il

SPONSORED BY ACL/SIGPARSE

23-25 FEBRUARY, 2000
ITC-IRST, TRENTO (ITALY)

Proceedings of the

Sixth International Workshop

on Parsing Technologies

IWPT 2000

Sponsored by ACL/SIGPARSE

23—25 February, 2000
ITC-irst, Trento (Italy)

Cover photo by P. Lattuada

Organisation — IWPT 2000

General Chair
Harry C. Bunt, ITK, Tilburg University, The Netherlands

Programme Chair
John Carroll, COGS, University of Sussex, UK

Local Chair
Alberto Lavelli, ITC-IRST, Trento, Italy

Programme Committee

Robert C. Berwick, MIT, USA

Harry C. Bunt, Tilburg University, The Netherlands
Bob Carpenter, Bell Labs, USA

John Carroll, University of Sussex, UK

Ken Church, AT&T, USA

Mark Johnson, Brown University, USA

Aravind Joshi, University of Pennsylvania, USA
Ronald Kaplan, Xerox, Palo Alto, USA

Martin Kay, Xerox, Palo Alto, USA

Bernard Lang, INRIA, Paris, France

Alon Lavie, Carnegie-Mellon University, USA
Anton Nijholt, University of Twente, The Netherlands
Christer Samuelsson, Xerox, Grenoble, France

Mark Steedman, University of Edinburgh, UK
Oliviero Stock, ITC-IRST, Trento, Italy

Hozumi Tanaka, Tokyo Institute of Technology, Japan
Masaru Tomita, Stanford University, USA

Hans Uszkoreit, DFKI, Saarbriicken, Germany

K. Vijay-Shanker, University of Delaware, USA
David Weir, University of Sussex, UK

Mats Wirén, Telia Research, Sweden

Additional Refereeing

Many thanks to Krzysztof Czuba and Chad Langley (Carnegie-Mellon University), Francois
Barthélemy, Pierre Boullier and Eric de la Clergerie (INRIA, France), Micky Huber, Alberto Lavelli
and Carlo Strapparava (ITC-IRST), Anoop Sarkar and Fei Xia (University of Pennsylvania, USA),
Rieks op den Akker, Dirk Heylen, Erik Oltmans and Klaas Sikkel (University of Twente, The Nether-
lands) and Theo Vosse (University of Leiden, The Netherlands).

il

iv

Preface

IWPT 2000, the Sixth International Workshop on Parsing Technologies, marks the existence of twelve
years of parsing workshops, starting in 1989 with the workshop organized by Masaru Tomita in
Pittsburgh and Hidden Valley, Pennsylvania. IWPT’89 was followed by four workshops in a biennial
rhythm:

IWPT’91 in Cancin (Mexico)

IWPT’93 in Tilburg (The Netherlands) and Durbuy (Belgium)
IWPT’95 in Prague and Karlovy Vary (Czech Republic)
IWPT’97 in Boston/Cambridge (Massachusetts).

The series has achieved a number of successes, becoming the major forum for researchers in parsing
technology to meet and discuss advances in the field, attracting a steady number of participants and

submitted papers, and resulting in three books:

Current Issues in Parsing Technologies, Masaru Tomita, editor (Kluwer, Boston 1991);

Recent Advances in Parsing Technology, Harry Bunt and Masaru Tomita, editors (Kluwer, Dor-

drecht 1996);
New Developments in Parsing Technology, Harry Bunt and Anton Nijholt, editors (Kluwer, Dor-

drecht, in press).

In 1994, when Masaru Tomita left the arena of natural language processing and moved into bio-
genetic engineering (applying NL parsing techniques to DNA structures), the Special Interest Group
on Parsing (SIGPARSE) was set up within ACL with the primary aim of giving continuity to the
IWPT series, and has functioned as such.

Of the five previous workshops, two have been in Europe and three in the New World, so it seemed
appropriate to return to the Old World for the 2000 workshop. Indeed, the venue of the sixth IWPT
in Northern Italy is on historical ground, as the monuments of the city of Trento, and Verona and
Venice nearby, so richly testify. I would like to thank the Institute for Scientific and Technological
Research ITC-IRST in Trento for hosting IWPT 2000, in particular Alberto Lavelli for his work as
local arrangements chair, and ITC-IRST director Oliviero Stock for general support.

Besides the accepted submitted papers and posters, IWPT 2000 features invited talks by Martin
Kay, one of the founding fathers of parsing technology, and by Eric Brill and Giorgio Satta, well
known for their outstanding contributions to the field. We are very grateful that they have accepted
our invitation.

Thanks are due to the members of the Programme Committee for their careful and timely
reviewing work, and especially to programme chair John Carroll for organising and supervising the
reviewing and acceptance process, for designing the workshop programme, and for preparing the
proceedings. Thanks to all these people, IWPT 2000 promises to be a successful continuation of the

IWPT tradition into the new millennium.

Harry Bunt
SIGPARSE Officer and IWPT 2000 General Chair

vi

Contents

Organisation — IWPT 2000 iii
Preface v
Contents vii
Author Index xi
Invited Talks
Automatic Grammar Induction: Combining, Reducing and Doing Nothing
Bric Brill ... e e 1
Guides and Oracles for Linear-time Parsing
Martin Kay ... e et 6
Parsing Techniques for Lezxicalized Context-free Grammars
L5103 2 o T T - 10
Papers
A Bootstrapping Approach to Parser Development
Izaskun Aldezabal, Koldo Gojenola, Kepa Sarasolac.ccoiiiiiiiiiiinnn.... 17
New Tabular Algorithms for LIG Parsing
Miguel Alonso, Eric de la Clergerie, Jorge Graiia, Manuel Vilares 29
Customizable Modular Lexicalized Parsing
Roberto Basili, Maria Teresa Pazienza, Fabio Zanzotto 41
Range Concatenation Grammars
Pierre Boullier e 53
Automated Extraction of TAGs from the Penn Treebank
John Chen, K. Vijay-Shankeroiiiiiiiiiii i eieiieiia s 65
From Cases to Rules and Vice Versa: Robust Practical Parsing with Analogy
AleX Famg ..ot 77
A Transformation-based Parsing Technique with Anytime Properties
Kilian Foth, Ingo Schréder, Wolfgang Menzelcccoiiiiiiiiiiiiiiiiiiiaannns 89
SOUP: a Parser for Real-world Spontaneous Speech
Marsal Gavaldaot e e 101
A Recognizer for Minimalist Grammars
Henk Harkemacoiiiiiiiiiiiin.... IR TR 111
A Neural Network Parser that Handles Sparse Data
James Hendersono.iuiiiiuin i e 123
A Context-free Approzimation of Head-driven Phrase Structure Grammar
Bernd Kiefer, Hans-Ulrich Krieger 135
Optimal Ambiguity Packing in Context-free Parsers with Interleaved Unification
Alon Lavie, Carolyn ROSEcoiiiiiiiiiii i e et e 147

vii

Extended Partial Parsing for Lezicalized Tree Grammars

Patrice Lopezoni e
Improved Left-corner Chart Parsing for Large Context-free Grammars

) 270) o7 o ALY o) -
Measure for Measure: Parser Cross-fertilization — Towards Increased Component

Comparability and Ezchange

Stephan Oepen, Ulrich Callmeierottt ci e iieens,
Computing the Most Probable Parse for a Discontinuous Phrase Structure Grammar

Oliver Plaechn oo iiiiiiiaL. B0008E0030500000808080800088608580606
An Efficient LR Parser Generator for Tree Adjoining Grammars

Carlos Prolo e
Parsing Scrambling with Path Set: a Graded Grammaticality Approach

Siamak Rezaelouiiiiiiii i e
On the Use of Grammar Based Language Models for Statistical Machine Translation

Hassan Sawaf, Kai Schiitz, Hermann Neyooiiiiiiiiiiiii it iiiiniennnnns
Algebraic Construction of Parsing Schemata

Karl-Michael Schneidero.iiiiiiii i i et e
A Spanish POS Tagger with Variable Memory

José Trivino, Rafael Moralesttt e e
Parsing a Lattice with Multiple Grammars

Fuliang Weng, Helen Meng, Po Chui Lukoo it
Modular Unification-based Parsers

Rémi Zajac, Jan Amtrupo.iiniiiii i i i e e e

Posters

Hypergraph Unification-based Parsing for Incremental Speech Processing

Jan A IUD .ot e e e e
Parsing Mildly Context-sensitive RMS

Tilman Becker, Dominik Heckmann ittt
Property Grammars: a Solution for Parsing with Constraints

Philippe Blache ... e e
Grammar Organization for Cascade-based Parsing in Information Extraction

Fabio Ciravegna, Alberto Lavelliooioiuiuiii ittt
A Bidirectional Bottom-up Parser for TAG

Victor Diaz, Vicente Carrillo, Miguel Alonsocoviiiiiiiiiiniiiiiiniinennnnn.
A Finite-state Parser with Dependency Structure Output

David EIworthy e e e e e
Discriminant Reverse LR Parsing of Context-free Grammars

Jacques Farré e
Direct Parsing of Schema-TAGs _

Karin Harbusch, Jens Woch i e e s
Analysis of Equation Structure using Least Cost Parsing

R. Nigel Horspool, John Aycocko.iuiiiiiiiiiii ittt iieeieaannn,

viii

Ezploiting Parallelism in Unification-based Parsing

Marcel van Lohuizen i e 309
Partial Parsing with Grammatical Features

Natasa Manousopoulou, George Papakonstantinou, Panayotis Tsanakas 311

Uniquely Parsable Accepting Grammar Systems

Carlos Martin-Vide, Victor Mitranaccouiiiiiiiiitiinieiearaneanannans. 313
Chart Parsing as Constraint Propagation

Frank MOrawietzouoniniiniti ettt ettt e 315
Tree-structured Chart Parsing

Paul Placewayco.iiniiii i e e 317
A Parsing Methodology for Error Detection

Davide Turcato, Devlan Nicholson, Trude Heift, Janine Toole, Stavroula Tsiplakou 319
Dependency Model using Posterior Context

Kiyotaka Uchimoto, Masaki Murata, Satoshi Sekine, Hitoshi Isahara 321
The Editing Distance in Shared Forest

Manuel Vilares, David Cabrero, Francisco Ribadascooiiiiiiiia.s. 323

X

Author Index

Aldezabal, Izaskun 17
Alonso, Miguel 29, 299
Amtrup, Janl 278, 291
Aycock, Johnl 307
Basili, Roberto 41
Becker, Tilman 293
Blache, Philippe 295
Boullier, Pierre 53
Brill, Eric ... 1
Cabrero, David 323
Callmeier, Ulrich 183
Carrillo, Vicente 299
Chen, John il 65
Ciravegna, Fabio 297
de la Clergerie, Eric 29
Diaz, Victorcciiiiiiiia. 299
Elworthy, David 301
Fang, Alex ..., 7
Farré, Jacques 303
Foth, Kiliancoiiiiiia.... 89
Gavalda, Marsal 101
Gojenola, Koldo 17
Grafa, Jorge ..., 29
Harbusch, Karin 305
Harkema, Henk 111
Heckmann, Dominik 293
Heift, Trudecoina... 319
Henderson, James 123
Horspool, R. Nigel 307
Isahara, Hitoshi 321
Kay, Martincccooiiiiiinin.... 6
Kiefer, Bernd 135
Krieger, Hans-Ulrich 135
Lavelli, Alberto 297
Lavie, Aloncooviiiiiiiina.. 147
van Lohuizen, Marcel 309
Lopez, Patrice 159
Luk,PoChui 266

Manousopoulou, Natasa 311

Martin-Vide, Carlos 313
Meng, Helenl 266
Menzel, Wolfgang 89
Mitrana, Victor 313
Moore, Robert 171
Morales, Rafael 254
Morawietz, Frank 315
Murata, Masakicccouennn. 321
Ney, Hermann 231
Nicholson, Devlan 319
Oepen, Stephan 183
Papakonstantinou, George 311
Pazienza, Maria Teresa, 41
Placeway, Paul 317
Plaehn, Oliveroi. 195
Prolo, Carloscoiviiiniina... 207
Rezaei, Siamak 219
Ribadas, Francisco 323
Rosé, Carolync.ooilll. 147
Sarasola, Kepa 17
Satta, GIOrgiocovvvriiiiniiininen... 10
Sawaf, Hassan 231
Schneider, Karl-Michael 242
Schroder, Ingo ... 89
Schiitz, Kaioo.L. 231
Sekine, Satoshi, 321
Toole, Janine 319
Trivifio, Josécovviiiiiiinnn.... 254
Tsanakas, Panayotis 311
Tsiplakou, Stavroula 319
Turcato, Davide 319
Uchimoto, Kiyotaka 321
Vijay-Shanker, K. 65
Vilares, Manuel 29, 323
Weng, Fuliang 266
Woch, Jenscoiiiiiia.. 305
Zajac, Rémi, 278
Zanzotto, Fabio 41

xii

Invited Talks

Automatic Grammar Induction: Combining,
Reducing and Doing Nothing

Eric Brill
Microsoft Research
One Microsoft Way

Redmond, Wa. 98052 USA

brill@microsoft.com

John C. Henderson Grace Ngai
The MITRE Corporation Department of Computer Science
202 Burlington Road The Johns Hopkins University
Bedford, MA 01730 USA Baltimore, Md. 21218 USA
jhndrsn@mitre.org gyn@cs.jhu.edu

Abstract

This paper surveys three research directions in parsing. First, we look at methods for both automati-
cally generating a set of diverse parsers and combining the outputs of different parsers into a single parse.
Next, we will discuss a parsing method known as transformation-based parsing. This method, though
less accurate than the best current corpus-derived parsers, is able to parse quite accurately while learning
only a small set of easily understood rules, as opposed to the many-megabyte parameter files learned by
other techniques. Finally, we review a recent study exploring how people and machines compare at the
task of creating a program to automatically annotate noun phrases.

1 Introduction

This paper briefly surveys three research directions we hope will positively impact the field of parsing:
parser output combination, automatic rule sequence learning, and manual rule sequence creation.

2 Parser Combination

2.1 Combining Off-the-Shelf Parsers

There has been a great deal of recent research in the machine learning community on combining
the outputs of multiple classifiers to improve accuracy. In [4], we demonstrated that taking three
off-the-shelf part of speech taggers and combining their outputs results in a significant performance
improvement over any single tagger. More recently [8], we have demonstrated that the same is true

Precision | Recall | (P+R)/2 | F-Measure
Best Original Parser 89.6 89.7 89.7 89.7
Constituent Voting 92.4 90.1 91.3 91.3
Parser Switching 90.8 90.7 90.7 90.7

Table 1: Comparison of Single Parser with Combination Techniques

for parsing. We took three statistical parsers that had been trained on a portion of the Penn Treebank
[5, 6, 10]. We explored two methods of combination: constituent voting and parser switching.

In constituent voting, each parser posits a set of constituents with weights (votes). We take the
union of all posited constituents for a sentence, accumulating their weights, and then discard all
constituents with a weight below a threshold. In the simplest version of constituent voting, each
parser gives a weight of 1 to any constituent it posits, and then we retain all constuents posited by
more than half of the parsers. We can also weight the vote according to the accuracy of the individual
parser, or according to an estimate of the accuracy of an individual parser on a particular constituent
type in a particular context. It is possible that, for instance, one parser will be very accurate at
predicting noun phrases and very inaccurate at predicting prepositional phrases that occur before the
main verb. In fact, in studying conditional weights, we were unable to achieve better performance
than that achieved using the simplest weighting scheme. This could be either due to our lack of
creativity, or an indication that the three parsers we used do not differ significantly in behavior across
linguistic types or contexts.

In parser switching, each parser outputs a parse and our algorithm chooses to keep one of these
parses. We can define a distance measure over trees, and then given a set T of parser outputs for
a particular sentence, we would like to output the centroid tree for that set. In other words, we
want to output: argming, ZTjeT Dist(T3,T;). The motivation for this is that we can think of there
being a true parse for a sentence, and then each parser makes random errors, independent of the
errors made by the other parsers. Since finding the true centroid is intractible, we instead output:
argming, ¢ ZT,-GT Dist(T3, Tj)-

In table 1, we show the results obtained using both constituent voting and parser switching. We
see that both combination techniques improve upon the best statistical parser, and indeed the results
obtained using constuent voting are the highest accuracy numbers reported for the Wall Street Journal
to date.

2.2 Generating A Set of Parsers

We have also explored how we can exploit the advantages of classifier combination when we have
access to only one trainable parser [7, 9]. One technique for doing so is known as bagging [1]. In
bagging, we take a single training set of size M and from it generate a new training set by sampling
with replacement M times from the original set. We can do this multiple times to create multiple
training sets. Then each derived training set is used to train a separate parser.

We generated 18 bags from a Czech treebank [7] and then used each bag to train a Collins Parser
[6]. We then used simple constituent voting to combine the outputs of these 18 parsers on test data.
Figure 1 shows that the number of bagged parsers that posit a constituent correlates nicely with the
accuracy of that constituent. When only one of the 18 parsers outputs a constituent, that constituent

is correct less than 10% of the time. When all 18 parsers output a constituent, that constituent is

100

80 /

Constit Accuracy
5 8

ZOV*P

O - - N —] L v — — 3 L L L2 L} 8 3 2 ¥
1 2 3 4 5 6 7 8 9 10 11 12 13 14 1S 16 17 18
Num Bags

Figure 1: Accuracy versus number of parsers positing a constituent

| Parser [Precision | Recall | P+R | F-Measure |

Original | 79.1 791 | 1583 79.1
Bagged | 79.9 799 | 159.8 79.9

Table 2: Czech Test Set Bagging Results

correct more than 90% of the time. Table 2 shows the results on Czech test data of a single Collins
parser trained on the entire training corpus, compared to using bagging to generate 18 parsers and
then combining the outputs of these parsers. Similar results have been obtained for English.

3 Transformation-Based Parsing

There have been great advances recently in the accuracy of parsers that are automatically trained
from parsed corpora. One disadvantage of these grammar induction methods is that the derived
linguistic knowledge is captured in opaque parameter files, typically many megabytes large. This
makes it a challenge to capitalize on human intuitions to improve the machine-derived grammars. An
alternative to these statistical induction methods is a method called Transformation-Based Parsing
(TBP) [2, 11, 12]. In TBP, a grammar consists of an ordered sequence of tree transform rules. To learn
the rules, we begin with some initial annotation of the training corpus (for instance, every sentence
parsed as a flat structure under an S-node), and then we iteratively search for the transform rule
whose application will bring the training set closest to the set of true parses, we append that rule
to our rule list and apply it to the training corpus. Transform rules can add, delete or rearrange

structure. An example of a learned rule is:

If a sequence begins with a Determiner and ends with a Noun and has a Verb or Modal immediately
to the right of it, then bracket that sequence as an NP

Parser F-Measure

PCFG 73.4
Transformations 83.0

Collins 86.7

Table 3: Transformation-Based Parsing Test Set Results

While there is still much work to be done in improving TBP, we have found that in its current state
we achieve significantly better performance than a corpus-derived PCFG, but worse performance than
the best statistical methods. In table 3 we show results from training on a 20k-sentence subset of the
Penn Treebank WSJ corpus.

While the transformation-based system underperforms the best statistical systems, we believe it is
an exciting path worth pursuing for the following reason: the Collins parser needs a trained parameter
file about two hundred megabytes in size, while the transformation-based system achieves its accuracy
with just a few hundred (mostly) readily understood rules. A human expert can easily study the rule

list, and edit or add rules as appropriate.

4 Manual Rule Writing

In parsing, machine-learned rule-based systems achieve accuracy near that obtained by statistical
systems. In many other natural language tasks, such as part of speech tagging, word sense disam-
biguation, and noun phrase chunking, machine-learned rule-based systems achieve performance on
par with the best statistical systems, always learning a relatively small sequence of simple rules. This
raises the question of whether we are really gaining anything by using machine learning techniques
in NLP. While clearly a 200MB file of parameters is not something a person could create manually,
creating small rule lists certainly is something a person could do.

In [3], we addressed this question for noun phrase chunking. We built a system to allow people
to easily write rule sequences by hand and provided tools for effective manual error analysis. The
advantage of a rule sequence, compared to a CFG for instance, is that the human does not have to
be concerned about how rules interact. In manually generating a weighted CFG, there are complex
interactions between rules, which makes manual grammar adjustment difficult. With rule sequences,
at any stage of development the list of rules currently in the sequence can be ignored. In composing
the i+1st rule, the person need only study the corpus and try to derive a rule to improve the accuracy
of the training corpus in its current state, having been processed by the previous i rules.

We had students in a Natural Language Processing class write rule sequences for NP-bracketing.
We found that the best students wrote rules that achieved test-set performance comparable to the
best machine-learning system, and were able to achieve this performance after just a few hours of
rule writing. We believe this raises a number of interesting issues, such as: Does machine learning
really help? Can we effectively combine the (hopefully complementary) abilities of machine learning

algorithms and human rule-writers?

5

Summary

We have briefly surveyed three lines of research for parsing: combining the outputs of multiple trained

systems, reducing the problem to learning a small set of simple rules, and doing nothing automatically.

Acknowledgements

This work was partly funded by NSF grant IRI-9502312.

References

[1]
(2

(3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]

(11]

(12]

L. Breiman. Bagging predictors. Machine Learning, 24:123-140, 1996.

E. Brill. Transformation-based error-driven parsing. In Proceedings of the Third International
Workshop on Parsing Technologies, Tilburg, The Netherlands, 1993.

Eric Brill and Grace Ngai. Man vs. machine: A case study in base noun phrase learning. In
Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics, 1999.

Eric Brill and Jun Wu. Classifier combination for improved lexical disambiguation. In Proceedings
of the 17th International Conference on Computational Linguistics, 1998.

Eugene Charniak. Statistical parsing with a context-free grammar and word statistics. In Pro-
ceedings of the Fourteenth National Conference on Artifial Intelligence, 1997.

Michael Collins. Three generative, lexicalised models for statistical parsing. In Proceedings of the
35th Annual Meeting of the Assocation of Computational Linguistics, 1997.

Jan Haji¢, E. Brill, M. Collins, B. Hladka, D. Jones, C. Kuo, L. Ramshaw, O. Schwartz, C. Till-
mann, and D. Zeman. Core natural language processing technology applicable to multiple lan-
guages. Prague Bulletin of Mathematical Linguistics, 70, 1999.

John Henderson and Eric Brill. Exploiting diversity in natural language processing: Combining
parsers. In Proceedings of the 1999 Joint SIGDAT Conference on Empirical Methods in Natural
Language Processing and Very Large Corpora, 1999.

John Charles Henderson. FEzploiting Diversity for Natural Language Parsing. PhD thesis, Johns
Hopkins University, August 1999.

Adwait Ratnaparkhi. A linear observed time statistical parser based on maximum entropy models.
In Proceedings of the Second Conference on Empirical Methods in Natural Language Processing,
1997.

Giorgio Satta and Eric Brill. Efficient transformation-based parsing. In Proceedings of ACL,
1996.

Marc Vilain and David Palmer. Transformation-based bracketing: fast algorithms and experi-
mental results. In Proceedings of the Workshop on Robust Parsing (at ESSLLI-96), 1996.

GUIDES AND ORACLES FOR LINEAR-TIME PARSING

Martin Kay
Stanford University and Xerox Palo Alto Research Center

kay @parc.xerox.com

Abstract
If chart parsing is taken to include the process of reading out solutions one by one, then it has cxponential com-
plexity. The stratagem of separating read-out from chart construction can also be applied to other kinds of parser,
in particular, to left-comer parsers that use early composition. When a limit is placed on the size of the stack in
such a parser, it becomes context-free equivalent. However, it is not practical to profit directly from this observa-
tion because of the large state sets that are involved in otherwise ordinary situations. It may be possible to over-
come these problems by means of a guide constructed from a weakened version of the initial grammar.

A recognition procedure for a language is a method of determining whether a given string belongs to the lan-
guage. In the context-free case, it clearly reduces to showing that the string is a phrase of a particular cate-
gory, the goal category of the grammar. A string O belongs to category C if either, O consists of the single
symbol C, or there is a rule C — c; ... ¢, and Ot is the concatenation of strings that are phrases of categories
c{ .. C,, in that order. The proof that a string is a phrase of a given category can be summarized in an ordered
tree with nodes named for grammar symbols and this is what we refer to as the structure of the string accord-
ing to the grammar. The root is named for the grammar’s distinguished symbol and the daughters of a node
labeled C are labeled, from left to right, c; ... ¢,,, given that C — ¢y ... ¢, is a grammar rule.

Concretely, a rule s — np aux vp can be transcribed directly into Prolog as a definite-clause grammar
(DCG) somewhat as follows:

wof (s, A, D) :-

wof (np, A, B),

wof (aux, B, C),

wof (vp, C, D).
There is a word or phrase (wof) of category s stretching from point A to point D in the string if, for some
points B and C between A and D, there is a phrase of category np from A to B, of category aux from B to C, and
of category vp from C to D. A terminal symbol, say dog, is recognized as belonging to category n by virtue of
the clause:
wof (dog, [dog | X], X).
This is based on the convention of using suffixes of the string as names of points in it. In particular, this
clause says that a string consists of a noun followed by a string X if it consists of the word dog followed by X.

With these, and few more obvious definitions, the Prolog interpreter will be able to prove the proposition

wof (s, [the, dog, will, chase, the cat], [1])
The proof will be carried out in accordance with the so-called recursive-descent, or top-down backtracking
strategy suggested by our initial definitions. In order to show that a string is a word or phrase of category s,
the procedure is to first show that it begins with a phrase of category np, and then to show that the remainder
of the string consists of the aux phrase followed by a vp. Each of these steps consists of a recursive applica-
tion of the same procedure.

To get the structure of a string, one must arrange to capture the control structure of the recognition pro-
cess, and this can be done in a variety of ways. To capture all the possible structures of a string, it is neces-
sary to behave on success just as one does on failure, by backing up to the most recent choice point with
hitherto unexplored branches.

As an effective recognition or parsing algorithm, the flaws of DCG are well known. The two principal
ones are (1) that the assymptotic time complexity is exponential in the length of the string, and (2) that the
procedure does not terminate when a phrase of a given category can have an initial substring that must be
analyzed as belonging to that same category.

The information that the recognition procedure amasses about the a string can be summarized in the
manner exemplified below:

oracle(s, [the, dog, will, chase, the, cat], []).

oracle(np, [the, dog], [will, chase, the, cat])‘.
oracle(det, [the], [dog, will, chase, the, catl]|).
oracle(vp, [will, chase, the, catl], [1]).
Suppose that the clauses embodying the grammar are augmented as follows.
wof (s, A, D) :-
oracle(np, A, B),
wof (np, A, B),
oracle(aux, B, C),
wof (aux, B, C),
oracle(vp, C, D)
wof (vp, C, D).
With this augmented grammar and the oracle, the process of recognition is completely trivialized—in fact the
first oracle clause is all we need for recognition. Since the oracle does not provide structures, however, the
control structure of the recursive-decent analysis process must still be recorded if it is required to parse the
string. Notice, however, that the existence of such an oracle would eliminate one of the problems with recursive-
decent analysis, namely failure to terminate in cases of left recursion, and it alleviates the other by removing
from the search space all moves that do not belong to successful paths. It is this last property that motivates the
use of the term “oracle”.

The interest in recasting top-down syntactic analysis in this way comes from the analogy that can be drawn
to chart parsing. The oracle is essentially a chart and the wof grammar predicate supplies the read-out proce-
dure. It is usual to include more information in the chart so that the read-out procedure does not have to have
information from the grammar rules. In the present formulation, edges contain no information about the mem-
bers of a phrase, so that polynomial cofnplexity is achieved automatically without having to conflate edges with
the same category symbol and string coverage, but different internal structures.

Computational linguists are generally comfortable with the claim that chart parsing with a context-free
grammar has polynomial assymptotic time complexity. Since a context-free grammar can assign a number of
structures to a string that increases as an exponential function of its length, we assume that there is a tacit agree-
ment not to count the read-out procedure, but only the process of building the chart that will serve as an oracle
for the read-out procedure. How this is justified in detail is not clear. Intuitively, however, dividing the parsing
process into a first stage in which a data base of grammatical information about the string is constructed and a
second stage in which individual analyses are read out has the advantage of allowing different parsing algo-
rithms to be seen as idffering in complexity on the basis of the first, and intuitively more interesting part of the
process.

In the balance of this paper, we outline a parsing algorithm that is very different from chart parsing in its
details, but similar in that it proceeds in two stages, one in which a data base is constructed at quite attractive
cost in complexity, and one in which individual analyses are read out by a simple, oracle-driven, backtracking
parser. It will turn out, however, that the approach can form the basis of a practical parser only if the influence of
grammar size on the overall process can be brought under control. For this purpose, we introduce the notion of a
guide, which is a weak form of an oracle. If an oracle is available at a particular branch in a process, it can be
counted on to eliminate all choices that do not lead to a successful outcome. A guide will, in general, not elimi-
nate all unproductive choices, but it can be counted on not to eliminate any choices that do could lead to a suc-
cessful outcome. As an example of a guide, consider the weakened form of chart represented in the following
clauses:

guide([the, dog, will, chase, the, catl], []).
guide((the, dog], [will, chase, the, cat]).
guide([the], [dog, will, chase, the, cat]).
guide([will, chase, the, cat], []).
and a read-out procedure based on clauses like the following:
wof (s, A, D) :-
guide (A, B),
wof (np, A, B),
guide(B, C),

wof (aux, B, C),

guide (C, D)

wof (vp, C, D).

This chart shows where there are phrases in the string, but does not give their grammatical category. It is suf-
ficient, however, to eliminate problems arising from left-recursive grammars.

The scheme we will outline provides analyses of strings in linear time with a context-free grammar.
There is good reason to believe that this is not possible if all the structures allowed by the grammar are to be
recovered, and our scheme will indeed ignore certain structures. However, there is also good reason to
believe that the structures that we shall ignore are also not accessible to humans and, if this is the case, then
nothing but good can come from leaving them out of account.

Abney and Johnson (1989) have shown that a left-corner parser with early composition uses stack space
in proportion to the amount of center embedding in the structure. Such a parser is clearly also equivalentto a
finite-state automaton which can recognize a string in linear time. One problem with this is that a finite-state
automaton can serve only as a recognizer, and not as a parser. However, a recognizer and can serve as an ora-
cle for parserl. The idea is simply to scan the string to be parsed from right to left, using a finite-state autom-
aton that recognizes the reverse of the depth-limited version of the context-free language and to associate
with the space between each pair of words the state of the machines. When read from left to right, this
sequence of states serves as an oracle for the left-corner parser with the early composition and a finite stack.

Unfortunately, even for modest sized grammars, and an early limit on stack size, the numbers states in
the automaton is unmanageably large so that it cannot be represented explicitly and therefore cannot be made
deterministic. But, while undoubtedly a setback, this does not entirely upset the plan. Recognition with a
nondeterministic automaton is possible in linear time if an appropriate strategy is employed for caching the
states reached following a given substring. This follows from the fact that the number of altemative states
that the automaton can be in after a given sub-string is limited by properties of the automaton and not by the
length of string. However, even this is not enough to bring the cost of the computation within reasonable
bounds because the number of stacks configurations that are possible following even a fairly short string can
also be unmanageably large.

The idea of providing an oracle to control the construction of the sequence of state sets that will, in its
turn, serve as an oracle in reading out the structures of the string suggests itself, but it is difficult to see how
such an oracle would differ from the structure it is intended to help assemble. The intuition is that a useful
oracle must contain only a part of the information in the structure whose assembly it controls. However, the
possibility of a guide may be more promising. The idea will be to construct a weaker version of the context
free grammar, which assigns to any given string a superset to of the structures that are signed by the original
grammar, but which gives rises to an automaton with a smaller set of states. These states map in a systematic
way onto those of the original automaton and, when this is applied to the string, the only states that will be
considered at a given point will be those corresponding to states through which the smaller automaton has
passed.

A simple way to construct a weakend version of a grammar is to construct a partition that symbols and
to map each class in the partition onto a single symbol. The rules of the weekend grammar are simply the
images are under this mapping of the rules in the original grammar. The new grammar will be weeker to the
extent that it derives from a smaller number of a larger classes . Since the total number of symbols in the
weakened grammar is smaller than that in the original grammar, so is the number of possible stack configura-
tions.

The picture we now have is of a parser that proceeds in three phases. First, it scans the string from left to
right using a left corner recognizer based on the weakened grammar, annotating the spaces between the
words with the sets of states that the automaton is in at that point. Next, it scans the string from right to left
using the left-corner recognizer based on the full grammar and allowing states to be entered only if they map
onto members of the list of states associated with that point in the string in the preceding phase. The reason
for the reversal of direction is simply to ensure that the states on each list that is encountered are reachable
from the other end of the string, thus providing a guide for the present scan that is, to the extent possible, pre-
dictive. Following the practice in chart parsing, we declare these first two phases to constitute a parser and

1. This is reminiscent of the way the first member of a bimachine (Schiitzenberger, 1961) is used to control
the operation of the second member.

declare its assymptotic in complexity to be linear . The third phase reads out structures using the original context
free grammar and the left-corner parser with the early composition whose stack states must be chosen from
those associated with the string in the second phase.

One apparently minor matter remains, namely how to construct a weakened version of a particular grammar
that will serve as an effective guide, in this process. Surprisingly, this proves to be the sticking point. One possi-
bility would be simply to construct the partition of the grammar symbols in a random fashion. Another would be
to eliminate the distinctions made by X-bar theory, collapsing, for example, N, N-bar, and NP onto the same
symbol. Yet another would be to eliminate "minor" grammatical matters , such as agreement from the first scan.
The disturbing fact is that none of these things can be counted on to give a weakened grammar with desirable
properties. Either the grammar remains essentially unchanged, or it reduces to one that accepts almost every-
thing. Minor changes can easily cause it to move, almost chaotically, from one of these conditions to the other. I
offeer this as a challenge to the parsing community.

References

Abney, S. P. and M. Johnson (1989). “Memory requirements and local ambiguities of parsing strategies.”
Journal of Psycholinguistic Research 18(1): 129-144.

Schiitzenberger, Marcel Paul. 1961. A remark on finite transducers. Information and Control, 4. pp. 185-
187.

PARSING TECHNIQUES FOR
LEXICALIZED CONTEXT-FREE GRAMMARS

Giorgio Satta
Dip. di Elettronica e Informatica
Universita di Padova
via Gradenigo 6/A
35131 Padova, Italy

satta@dei.unipd.it

1 Introduction

In recent years, much of the parsing literature has focused on so-called lexicalized grammars, that
is grammars in which each individual rule is specialized for one or more lexical items. Formalisms
of this sort include dependency grammar [13], lexicalized tree-adjoining grammar [17], link gram-
mar [20], head-driven phrase-structure grammar [14], tree insertion grammar [18], combinatorial cat-
egorial grammar [21] and bilexical grammar [7]. Probabilistic lexicalized grammars have also been
exploited in state-of-the-art, real-world parsers, as reported in [11], [1], [6], [2], [4], and [9]. Other
parsers or language models for speech recognition that do not directly exploit a generative grammar,
still are heavily based on lexicalization, as for instance the systems presented in [10], [12], [15] and [3].

The wide diffusion of lexicalized grammars is mainly due to the capability of these formalisms to
control syntactic acceptability, when this is sensitive to individual words in the language, and word
selection, accounting for genuinely lexical factors as well as semantic and world knowledge conditions.
More precisely, lexicalized grammars can select the complements and modifiers that a constituent can
take, on the basis of special words playing a particularly informative role within the given constituent
and the given complements and modifiers. These special words are typically identified with the lexical
head and co-heads of a constituent, where with the term co-head of a constituent A we denote a
lexical head of any of the subconstituents of A. To give a simple example (from [8]), the word convene
requires an NP object to form a VP, but some NPs are more lexically or semantically appropriate
than others, and the appropriateness depends largely on the NP’s head, e.g., the word meeting vs.
the word party. In this way, the grammar is able to make stipulations on the acceptability of input
sentences like Nora convened the meeting and Nora convened the party. This was not satisfactorily
captured by earlier formalisms that did not make use of lexicalization mechanisms. See [5] for further
discussion.

Within the parsing community, and in the speech community as well, a considerable research effort
has been devoted to the important problem of defining statistical parameters associated with lexi-
calized grammars, and to the problem of the specification of algorithms for the statistical estimation
of these parameters. In contrast, not much has been done with respect to the sentence processing
problem. Most of the above mentioned systems parse input strings using naive adaptations of existing
algorithms developed for the unlexicalized version of the adopted formalism, possibly in combina-

10

tion with heuristics specially tailored to cut down the parsing search space. However, the internal
structure and the large size of formalisms derived by means of some lexicalization mechanism render
these systems unsuitable to be processed with traditional parsing techniques. In the talk we address
these problems and present novel parsing algorithms for lexicalized grammars that overcome the com-
putational inefficiencies that arise when standard algorithms are used. We will focus on lexicalized
context-free grammars (LCFGs), a class of grammars originally introduced in [8]. LCFGs are a con-
venient abstraction that allows us to study important computational and generative properties that
are common to several of the above mentioned lexicalized grammars. A similar abstraction, called
probabilistic feature grammars (PFG), has been presented in [9], motivated by parameter estimation
problems. In contrast to PFG, features with lexical values have a special status within LCFG: this
facilitates analysis of several complexity measures. In what follows, we report a formal definition of

LCFGs and give a brief outline of the results that will be more carefully presented in the talk.

2 Lexicalized context-free grammars

We can think of a lexicalized context-free grammar as a particular kind of CFG obtained by applying a
lexicalization procedure to some underlying CFG.! Before presenting the formal definition of LCFG, we
briefly discuss an example. Consider the sample phrase dumped sacks into a bin. In order to be able to
capture the lexical and syntactic relations holding among the words in this phrase, we pair each of the
standard nonterminals NP, VP, etc., with a tuple of words from the phrase itself. The nonterminals
of the resulting grammar are therefore of the following kind: V[dump], NP[sack], VP[dump][sack],
etc. Using these new lexicalized nonterminals we can write new context-free productions of the form
VP[dump][sack] = V[dump] NP[sack]. The main idea here is that lexical items appearing in the right-
hand side nonterminals can be inherited by the left-hand side nonterminal. A possible derivation of
the above phrase is depicted in Figure 1.

VP[dump][sack]

VP[dump][sack] PP[into][bin]
V[dump] NP[sack] P[into] NP[bin]
Nisack] Demin]
dumped satlzks ir;to Jl b!n

Figure 1: A sample derivation in an LCFG.

We now give a formal definition of LCFG. A lexicalized context-free grammar is a CFG G =
(W, V1, P, S[$)]), with Vv and Vr the set of nonterminal and terminal symbols, respectively, and with
S[8] € Vn a special start symbol. The following conditions are all satisfied by G:

1The particular way we lexicalize CFGs differs from the proposal in [18], where a CFG is transformed into a tree
substitution grammar. Also, we note here in passing that an LCFG could be alternatively defined as a very restricted
kind of attribute grammar with only synthesized attributes [16].

11

(i) there exists a set Vp, called the set of delexicalized nonterminals, such that
W C {4lai]laz]---[a;] | A€ VD, 7>1,a;€V7,1<j<r}

(ii) every production in P has one of the following two forms:

(a) Aolao,] - -[ao,ro) = Aiar,] - [a1,r,] A2laz]---[azr,] -+ Aglaga]---[agr,];
where ¢ > 1 and multiset {ao,1,...,a0,} is included in multiset {a; 1,...,a1,r,,02,1,...,8q,r,};
(b) Ala] — a.

The multiset condition in (ii)a states that the lexical items in the left-hand side nonterminal are
always inherited from the nonterminals in the right-hand side. Note also that the start symbol S[$] is
a lexicalized nonterminal. As a convention, we assume that $ is a dummy lexical item that does not
appear anywhere else in G, and disregard it in the definition of L(G).

In current practice, the set of delexicalized nonterminals Vp is kept separate from set Vp. Set
Vb usually encodes word sense information and other features as number, tense, etc., structural
information as bar-level and subcategorization requirements, and any additional information that
does not explicitly refer to individual lexical items, as for instance contextual constraints for parent
node category [2], or constraints on the constituent’s yield, expressed through finite information about
distribution of some lexical category [4].

Let G be some LCFG and let p be some production in P. If p has the form in (ii)a above, let
kp = 3j_,rj; otherwise, let k, = 0. The degree of lexicalization of an LCFG G is defined
as kg = max,cp k,. We also say that G is a kg-lexical CFG. Note that from condition (ii)a it
directly follows that G has productions with right-hand side length bounded by k. When the set of
delexicalized nonterminals is fixed, the degree of lexicalization induces a proper hierarchy on the class
LCFG. More precisely, it can be shown that, for any non-empty set Vp and any & > 3, there exists
a k-lexical CFG G defined on Vp such that L(G) cannot be generated by any k'-lexical CFG defined
on Vp and with k' < k.

The class of 2-lexical CFG, also called bilexical CFG, turns out to be of major importance in cur-
rent parsing practice. In fact, the probabilistic formalisms adopted in [1], [6], [2] and [4] are strongly
equivalent to bilexical grammars, in the following sense. For each of the above formalisms, we can
effectively construct a corresponding probabilistic bilexical grammar with the following properties.
There is a one-to-one mapping between derivations in the source formalism and derivations in the tar-
get bilexical grammar. This map preserves the associated probabilities and can be computed through
a homomorphism (homomorphisms can be implemented as real-time, memoryless processes). Most
important here, when computational problems related to parsing must be investigated, bilexical gram-
mars are a useful abstraction of the above mentioned formalisms, and parsing algorithms developed
for bilexical grammars can directly be adapted to these formalisms. In Section 3, we will mainly focus

on bilexical grammars.?

3 LCFG Parsing

The cost of the expressiveness of an LCFG is a very large production set. In the simplest case of
bilexical CFGs, the size of set P usually grows with the square of the size of Vr, and thus can be very

2The adoption of bilexical formalisms in state-of-the-art, real-world parsers is related to the fact that currently
available natural language annotated corpora are still limited in their size, so that the estimation of probabilities for
lexical relations of arity greater than two is still quite problematic.

12

large. Standard context-free parsing algorithms, which run in time linear with the size of the input
grammar, are inefficient in such cases. Therefore, a first goal in the design of a parsing algorithm
for LCFGs is the one of achieving running time sublinear with respect to the grammar size. As a
first result, we show that algorithms satisfying the so-called correct-prefix property [19] are unlikely
to achieve this goal, even in case the grammar is precompiled in an amount of time polynomial in its
size.

In order to achieve the sublinear time goal, a usual practice is to use standard CFG parsing algo-
rithms and to select only those rules in the grammar that are lexically grounded in the input sentence.
However, this in practice adds a factor of n? for an input string of length n, resulting in O(n%) running
time for bilexical CFGs and related formalisms. We show how dynamic programming can be exploited
to achieve an O(n*) result. Also, we specify an O (n%) time algorithm for a restricted kind of bilexical
CFGs. We argue that the proposed restriction leaves enough power to the formalism to capture most
common natural language constructions. We discuss how these results generalize to LCFG with higher
degree of lexicalization and to lexicalized tree-adjoining grammars [17] as well.

The above algorithms exploit bottom-up strategies, which are the most common in parsing lexi-
calized grammars. We show how top-down strategies can be applied in parsing bilexical CFGs, still
retaining the desired condition on sublinear running time with respect to the input grammar size.
This is done by exploiting generalized look-ahead techniques. We argue that the resulting strategies
are even more selective than standard top-down strategies satisfying the correct-prefix property.

Acknowledgements

This abstract presents ongoing research in collaboration with Jason Eisner, University of Rochester,
and Mark-Jan Nederhof, DFKI. The author is supported by MURST under project PRIN: Bioln-
formatica e Ricerca Genomica and by University of Padua, under project Sviluppo di Sistemi ad
Addestramento Automatico per I’Analisi del Linguaggio Naturale.

References

[1] H. Alshawi. Head automata and bilingual tiling: Translation with minimal representations. In
Proc. of the 34 ACL, pages 167-176, Santa Cruz, CA, 1996.

[2] E. Charniak. Statistical parsing with a context-free grammar and word statistics. In Proc. of
AAAI-97, Menlo Park, CA, 1997.

[3] C. Chelba and F. Jelinek. Exploiting syntactic structure for language modeling. In Proc. of the
36'* ACL, Montreal, Canada, 1998.

[4] M. Collins. Three generative, lexicalised models for statistical parsing. In Proc. of the 35" ACL,
Madrid, Spain, 1997.

[5] M. Collins. Head-Driven Statistical Models for Natural Language Parsing. PhD thesis, Depart-
ment of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, 1999.

[6] J. Eisner. Three new probabilistic models for dependency parsing: An exploration. In Proc. of
the 16** COLING, pages 340-345, CBpenhagen, Denmark, 1990.

13

[7] J. Eisner. Bilexical grammars and a cubic-time probabilistic parser. In Proceedings of the 4th
Int. Workshop on Parsing Technologies, MIT, Cambridge, MA, September 1997.

[8] J. Eisner and G. Satta. Efficient parsing for bilexical context-free grammars and head automaton
grammars. In Proc. of the 37" ACL, pages 457-464, College Park, Maryland, 1999.

[9] J. Goodman. Probabilistic feature grammars. In Proceedings of the 4th Int. Workshop on Parsing
Technologies, MIT, Cambridge, MA, September 1997.

[10] F. Jelinek, J. Lafferty, D. Magerman, R. Mercer, A. Ratnaparkhi, and S. Roukos. Decision tree
parsing using a hidden derivation model. In Proceedings of the 1994 Human Language Technology
Workshop, pages 272-277, 1994.

[11] J. Lafferty, D. Sleator, and D. Temperley. Grammatical trigrams: A probabilistic model of link
grammar. In Proc. of the AAAI Conf. on Probabilistic Approaches to Nat. Lang., October 1992.

[12] D. Magerman. Statistical decision-tree models for parsing. In Proc. of the 39" ACL, pages
276-283, Cambridge, MA, 1995.

[13] I. Mel’¢uk. Dependency Syntaz: Theory and Practice. State University of New York Press., 1988.

(14] C. Pollard and I. Sag. Head-Driven Phrase Structure Grammar. University of Chicago Press.,
1994.

[15] A. Ratnaparkhi. A linear observed time statistical parser based on maximum entropy models.
In Second Conference on Empirical Methods in Natural Language Processing, Brown University,
Providence, Rhode Island, 1997.

[16) G. Rozenberg and A. Salomaa. Handbook of Formal Languages, volume 1. Springer-Verlag,
Berlin, Germany, 1997.

[17] Y. Schabes, A. Abeille, and A. K. Joshi. Parsing strategies with ’lexicalized’ grammars: Ap-
plication to tree adjoining grammars. In Proc. of the 12®* COLING, pages 578-583, Budapest,
Hungary, 1988.

[18] Y. Schabes and R. C. Waters. Tree insertion grammar: A cubic-time parsable formalism that
lexicalizes context-free grammar without changing the trees produced. Computational Linguistics,
21(4):479-515, 1995.

[19] S. Sippu and E. Soisalon-Soininen. Parsing Theory: LR(k) and LL(k) Parsing, volume 2.
Springer-Verlag, Berlin, Germany, 1990.

[20] D. Sleator and D. Temperley. Parsing english with a link grammar. In Proceedings of the 3trd
Int. Workshop on Parsing Technologies, Tilburg, Durbuy, Germany, August 1993.

[21] M. Steedman. Surface Structure and Interpretation. The MIT Press, Cambridge, MA, 1996.

14

Papers

A BOOTSTRAPPING APPROACH TO PARSER
DEVELOPMENT

Izaskun Aldezabal, Koldo Gojenola, Kepa Sarasola

Department of Computer Languages and Systems
Informatika Fakultatea, 649 P. K., Euskal Herriko Unibertsitatea,
20080 Donostia (Euskal Herria)

{jibalroi, jipgogak, jipsagak}@si.ehu.es

Abstract

This paper presents a robust parsing system for unrestricted Basque texts. It analyzes a sentence in two
stages: a unification-based parser builds basic syntactic units such as NPs, PPs, and sentential complements,
while a finite-state parser perfiorms syntactic disambiguation and filtering of the results. The system has been
applied to the acquisition of verbal subcategorization information, obtaining 66% recall and 87% precision
in the determination of verb subcategorization instances. This information will be later incorporated to the
parser, in order to improve its performance.

1 Introduction

As NLP-based applications are growing, there is a stronger need for wide-coverage parsing systems. At the
moment, comprehensive grammars are available for some languages, like English [Briscoe and Carroll 1993],
or parallel LFG German, French and English grammars [Butt et al., 1999], developed after a considerable
effort. Moreover, the huge size of the now available corpora demands successive extensions of the grammars,
to include corpus-specific information or to augment the basic syntactic grammars with lexical information,
like subcategorization frames or selectional restrictions [Briscoe and Carroll 1997, Carroll and Rooth 1998].
However, the situation is different for most other languages, due to several reasons:

* Limited number of language users. This fact implies a reduced number of researchers/developers of

computational linguistic tools.

* Limited number of language resources, in the form of computational lexicons, grammars, corpora,
annotated treebanks or dictionaries.

Although there are current efforts for the development of parsing systems for other languages [Oflazer
1999, Hajic and Hladké 1998], there will always be the problem of reaching the complexity and performance
of the parsers for the most studied languages. This is in spite of the effiorts to make publicly available
language resources (ELRA) that could at most alleviate the problem. Therefore, methods must be devised
which obtain results automatically, minimizing development costs.

This work presents both the development of a parsing system for unrestricted Basque texts and the first
results obtained using it in the process of acquiring subcategorization information. The system is applied to
Basque, which has as its main characteristics being agglutinative and having basically constituent-free order.
These characteristics involve some complexities for syntactic analysis.

As a first step, a basic parsing system has been developed. It consists of two modules, applied sequentially:
an unification based chart-parser and a finite-state parser. This combined system covers the syntactic core of
the language; however, although it is useful for several non-trivial applications like the detection of syntactic

errors, is still incomplete, lacking important aspects like subcategorization information. For this reason, we

17

have applied this basic parser to text corpora, with the aim of obtaining subcategorization information that
will be used to enrich the lexical database. This way, we plan to develop a parsing system in a bootstrapping

fashion, with incremental improvements.

Morphological
analysis and disambiguation

X

Unification based chart-parser

Figure 1. Overview of the system.

The rest of the paper is organized as follows. Section 2 presents the basic parsing system we have
implemented, detailing its main components and justifying its sequential architecture. It also examines the
application of the system to the extraction of subcategorization information. Section 3 gives the results of its
evaluation against a set of manually tagged 500 sentences, while section 4 reviews the literature on parsing

systems and automatic acquisition of subcategorization information.

2 The Parser

We have developed a parsing system divided in two main modules: a unification based parser and a finite-
state parser (see figure 1). Prior to parsing, there is another step concerned with morphological analysis and
disambiguation, using the basic tools for Basque (http://ixa.si.ehu.es) that have been developed in previous
projects:

e The lexical database. It is a large repository of lexical information, with about 70.000 entries
(including lemmas and declension/derivational morphemes), each one with its associated linguistic
features, like category, subcategory, case and number, contained in a commercial database
management system.

* Morphological segmentation. Inflectional morphology of Basque was completely described in [Alegria
et al. 1996]. This system applies Two-Level Morphology for the morphological description and
obtains for each word its segmentation(s) into component morphemes, where each morpheme is
associated with its corresponding features in the lexicon. The segmentation module has full coverage
of free-running texts in Basque, capable of treating unknown words and non-standard forms (dialectal

variants and typical errors).

18

* Morphological disambiguation. A disambiguation system was implemented for the assignment of the
correct lemma and part-of-speech to each token in a corpus [Ezeiza et al. 1998] taking the context into
account, by means of statistical (Hidden Markov Models) and hand-crafted rules (Constraint Grammar
(CG) formalism [Samuelsson and Voutilainen 1997]). This tool reduces the high word-level ambiguity
from 2.65 to 1.19 interpretations, still leaving a number of interpretations per word.

2.1 The Unification Based Parser

After morphological analysis and disambiguation, each word is assigned one or more readings, each of them
as a list of its components (lemma and morphemes) with their associated morphosyntactic information. Some
facts concerning syntactic analysis must be taken into account:

* The morpheme is the basic unit of syntactic analysis, following the most extended syntactic
descriptions for Basque [Abaitua 1988]. In figure 2, dashed lines represent lemmas and morphemes,
that is, units smaller than the word that will form the input to the syntactic analyzer. This kind of
analysis has been adopted by other systems for agglutinative languages like Hungarian [Proszéky
1996] and Turkish [Oflazer 1999].

* Regarding the syntactic structure of Basque, it has been considered as a language with free order of
constituents. However, this is only true for main sentence constituents with respect to the verb (such as
noun phrases, prepositional phrases and sentential complements), because inside those constituents the
order of elements is fixed or quite limited. Moreover, the syntactic relationships inside these fixed
order components require the testing of complex agreement and the building of non-trivial syntactic
structures, not definable by finite-state techniques [Beesley 1998]. These facts led us to describe the
syntax of these components by means of feature structures, using a unification based formalism.

* There are more problems if we want to go beyond the level of the main sentential constituents (verbs,
NPs, PPs and sentential complements). As their relative order is almost free, their analysis would
suppose the proliferation of a high number of unsolvable attachment ambiguities. Example 1 shows the
presence of two elements (PP and NP) that could be attached to either of the two surrounding verbs
(giving three different interpretations). Although this kind of ambiguity can be resolved in some cases
(the auxiliary verb, when present, can indicate information about the case, number and person of
subject, object and indirect object), a general solution will need at least the use of subcategorization
information, unavailable at the moment. As a result, the effort devoted to the design of such a grammar
would be of little final value at the moment, due to unsolved ambiguity. Furthermore, its development
would also be a costly enterprise. For that reason, we decided to postpone the development of that part

of the grammar until the relevant information is available.

... it was seen necessary to create an institution at this side of the Pyrennees ...

... beharrezko ikusi zen Pirineotako bazter honetan erakunde bat sortzea ...
Adjective Verb PP NP Verb
(necessary) (was seen) (at this side of the Pyrennees) (an institution) (to create)

Example 1. The attachment of elements between the two verbs needs (at least) subcategorization information.

Hence, a partial unification grammar has been developed that gives a complete coverage of the main
elements of the sentence (NPs, PPs and sentential complements). At the moment the grammar contains 120
rules written in the PATR-II formalism. We chose this formalism because there has not been a broad

19

description for Basque using more elaborated theories like LFG [Abaitua 1988] and HPSG, and also because
the theories are based on information not available at the moment, such as verb subcategorization. PATR-II is
more flexible at the cost of extra writing, as it is defined at a lower level. There is an average number of 15
equations per rule, some of them for testing conditions like agreement, and others for structure building. The
main phenomena covered are:

* Noun phrases and prepositional phrases. Agreement among the component elements is verified, added

to the proper use of determiners.

¢ Subordinate sentences, such as sentential complements (completive clauses, indirect questions, ...) and
relative clauses.

* Simple sentences using all the previous elements. The rich agreement between the verb and the main
sentence constituents (subject, object and second object) in case, number and person is verified. As we
explained before, sentence analysis is performed up to the level of phenomena that can be described
using only syntactic information now included in the lexicon.

Example 2 shows the (simplified) rule that combines a noun-group (noun + adjectives + determiners +
noun modifiers) with a case mark (simple or composed), forming an indefinite NP or PP. Although we will
not explain the rule in detail, the example shows the relative complexity of the rules as they must test for
several kinds of agreement on number, definiteness and case. As a consequence, the linguistically relevant
morphosyntactic information is very rich compared to most chunking systems. This will have the effect of
increased flexibility, as diffierent applications will typically use only a subset of the information.

rule NP_1_def
X0 ———> X1 X2

X1/category <=> noun-group

X2/category <=> case-morpheme

X0/category <=> NP

X1/sint/agr/def <=> X2/sint/agr/def

X1/sint/agr/num <=> X2/sint/agr/num

X1/head/plu <=> minus

X2/sint/agr/case not [genitive]

X2/sint/agr/def <=> indefinite

or[X1/sint/det/head/subcategory in [definite, indefinite, interrogative]
X1/head/subcategory in [cpronoun, interrogative-pronoun]
X2/sint/agr/case in [partitive, prolative, inessive])
X1/head/subcategory in [place-name, proper-name]

Example 2. Rule that combines a noun-group with a case-morpheme.

This system can be seen as a shallow parser [Abney 1997, Giguet and Vergne 1997] that can be used for
subsequent processing, following “... the basic assumption that it is possible to define an interesting
intermediate level between words and sentences”, as [Basili et al 1998] point out. The parser is applied
bottom-up to each sentence, giving a chart as a result. The output for each sentence still contains both
morphological and syntactic ambiguities, giving a huge number of different potential readings per sentence.
Figure 2 shows an example where dashed lines are used to indicate lexical elements (lemmas or morphemes),
while plain lines define syntactic ones. The bold circles represent word-boundaries, and the plain ones delimit
morpheme-boundaries. Although the figure has been simplified, each arc is actually represented by its
morphological and syntactic information, in the form of a sequence of feature-value pairs.

20

2.2 The Finite-State Parser
As we showed in the previous section, the unification based parser obtains the decomposition of a sentence
into its main syntactic components. However, this result is not directly useful due to several reasons:

* Ambiguity. There are multiple readings for each sentence, as a result of both morphological ambiguity
(1.19 interpretations per word-form) and syntactic ambiguities introduced by the unification based
parser.

* Different output profiles. Linguistic information is defined at different levels, each of which will be
useful depending on a particular application. For example, in the acquisition of subcategorization
information all NPs, PPs and sentential complements will be necessary, but for term identification only
NPs and PPs are needed (this means that sentential complements, which may include NPs and PPs,

must be eliminated from the output).

PP
(in the nice house at
the mountain)

Noun-modifier

at the mountain) s
(I have seen (it))

PP
(in the nice house)

< e 9% "0 0=
- X poli
mendi"O-=R0—= 07 0 kNG~ 0

Figure 2. State of the chart after the analysis of Mendiko etxe politean ikusi dut nik ('l have seen (it) in the nice
house at the mountain').

As a consequence, a tool is needed that will allow the definition of complex linguistic patterns for
disambiguation and filtering. In recent years, several parsing systems based on finite-state technology have
been developed, based on automata and transducers [Roche and Schabes 1997]. We decided to treat the
resulting chart (see figure 2) as an automaton to which finite-state disambiguation constraints and filters can
be applied, encoded in the form of regular expressions and relations. This way, finite-state rules provide a
modular, declarative and flexible workbench to deal with the resulting chart. Currently we use the Xerox
Finite State Tool (XFST, http://www.rxrc.xerox.com/research/mltt/fst/home.html), which has as its main
characteristic a rich set of operations, like the replacement operator [Karttunen et al. 1997], defined in terms
of simpler regular expressions (or relations) so that the combined expressions always belong to the finite-state

calculus and can, therefore, be implemented using a finite-state automaton (transducer).

Among the finite-state operators used we apply composition, intersection and union of automata and
transducers. We use both ordinary composition and the recently defined lenient composition [Karttunen
1998]. This operator allows the application of different eliminating constraints to a sentence, always with the
certainty that when some constraint eliminates all the interpretations, then the constraint is not applied at all,
that is, the interpretations are ‘rescued’. The operator was first proposed to formalize Optimality Theory
constraints in phonology. As Karttunen points out, it also provides a flexible way to enforce linguistic or

empirical constraints in syntactic disambiguation.

21

.0. Constraintl .O. Constraint2 .O. ...

.0. SubsentenceRecognizerl .o. SubsentenceRecognizer2 o. ...

.0. OutputFilterl .o. OutputFilter2 .o.
o Beame)
' Verb + subcategorized elements !

Figure 3. The finite-state parser.

The design of the finite-state rules is a non-trivial task when dealing with real texts, including proper
names, syntactic/spelling errors, unknown/foreign words and a wide variety of syntactic constructions. So we
had to define 388 finite-state definitions and constraints for the acquisition of verb subcategorization
information (actually most of them reflect linguistic facts that can be directly used in other applications). They
range from simple local constraints (305 automata with less than 100 states) to most complex patterns (there
are a few automata with more than 15,000 states and 300,000 arcs).

As constraints and filters are defined by means of automata and transducers, they could theoretically be
merged into a single final automaton, hence improving performance. However, as patterns are more complex,
the size of the resulting automaton grows prohibitively large, so we had to arrange it by sequencing the
automata. Although this slows down parsing time, it makes the compilation viable [Tapanainen 1997]. The
interaction of different automata is a matter that requires further investigation.

As a first evaluation of the system, we chose the problem of acquiring verbal subcategorization
information, that is, given a sentence and a verb, extracting the verb’s corresponding subcategorized elements.
This application has the advantage of a well defined environment to test the performance of the parser, and
also that the resulting subcategorization frames may be fed back to the parser, to improve its coverage and
precision [Briscoe and Carroll 1997].

These are the main operations performed by the finite-state parser (see figure 3):

¢ Disambiguation. As whole syntactic units can be used, this process is similar to that of Constraint
Grammar disambiguation, with the advantage of being able to reference syntactic units wider than the
word, which must be defined in a roundabout manner in the word-based CG formalism. As figure 3
shows, the disambiguation constraints are applied using the lenient composition operator (.O.), so that

no constraint will discard all the readings of a sentence, making the system robust.

e Extracting parts of a sentence. The global ambiguity of a sentence is considerably reduced if only part
of it is considered (see example 3). For instance, in the case of extracting verb subcategorization
information, some rules examine the context of the target verb and define the scope of the subsentence
to which the disambiguation operations will be applied (these filters use the ordinary composition

operator .0.).

* Filtering. Sometimes not all the available information is relevant. For example, the noun/adjective
ambiguity present in zuriekin ('with the whites' (zuri as a noun) / 'with the white ones' (adjective)) can
be ignored when acquiring verb subcategorization information, as we are interested in the syntactic
category and the grammatical case (prepositional phrase and commitative, respectively), the same in

both alternatives.

22

Example 3 shows the application to a sentence containing the wordform doa (goes), in the context of
analyzing the verb joan (to go). The result is simplified, as both the input and output are presented as text,
rather than as an automaton containing feature-value pairs that represent syntactic components (the translation
of the output subsentence is given later in example 4).

Eta lepo honetatik Narbajara bidegarbia doa Neguralo pagaditik

Larraingoitiko hareharrizko harrobitik zehar igaroaz

}

(lepo honetatik) (Narbajara) (bide garbia) (doa)

Example 3. Simplified input and output of the parser.

3 Evaluation

We took a corpus consisting of 500 sentences corresponding to 5 verbs, that is, 100 sentences per verb. In
order to test different corpora, half of the sentences were taken from a general corpus of Basque, while the
other half came from newspaper texts. We manually marked for each sentence the occurrence of each target
verb and its associated subcategorized elements, and then compared it with the output of the parser. 350
sentences were used for the refinement of both the unification based parser and the finite-state parser, while
the remaining set of 150 sentences (30 for each verb) was only examined for the final test.

Regarding the tested sentences, we did not select them by lexical or syntactic coverage of the parser, i. e.,
we took the first set of 500 sentences containing the target verbs from the two corpora, so that we could
measure the actual performance of the parser with unrestricted texts. There are several extra difficulties added

to the problem of ambiguity:

¢ Sentence length. Each sentence contains an instance of the target verb together with other main or
subordinate subsentences (the average sentence length is 22 words). Delimiting the exact boundaries of
the subsentence corresponding to the target verb is a difficult task.

* Multiword lexical units. Although we plan to include their treatment in the morphological analysis
phase, it is not implemented yet. Its main consequence will be an increase in the number of errors
(false positives), as some non-compositional elements will be interpreted compositionally by the
general unification based grammar.

* Unknown words, proper names and spelling errors. Although the morphological analyzer recognizes a
subset of them, the rest is problematic because each of them will give a number of hypothetical
interpretations, therefore increasing ambiguity and consequently the error rate. Increasing lexical
coverage will have a positive impact in future developments.

To evaluate the correct analysis of a sentence, we have developed a simple coding scheme inspired on
[Carroll et al. 1999], who define a hierarchy of grammatical relations. Instead of marking syntactic functions,
we annotate the declension case, lemma and number of NPs and PPs [Oesterle and Maier-Meyer 1998], and
the subordination type for sentential complements (see example 4). We have postponed the assignment of

syntactic functions until relevant data is available.

23

Input: ... lepo honetatik Narbajara bide garbiadoa ... (... a clear path goes from this hill to Narbaja ...)

Output: lepo honetatik

ablative(lepo, doa)

from this hill
ablative(hill, goes)

Narbajara

alative(Narbaja, doa)

to Narbaja
alative(Narbaja, goes)

bide garbia
absolutive(bide, doa) doa

a clear path

doa

goes

absolutive(path, goes) goes

Example 4. Coding scheme based on the grammatical case of subcategorized elements.

For evaluation we measured precision (the number of correctly selected elements / all the elements

returned by the parser) and recall (the number of correctly selected elements / all the elements present in the

sentence). Table 1 shows the results as the mean over all sentences. Although there is always a balance

between recall and precision, we tried to maximize the latter, sometimes at the cost of lowering recall. As we

could inspect the development corpus during the refinement of the parser, the results in the second and third

columns can be understood as an upper limit of the parser in its current state, approximately 92% precision

and 71% recall. As we will explain next, these results can be improved refining the lexicon and the grammars.

Development (350 sentences) Test corpus (150 sentences)
corpus
Precision Recall Precision Recall
agertu (to appear) 95% 69% 8% 62%
atera (to go) 91% 65% 92% 64%
erabili (to use) 92% 70% 86% 55%
ikusi (to see) 91% 76% 87% 78%
joan (to go) 93% 74% 83% 70%
Total 92% 71% 87% 66%

Table 1. Evaluation results.

We examined manually the causes of the errors (68 errors were identified in the test corpus causing

problems in precision or recall), which can be classified into several types':

* Errors due to multiword units (5), unknown words, proper names (9) and spelling errors (8). Their

treatment corresponds naturally to morphological analysis and is mainly linked to future extensions of

the lexicon.

* Errors due to incorrect disambiguation. They can be subdivided into two main types. When the

morphological disambiguator chooses an incorrect reading, it has the effect of causing a false positive,

i.e., decreasing precision (9 errors). On the other hand, sometimes more than one alternative is left

(including the correct one). Its main effect will be increased ambiguity that will show as lower recall (5

errors).

* Errors due to the lack of syntactic coverage of the grammars (32 errors). This kind of errors define the

limits of the partial parsing approach. Although more than half of these errors are due to the

incompleteness of the grammar, and they can be solved simply by extending it to cover the

! We did not examine the relationships among different errors, as many times one kind of error has the effect of

causing other error types.

24

corresponding phenomena, there are other errors that would need qualitative changes, like the
inclusion of subcategorization information. Finally, a third set of errors are due to the characteristics of
unrestricted corpora, such as syntactically odd constructions, that we doubt a parser could analyze even
after solving the two other problems.

As the results show, more than half of the errors could be solved by improvements on the lexicon, the
morphological analyzer and morphological disambiguation (totaling 36 errors). Although morphological
disambiguation is relatively difficult to extend and modify, further careful work extending the treatment of
proper names, spelling errors and multiword units would imply a noticeable increase in both recall and
precision. In a similar way, work must be done extending the basic syntactic grammar, which we estimate
could reduce the syntactic errors to about a half of the present ones. Consequently, we consider the results
satisfactory, with 87% precision and 66% recall, as the results for new sentences are near the expected best
results (those obtained for the development corpus, with 92% precision and 71% recall), showing that the
system behaves correctly with unseen sentences.

After obtaining instances of putative subcategorization frames, there is still work to be done. In
configurational languages like English, subcategorized elements appear at fixed places around the verb, while
in nonconfigurational ones they can appear at several different positions (hypothetically all the permutations
are possible). Basque being mainly a nonconfigurational and pro-drop language with respect to phrases in
ergative, absolutive and dative cases, there is not a direct correspondence between subcategorization instances
and frames, as one subcategorization frame may correspond to several kinds of instances. As an experiment,
we applied the parser to 1,000 sentences (22,000 words) corresponding to the verb ikusi (‘to see’), and
classified the results according to the different sets of subcategorized elements, without taking their relative
order in consideration. The results are presented in Table 2. Results were obtained for 826 sentences, after
discarding those having more than one interpretation. For example, the patterns ‘instrumental’ and ‘absolutive
instrumental’ correspond to the same subcategorization frame, due to pro-drop phenomena with the phrase in
the absolutive case. The possibility of automatically classifying subcategorization patterns into frames
deserves further work.

Subcategorization pattern # of
occurrences
absolutive 206
inessive 59
inessive absolutive 42
ergative 36
instrumental 14
ergative absolutive 11
absolutive instrumental 6
absolutive inessive ergative 4

Table 2. Different patterns found in the corpus.

4 Related Work
[Abney 1997, Giguet and Vergne 1997, Basili et al. 1998] show the benefits of a stratified approach to

parsing, where one or more intermediate levels can be defined between the basic level of words and the
analysis of a full sentence. Our work diffiers from theirs in that we apply two different kinds of analyzers
(unification based and finite-state), rather than defining the diffierent levels using the same formalism.

25

[Ritchie et al. 1992] present a system that performs morphological analysis, divided in a segmentation
phase (using finite state networks) and the application of a unification grammar for the combination of
morphemes. The results of the segmentation are interpreted as a chart that serves as input to a unification
based chart parser. Our system shares the idea of dividing work between different kinds of formalism.
However, our approach differs in that we first apply a unification grammar, indispensable for the treatment of
complex syntactic phenomena, and then a finite state grammar is used for disambiguation and filtering.

Regarding the problem of syntactic disambiguation, most grammar based systems [Briscoe and Carroll
1997] have adopted a statistical approach. For morphological disambiguation, however, there are both
statistical and rule based systems, with better results for the second approach [Samuelsson and Voutilainen
1997]. Our system adopts a rule formalism based on regular expressions, using syntactic elements instead of
words as the basic disambiguation unit. We justify this election on both the unavailability of syntactically
annotated treebanks and the better performance of systems based on hand-coded rules.

Conceming the acquisition of verb subcategorization information, there are proposals ranging from manual
examination of corpora [Grishman et al. 1994] to fully automatic approaches. [Briscoe and Carroll 1997]
describe a grammar based experiment for the extraction of subcategorization frames with their associated
relative frequencies, obtaining 76.6% precision and 43.4% recall. Our results are not directly comparable, as
we only estimate precision and recall on subcategorization instances, not frames.

[Kuhn ez al. 1998] compare two approaches for the acquisition of subcategorization information: a corpus
query pattern based approach (no grammar, using regular expressions on morphologically analyzed
wordforms) and a grammar based approach (in a way similar to [Briscoe and Carroll 1997]). Both are applied
to the problem of acquiring subcategorization instances of 3 subcategorization frames, showing that the
grammar based approach improves results specially in recall, due mainly to the higher-level knowledge
encoded in the grammar. Comparing with our work, we think that our system is situated between the two
approaches, as we use patterns on partially parsed sentences. Our objective is more ambitious in the sense that
we try to find all the subcategorization instances, rather than distinguishing among 3 previously selected
frames.

The above mentioned studies depend on a set of manually annotated analyses. [Carroll and Rooth 1998]
present a learning technique for subcategorization frames based on a probabilistic lexicalized grammar and
the Expectation Maximization algorithm using unmarked corpora. The results are promising, although the
method is still computationally expensive and requires big corpora (S0M).

5 Conclusion
This work presents the development of a robust parser for unrestricted Basque texts. As the linguistic
resources are limited, the lexicon lacks important aspects such as verbal subcategorization information. We
have implemented a basic syntactic parser using the information now available in the lexicon. The system has
been divided in two sequential modules:

* A unification based grammar that covers the main sentence components of the sentence. It gives a

description of well-formed linguistic phenomena. Due to the agglutinative nature of the language,

feature structures are necessary to treat the wealth of information contained in words/morphemes.

* Finite-state rules that provide a modular, declarative and flexible workbench to deal with the resulting
chart of syntactic elements. It establishes the application of empirical, corpus-oriented facts, versus the

more general facts on linguistic well-formedness encoded in the unification grammar.

26

The unification based grammar and the finite-state one are complementary. The unification grammar is
necessary to treat aspects like complex agreement and constituent order variations, currently unsolvable using
finite-state networks, due to the exponential growth in size of the resulting automata [Beesley 1998]. The
limits of this grammar are mainly defined by the unavailability of important information, like
subcategorization frames. On the other hand, regular expressions and relations, in the form of automata and
transducers, are indispensable to cope with morphological/syntactic ambiguity (by means of hand-coded rules
or constraints) and filtering of the information relevant to each application, thus adding to the flexibility of the
resulting tool.

The parser is being used in the process of acquiring verb subcategorization instances, obtaining 87%
precision and 66% recall over a corpus of previously unseen 150 sentences. In future work, we plan to
integrate the resulting subcategorization information into the grammar, so that it will be extended by

successive bootstrapping cycles.

Acknowledgements

This research is supported by the Basque Goverment, the University of the Basque Country and the
Interministerial Commision for Science and Technology (CICYT). Thanks to Gorka Elordieta for his help
writing the final version of the paper.

Bibliography

[Abaitua 1988] Abaitua, J. 1988. Complex predicates in Basque: from lexical forms to functional structures.
PhD thesis, University of Manchester.

[Abney 1997] Abney S. P. 1997. Part-of-Speech Tagging and Partial Parsing. in Corpus-Based Methods in
Language and Speech Processing, Kluwer, Dordrecht.

[Aldezabal et al. 1999] Aldezabal 1., Gojenola K., Oronoz M. 1999. Combining Chart-Parsing and Finite
State Parsing. Proceedings of the ESSLLI’99 Student Session, Utrecht.

[Alegria et al. 1996] Alegria 1., Artola X., Sarasola K., Urkia M. 1996. Automatic morphological analysis of
Basque. Literary and Linguistic Computing 11 (4).

[Basili et al. 1998] Basili, R., Pazienza M.T., Zanzotto F.M. 1998. Efficient Parsing for Information
Extraction. Proceedings of the 13th European Conference on Artificial Intelligence, John Wiley & Sons
Ltd.

[Beesley 1998] Beesley K. 1998. Constraining Separate Morphotactic Dependencies in Finite-State
Grammars. Proceedings of the International Workshop on Finite State Methods in Natural Language
Processing, Ankara.

[Briscoe and Carroll 1993] Briscoe T., Carroll J. 1993. Generalized Probabilistic LR Parsing of Natural
Language (Corpora) with Unification-Based Grammars. Computational Linguistics, vol. 19(1).

[Briscoe and Carroll 1997] Briscoe T., Carroll J. 1997. Automatic Extraction of Subcategorization from
Corpora. ANLP’97, Washington.

[Butt et al. 1999] Butt M., King T.H., Nino M.E., Segond F. 1999 A Grammar Writer's Cookbook. Stanford,
CA: CSLI Lecture Notes, CSLI Publications, 1999.

[Carroll and Rooth 1998] Carroll G., Rooth M. 1998. Valence Induction with a Head-Lexicalized PCFG.
Proceedings of the Conference on Empirical Methods in Natural Language Processing, Granada.

27

[Carroll et al. 1999] Carroll J, Minnen G., Briscoe T. 1999. Corpus Annotation for Parser Evaluation.
Proceedings of Workshop on Linguistically Interpreted Corpora, EACL'99, Bergen.

[Ezeiza et al. 1998] Ezeiza N ., Alegria 1., Arriola J.M., Urizar R., Aduriz I., 1998. Combining Stochastic and
Rule-Based Methods for Disambiguation in Agglutinative Languages. COLING-ACL’98, Montreal.

[Giguet and Vergne 1997] Giguet E., Vergne J. 1997. From Part of Speech Tagging to Memory-based Deep
Syntactic Analysis. Fifth International Workshop on Parsing Technologies, Boston.

[Grishman et al. 1994] Grishman R., Macleod C., Meyers A. 1994. Comlex Syntax: Building a
Computational Lexicon. COLING’94, Japan.

[Hajic and Hladka 1998] Hajic J., Hladka B. 1998. Tagging Inflective Languages: Prediction of
Morphological Categories for a Rich, Structured Tagset. COLING-ACL’98, Montreal.

[Karttunen et al. 1997] Karttunen L., Chanod J-P., Grefenstette G., Schiller A. 1997. Regular Expressions For
Language Engineering. Natural Language Engineering.

[Karttunen 1998] Karttunen L. 1998. The Proper Treatment of Optimality in Computational Phonology.
Proceedings of the International Workshop on Finite State Methods in Natural Language Processing,
Ankara.

[Kuhn e al. 1998] Kuhn J., Eckle-Kohler J., Rohrer. C. 1998. Lexicon Acquisition with and for Symbolic
NLP-Systems -- a Bootstrapping Approach. Int. Conference on Language Resources and Evaluation
(LREC98), Granada.

[Oesterle and Maier-Meyer 1998] Oesterle J., Maier-Meyer P. 1998. The GNoP (German Noun Phrase)
Treebank. LREC98, Granada.

[Oflazer 1999] Oflazer K. 1999. Dependency Parsing with an Extended Finite State Approach. ACL’99,
Maryland.

[Proszéky 1996] Proszéky G. 1996. Morphological Analyzer as Syntactic Parser. COLING’96, Copenhagen.

[Ritchie e al. 1992] Ritchie G., Russel G. J., Black A., W., Pullman S. G. 1992. Computational Morphology:
Practical Mechanisms for the English Lexicon. The MIT Press.

[Roche and Schabes 1997] Roche R., Schabes Y. 1997. Finite-State Language Processing. MIT Press.

[Samuelsson and Voutilainen 1997] Samuelsson C., Voutilainen A. 1997. Comparing a Linguistic and a
Stochastic Tagger. ACL-EACL’97, Madrid.

[Tapanainen 1997] Tapanainen P. 1997. Applying a Finite-State Intersection Grammar. Finite-State Language
Processing, MIT Press.

28

NEW TABULAR ALGORITHMS

FOR LIG PARSING
Miguel A. Alonso Eric de la Clergerie

Jorge Grana
Manuel Vilares

Departamento de Computacion INRIA
Universidad de La Coruna Domaine de Voluceau
Campus de Elvifia s/n Rocquecourt, B.P. 105
15071 La Coruifia (Spain) 78153 Le Chesnay (France)
{alonso,grana,vilares}@dc.fi.udc.es Eric.De_La_Clergerie@inria.fr
Abstract

We develop a set of new tabular parsing algorithms for Linear Indexed Grammars, including bottom-
up algorithms and Earley-like algorithms with and without the valid prefix property, creating a continuum
in which one algorithm can in turn be derived from another. The output of these algorithms is a shared
forest in the form of a context-free grammar that encodes all possible derivations for a given input string.

1 Introduction

Tree Adjoining Grammars (TAG) [8] and Linear Indexed Grammars (LIG) [7] are extensions of Con-
text Free Grammars (CFG). Tree adjoining grammars use trees instead of productions as primary
representing structure and seems to be adequate to describe syntactic phenomena occurring in nat-
ural language, due to their extended domain of locality and to their ability for factoring recursion
from the domain of dependencies. Linear indexed grammars associate a stack of indices with each
non-terminal symbol, with the restriction that the indices stack of the head non-terminal of each pro-
duction (the father) can be inherited by at most one body non-terminal (the dependent child) while
the other stacks must have a bounded stack size.

Several parsing algorithms have been proposed for TAG, ranging from simple bottom-up algorithms,
like CYK [17], to sophisticated extensions of the Earley’s algorithm [9]. In order to improve efficiency,
it is usual to translate the source tree adjoining grammar into a linear indexed grammar [16, 12, 13, 17].
However, in some cases is not possible to translate the parsing strategy from TAG to LIG, as there are
parsing strategies for TAG which are not incorporated in any parsing algorithm for LIG. To eliminate
this drawback, we present in this paper several parsing algorithms for LIG which mimic the most
popular parsing strategies for TAG [1].

1.1 Linear Indexed Grammars

A linear indexed grammar is a tuple (Vr,Vn, Vi, P,S), where Vr is a finite set of terminals, Viy a
finite set of non-terminals, V; is a finite set of indices, S € Vv is the start symbol and P is a finite set
of productions. Following [7] we consider productions in which at most one element can be pushed on

29

or popped from a stack of indices:
Aofooy] = Ar[].... Aial] Aifoor'] Aical] ... Am(]

Ao[]—)a

where m is the length of the production, A; € Vi for each 0 < j < m, A; is the dependent child, oo
is the part of the indices stack transmitted from the father to the dependent child, v,v" € V7 U {€}
and for each production either 7 or 4’ or both must be € and a € Vr U {€}.

The derivation relation = is defined for LIG as T = Y’

o if T = T1A[ay] T4 and there exists a production Afooy] = Y3A’'[00y'] Y3 such that Y’ =
TngA'[a’y'] T3T4

o orelseif Y =T; A[] T4 and there exists a production A | = a such that Y =71; a T4

where A € Vv, a € V;* and v,7' € Vi U {e}. The reflexive and transitive closure of = is denoted by
=. The language defined by a LIG is the set of strings w € V;* such that S[] = w.

To parse this type of grammars, tabulation techniques with polynomial complexity can be designed
based on a property defined in [17], that we call contezt-freeness property of LIG, establishing that if
A[y] = uB[Jw where u,w € V;t, A,B € VN, v € ViU {e} and B[] is a dependent descendant of
A[], then for each T1,Y, € (Vn[V}]U Vr)*and B € V;* we have T1A[37]T, 3 T1uB[BlwY,. Also,
if B[y] is a dependent descendant of A[] and A[] = uB[y]w then Y;A[8]Ty = T;uB[By]wYs.

1.2 Parsing Schemata

We will describe parsing algorithms using Parsing Schemata, a framework for high-level description
of parsing algorithms [15]. An interesting application of this framework is the analysis of the relations
between different parsing algorithms by studying the formal relations between their underlying parsing
schemata.

A parsing system for a grammar G and string a; ...a, is a triple (Z,H, D), with T a set of items
which represent intermediate parse results, 7 an initial set of items called hypothesis that encodes
the sentence to be parsed, and D a set of deduction steps that allow new items to be derived from
already known items. Deduction steps are of the form ﬂl—g’& cond, meaning that if all antecedents 7;
of a deduction step are present and the conditions cond are satisfied, then the consequent £ should be
generated by the parser. A set F C T of final items represent the recognition of a sentence. A parsing
schema is a parsing system parameterized by a grammar and a sentence.

Parsing schemata are closely related to grammatical deduction systems [14], where items are called
formula schemata, deduction steps are inference rules, hypothesis are azioms and final items are goal

formulas.

2 A CYK-like Algorithm

We have chosen the CYK-like algorithm for LIG described in [16] as our starting point. Due to the
intrinsic limitations of this pure bottom-up algorithm, the grammars it can deal with are restricted
to those having two elements, or one element which must be a terminal, in the right-hand side of each
production. This restriction could be considered as the transposition of the Chomsky normal form to

linear indexed grammars.

30

The algorithm works by recognizing in a bottom-up way the part of the input string spanned by
each grammar element. The items used in the tabular interpretation of this algorithm are of the form
[A,7,%,7 | B,p,q] and represent one of the following types of derivation:

e Aly] = aiy1...ap B[] agt1 - .. a; if and only if (B, p,q) # (=, —,—), B[] is a dependent descendent
of Aly] and (p,0) < (i,5).

e A[] ait1...q; if and only if v = — and (B,p,q) = (-, —, —).

where — means that the value of a component is not bound and (p,q) < (¢,7) is used to represent
that ¢ < p < ¢ < j when p and ¢ are bound.

These items are like those proposed for the tabulation of linear indexed automata [10] and for
the tabulation of bottom-up 2-stack automata [6]. They are slightly different from the items of the
form [A,,1,7 | B,n,p,q] proposed by Vijay-Shanker and Weir in [16] for their CYK-like algorithm,
where the element 1 € V; is redundant: due to the context-freeness property of LIG we have that if
A[y) S aiy1...ap B[] agy1 - .. a; then for any 8 we have that A[3y] = aiy1...ap B[] agy1 .. .a;.

Schema 1 The parsing system Pcyk corresponding to the CYK-like parsing algorithm for a linear
indezed grammar G and a input string a; .. .a, is defined as follows:

ICYKz{ [A,’Y,i,le,p,Q]lA,BGVN, 7€V1a OSZS]; (P,Q)S(%]) }

Hevk ={ [a,i—L,d]|a=a;, 1<i<n }

,7 + 1]
pScan — la,5, 1o aep
CYK= T4, =5,5+1] -, —, -] []
(B, =i, k| —,—,—],
C n:kaj | D D Q]
pleggliiee) - 1OmEIIDibal - o), piy cpoo] € P
oYK [4,7,4,7 | C,k,]] [007] [] Cloo]
{g7n1i7k‘||D,p,q],]
[007][o0](] _ "—7ka Ty T
Deyk - [4,7,4,7 | B,i,k] A[OO’)’] — BJoo] C[] eP
[B’_7i’k|_,—,—],

([C,n,k,j | D,p,q]
[4,n,%,5 | D,p,q]
[B,m, i,k | D,pg],
[C7—ykv] | _7—7_]
[4,n,%,5 | D,p,q]
[Bv_vivk ' _)_)_]a
(C,v.k,5 | D,p, 4],
[D,n,p,q| E,7, 5]
[Aﬂ),i,j | Eirisl
(B,7,4,k | D,p,4q],
[C’_vkaj I _7_1_]1
[D,U,Paq | E,T,.S‘]
[Aﬂl,i,j l Evrvs]

DisgLlle) = Aloo] = B[] Cloo] € P

DE&]}[(OO][] = A[oo] = B[oo] ClleP

Disykleerl = A[oo] = B[] Cloon] € P

plglleerll] - Afoo] = Blooy] C[] € P

Doyk = D22 U Dg’;’,}’(][Jfeol | D[((;);’(]_[OO]“ U Dg;’(]}[(][”] U Dg;]}[(oo}[] U Dg;]}[(][Wv] U Dg;]}[(OO'v][]

Fovk ={ [S-,0n]—,—,—] }

31

The hypotheses defined for this parsing system are the standard ones and therefore they will be
omitted in the remaining parsing systems described in this paper.

Steps in the set Dg¢R are in charge of starting the parsing process. The other steps are in charge of
combining the items corresponding to the elements in the right-hand side of a production in order to
generate the item corresponding to the left-hand side element, propagating bottom-up the information
about the indices stack.

The space complexity of the algorithm with respect to the length n of the input string is O(n?), as
each item stores four positions of the input string. The time complexity is O(n®) and it is given by
the deduction steps in D[C‘;f('{(]right and Dg’;’g(]]eft. Although these steps involve 7 positions of the input
string, by partial application each step can be decomposed in a set of deduction steps involving at
most 6 positions.

A CYK-like algorithm generalized for linear indexed grammar with productions manipulating more
than one symbol at the top of the indices stacks is described in [17]. The same kind of generalization

could be incorporated into the algorithm presented here.

3 A Bottom-up Earley-like Algorithm

The CYK-like algorithm has an important limitation: it can only be applied to linear indexed gram-
mars having at most two children in the right-hand side. To overcome this limitation we use dotted
production into items instead single nodes. Thus, we can distinguish the part of a production already
processed from the part not yet processed. With respect to notation, we use A to denote a grammar
element having the non-terminal A when the associated indices stack is not relevant in that context.

The items of the new parsing system Pyg are of the form [A — T; ¢ Y2,v,4,5 | B,p,¢g] and can
be obtained by refining the items in Pcyk. They represent one of the following two cases:

e A[y] = T1T2 = aiy1...ap B[] agy1...a; Y2 if and only if (B,p,q) # (-, —, —), B[] is a dependent
descendant of A[v] and (p, q) < (2, j)-

N Y ...a; if and only if v = — and (B, p,q) = (-, —, —). If the dependent child is in Y; then
the indices stack associated to A and to the dependent child must be empty.

The set of deduction steps of Py,g is obtained by refining the steps in Poyk: steps Dg’§;’(][][°°],

plgglieell] ploclliee] ploclieell] ploslilicen gpq ploclleenll] yre separated into different steps Init and
Comp. Finally, the domain is extended to deal with linear indexed grammars having productions of
arbitrary length.

Schema 2 The parsing system Pyyg corresponding to the bottom-up Farley-like parsing algorithm for
a linear indezed grammar G and a input string a; ...a, is defined as follows:

IbE_{[A—_)TI.T217ai1j|Bap7q]l A_)T1T2€P,B€VN,’)’€‘/I, }
uE =

0<i<j, (pg) <(G,9)

Init __
Rl s) p—
[A[] —) .ay_ajyj | _:_,_]:
DScan — [a’J’] + 1]
buk [A[]_)a.a_wjaj+1l_:_a_]

32

[A - Tl .B[]“r2777i7k I C,Pa‘I],

pComp(] _ [B = Yse,— k| = =]
buE [A— Y1 B[]* Y2765 C.pdl
[Afeoy] = T1 @ Bloo] Y3, =4,k | —,—, -],

[B - Ts'ﬂ%k,j | C7p5 Q]

DComp[oo'y][oo] _
PuE [A[o07] = Y1 Bloo] @ X3,7,i,j | B,k,]

[A[OO] - Tl L) B[OO] T2v _7i’k | T T _]7
,DComp[OO][OO] — (B — Y3e,n,k,j | C,p,q]
P [A[co] = 11 Bloo] @ T2,m,4,5 | C,p: 4]
[A[OO] - Tl 1 B[°°’Y] T2 a_ai7k I T _]7

[B — Y3e,7,k,j | CaPa‘I];
,DComp[oo][oo»y] — [C - T4.,T],p,q | D,T, S]
o [A[co] = T1 Bloov] X3,7,4,5 | D, 6]

Dy = Diip U DS U DG DYgP o9 Dl y pfgrioleo)

fbuE:{ [S—)T.,—,O,nl—,—,—] }

The space complexity with respect to the input string is O(n*) because each item stores four
positions. The time complexity with respect to the input string is O(n®) and it is given by deduction

steps in Dyon’ ploclfeor],

4 An Earley-like Algorithm

The algorithm described by the parsing system Py,g does not take into account whether the part of the
input string recognized by each grammar element can be derived from S, the axiom of the grammar.
Earley-like algorithms limit the number of deduction steps that can be applied in each moment by
predicting productions which are candidates to be part of a derivation having as its starting point the
axiom of the grammar.

As a first approach, we consider prediction is performed taking into account the context-free skeleton
only. The parsing system so obtained is denoted Pg and can be derived from Py,g by applying the
following filters:

e Init deduction steps only consider productions with S as left-hand side.

e Instead of generating items of the form [A — oY, — i,i | —, —, —] for each possible production
A — Y € P and positions ¢ and j, a set of Pred deduction steps generate only those items involving
productions with a relevant context-free skeleton.

Schema 3 The parsing system PPg corresponding to the Earley-like parsing algorithm for a linear
indezed grammar G and a input string a; .. .a, is defined as follows:

Te = IouE

33

Dlnit —
B [S—).Tv_vovol_a_v_]

[A—) Tl B TZv’y,iij | C’pvQ]

Pred _
DE - [B—_).T37_7j7j | _:_a_]

D = Dlf* U DEsE U D™ U Dol u papeielenl y plamsieelel pCametsleen

JE = FouE

This algorithm, which has a space complexity O(n*) and a time complexity O(nf), is very close
to the Earley-like algorithm described by Schabes and Shieber in [13] although the latter can only
be applied to a specific class of linear indexed grammars obtained from tree adjoining grammars.
However, both algorithms share an important feature: they are weakly predictive as they do not
consider the contents of the indices stacks when predictive steps are applied. In appearance, the
algorithm proposed by Schabes and Shieber in [13] consults the element on the top of the indices
stack at prediction, but a deeper study of the behavior of the algorithm makes it clear that this is
not really true, as the authors store the context-free skeleton of the elementary trees of a TAG into
the indices stacks, reducing the non-terminal set of the resulting LIG to {t, b}. Indeed, a production
bloon] — t[m]...t[oons]...t{n.] is equivalent to nb[oo] — ni[]...n¢[o0]...nk[] and a production
bloon] = t[m] - - - t[nn] is equivalent to n°[] = ni[]...n%[].

5 An Earley-like Algorithm Preserving the VPP

Parsers satisfying the valid prefix property (VPP) guarantee that, as they read the input string from
left to right, the substrings read so far are valid prefixes of the language defined by the grammar.
More formally, a parser satisfies the valid prefix property if, for any substring a; ... a; read from the
input string a; ...akak+1 - - - @n, it guarantees that there is a string of tokens b; ... b,,, where b; need
not be part of the input string, such that aj...apby ...bn, is a valid string of the language.

In the case of LIG, preserving the valid prefix property requires checking if each predicted production
Afooy] — oY satisfies S[] = w A[ay] T where v € V; U {€}. Therefore, to obtain an Earley-like
parsing algorithm for LIG preserving this property we need to modify the Pred steps of the parsing
system PPg in order to predict information about the indices stacks. As a consequence, items must be
also modified, introducing a new element that allows us to track the contents of the predicted indices
stacks. The items are now of the form [E,h | A — Y1 e Y3,7,4,5 | B,p,q] and they represent one of
the following types of derivation:

* *

e S[] =3 ai...ap Ela) T4 = aj...an...a; Alay]) T3, =3
@y...ap...0;...ap Bla)agr...a; Y2X3Yy if and only if (B,p,q) # (—,——), Aley] is a
dependent descendent of E[a] and B[] is a dependent descendent of Alay] . This type of deriva-
tion corresponds to the completer of the dependent child of a production having the non-terminal
A as left-hand side. The indices stack associated to that non-terminal is not empty.

34

e 5[] 3 a ...ap E[a) T4 S01...ah...0 Alay] T3Yy Sa1...an cee@i...aj ToY3Y, if and only if
(B,h) #(—,-), (B,p,q) = (—,—, —), Alay] is a dependent descendant of E[a], T; does not contain
the descendent child of Alay] and (p,q) < (i,7). This type of derivation refers to a prediction of

the non-terminal A with a non-empty indices stack.

e S[]3a1...a:A[]Ys S a1...0i...a; Y2 Yy if and only if (E,h) = (-,—), 7y = — and (B,p,q) =
(—,—,—). If T; includes the dependent child of A[] then the indices stack associated to that
dependent child is empty. This type of derivation refers to the prediction or completer of a non-

terminal A with an empty indices stack.

The new set of items so defined is a refinement of the items in the parsing system Pg: the element
v is used to store the top of the predicted indices stacks (in the parsing system Pg, v = — for items
resulting of a prediction) and the pair (E, k) allows us to track the item involved in the prediction.
With respect to the deduction steps, the completer steps must be adapted to the new form of the
items in order to manipulate the new components E and h and the predicted steps must be refined
taking into account the different types of productions.
Schema 4 The parsing system Pgariey, corresponding to the Earley-like parsing algorithm preserving

the valid-prefiz property for a linear indezed grammar G and a input string a; ...a, is defined as
follows:

{ [E,h| A= Y1 eYs,v,i,5| B,p,g]| A—TiYs€P, B,CeVy, 7ev,,}

IEarley1 . 0<h<i<jy, (PaQ)S(""J)

Ini —
DEn;:]eyl - [_,_ I S - QT,—,0,0 | _7—a—]
[_,._‘| A[]l - ea,—, 5,5 | — =],
psean _ %35 +1]
Earley: = | A[]—)ao,—,j,j-Fl | —,_1_]

Pred[] _ [Eah | A—-T, .B[] Y2,7,1,7 | C,P,Q]

D

Earley: ™ [_a_ I B = .T37_7j7j | _7_7—]
[Evh l A[OO'Y] — Tl ° B[OO] TZ:’Yaiaj | T _],
Pred[oov][o0] — [M,m I E — .T37’7,ahah|) _]
Earley: [Mym I B — .T4,7Iaj7j | ™ _7_]
Dpred[°°][°°] — [E’h I A[OO] — Tl - B[OO] ’r2$’71";7j I T _]
Earleyy [Eah | B - .T3,7,j,j | T T —]
pPredieo]ioor] _ [E; | Afoo] = Ty @ Blooy] Tp,7',4,5 | =, =, -]
Earley: [A,Z | B — .T3,’)’,j,j l _7—1_]
[E,h| A— Y1eB[]Y2,7,i,i|C,p,d],
,DComp[] _ [_7_ | B — Tge, —, j,k | _7_a_]

Earley: — [E,hlA_)Tl B[]‘T2a7aiak|01P7Q]

35

[E’h I A[°°7] - Tl B B[oo] T2a7ai1j I R _]7

[M,m ' E -~ .T3v7’7h:h l —9_a—]7
Comp(oo-y][oo] ' [Mvm l B - ’r4.a7,aja k I Capa q]
sy ~ [B,h| Alooy] = T1 Bloo] @ Y2,v,5,k | B, j, k]
[E,h | A[oo] = Yy e B[oo] Y2,7,4,5 | —,—,],
DComp[oo][oo] - [Eah l B - ’r3.a7vjv k I Cvp’ q]
Parleyi ™ [E,h| Aloo] = Ty Bloo]® T2,7,4,k | C,p,q]
[Eyh | A[oo] - Tl .B[°°7] T2 17’aiaj I T T _]a

[A$7' | B — T3. v7’j7k I C:P,Q],
Comp[oo][ooy] __ [E,h|C — Y4,7,p,q| D,r,5]

Earley ~ [B,h| Aloo] = Y1 Blooy] ® Ys,v',i,k | D,r,s]
_ Ini Pred Pred[oov][co Pred[oo][0o Pred[oo][ooy
DEarleyl - DEr::Ieyl u D%?iarll]eyl u DEarle[y]1 U DEarle[y1 i u DEarle[yl I U DE;rle[yl I]U

Comp|] Comp[oovy][oo] Comp[oo][oo] Compl[oo][ooy
DEarleyl U DEarley1 u DEarleyl] U DEarleyl]]

fEarleyl ={ [—,—IS—)TO,—,O,nl —a_y_] }

The space complexity of the algorithm with respect to the length n of the input string is O(n%),

due to the five positions of the input string stored in each item. The time complexity is O(n”) due
Comp[oo][oo7]

to deduction steps in the set Dg, o,

. To reduce the time complexity we will use a technique

similar to that used in [5, 2] to reduce the complexity of the tabular interpretations of automata for

Comp(oo][ooy)
Earley;

steps such that their final complexity is at most O(n®). The resulting parsing schema is defined by

tree adjoining languages. In this case, we split each deduction step in D into two different

the following parsing system.

Schema 5 The parsing system Pgariey corresponding to the Earley-like parsing algorithm preserving
the valid-prefix property working with a time complexity O(n8) for a linear indezed grammar G and a
input string aj - . .a, is defined as follows:

T — [E,hlA—)T10T2,’)’,i,j|B,p,(I]I A—)T1T2€P, B,CGVN, 7€VI’
Earley(l) — OShSzS], (p,q)s (2’])
I . ={ [[A — Te,v,i,j| B,p,ql]| A—T€P, BeVy, }
Farley(® YEVI, i<i, (1q) < (,j)

IEarley . IEarley(U U IEarley(2)

[A77‘ I B~ TS. vPYajvk l C,p,‘I],
Comp(oo][0ov]® — [E,h | C — Tqo,7',p,q| D,, 5]

D
Earley [[B — T3. 77aj7k I D7T’ S]]

[[B - TS. v77j7k l D,T,S]],

[Evh | A[Oo] =t Tl L4 B[°°7] T2 a’)"’iaj l T T _]7
,DCOmp[oo][oo-y]1 — [E,h l C - T4‘, ’y',p,q | D, T, S]
Earley [E,h | Aloo] = Y, Blooy]e Y2,v',i,k| D,r,s]

36

— Init Scan Pred[] Pred[oov][oo] Pred[oo][oo] Pred[oo][007]
DEarley - DEarley1 U DEar]ey1 U D]E}arleyl U DEarleyl U DEarley1 U DEarleyl U

Comp|] Comp[oo][oo] Comp|oo][oo0] Comp[oo][oo~]° Comp|oo][oo7]!
DEarleyl U DEarley1 U DEarleyl U DEarley U DEarley

fEarley =]:Earleyl

Deduction steps Comp[oo][0oy]? generate an intermediate item of the form [[B — Y3e ,7v,j,k |
D, r, s]] that will be taken as antecedent for steps Comp[oo][ooy]' and that represents a derivation

BlY'Y] = ajt1---ap C[Y) @st1---0g S aj41---0p--.0r D[] Gop1...0q...ax

for some 4/, p and g. Deduction steps Comp[oo][ooy]! combine this pseudo-item with an item [E,h |
Aloo] = Yy e B[ooy] Y2 ,7',%,7 | —, —, —] that represents a derivation

S[] =*> aj ...ahE[a]Ts =*>a1 ...Qp ...0Q5 A[a’y'] T3I5 =*> a...ap.--Q;i...04a5 B[a’y"y] T2T3T5
and with an item [E,h |C — Y4e,7',p,q | D,r,s] representing a derivation
S[]=a1...anE[q] Ys > a1...an...a, C[ay'] YaYs > a1...an...ap...ar D[a] ast1-..aq T4¥s

and a new item of the form [E,h | Aloo] = Y; Blooy] @ Y2,v',i,k | D,r,s] is generated. This last

item represent the existence of a derivation

S[] 2ai..-anE[a]Ys
Sa;...ah..-a; Alay'] T3Ts
2ay...a5-..0;...a; Blay'y] T2Y3Ts
3ay...ap...0i...05...ap Clay'] agy1...ax T2Y3Ys
S a ceeQh...Qi...Qj...0Qp...0r D[a) agy1...aq41...ax T2Y3T5

6 The Shared Forest

The algorithms described so far are just recognizers. They do not build a representation of the derived
trees. However, we can modify them to build these trees as a shared forest satisfying the following
properties: it must store in a compact form all parse trees and it must be possible to retrieve every
individual parse tree in linear time with respect to the size of the forest.

Billot and Lang [3] define the shared forest for a context-free grammar G = (Vr, Vv, P,S) and an
input string a; ...a, as a context free grammar in which the non-terminals are of the form (4,1, j),
where A € Viy and 7,7 € 0..n, and productions are of the form

(A01j07jm) — Wo (AlajOaj1> wy (A2’j17j2) ces Wm—1 (Am7jm—1ajm) Wm

where A9 = wodiw14; ... Wn—1Anwy, € P and w; € V3, meaning that Ay recognizes the part
@jo+1 - - - @j,, of the input string by applying the production A9 = woAjw1A4; ... wn_1Anwy, such
that A; recognizes the part @;j;_;+1...aj; of the input string.

We can extend the concept of shared forest for CFG to define the concept of LIGed forest [18].
Given the shared forest of the context-free skeleton of a LIG, when a LIG production Ag[ooy] —
Ai[]... Ag[ooy]... Ap[] is involved in a derivation, a production

(A07j0:jm)[°°7] — (A17j07j1> (Adajd—lajd)[°o7’] (Amyjm—hjm)

37

is added to the LIGed forest meaning that Ay recognizes the part ajy+1 . ..a;,, of the input string by ap-
plying the production Ag[ooy] — A; ... Ag4[00v']... Ay such that A; recognizes the part aj,_,+1...aj;
of the input string and the indices stack is passed from Ay to A4 replacing the top index ~y for .
The LIG so generated does not satisfy our definition of shared forest because single parse trees can
not be extracted in linear time. Vijay-Shanker and Weir [18] try to solve this problem by defining a
non-deterministic finite state automaton that determines if a given LIGed forest symbol (A, %, j)[a]
derives a string of terminals. A similar finite-state automata is also defined by Nederhof in [11].

As an alternative approach, Boullier [4] defines the shared forest for a LIG G = (Vr, Vi, V1, P, S) and
an input string w by means of a linear derivation grammar, a context-free grammar recognizing the
language defined by the sequences of LIG productions of G that could be used to derive w. Previously
to the construction of the linear derivation grammar, we must compute the transitive closure for a set
of relations on Viy x Vi.

To avoid the use of additional data structures, such as finite automata or precomputed relations, we
have been inspired by the use of context-free grammars to represent the parse forest of tree adjoining
grammars [18] in order to capture the context-freeness of production application in the case of LIG.
Given a linear indexed grammar G = (V, Vn, V7, P, S) and an input string w = a; . .. an, the shared
forest for G and w is a context-free grammar G¥ = (Vr, V¥, P*,S"). Elements in V3 have the form
(A,v,%,7,B,p,q), where A,B € Vv, vy € Vi and i, j,p,q € 0...n. The axiom S¥ is the non-terminal
(S,—,0,n,—,—,—,). Productions in P* are of the form:

Case la: If A[] = a; then add the production (4, —,j — 1,4,—,—, =) = a;
Case 1b: If A[] = € then add the production (A, —, 7,7, —, —, —) = €

Case 2a: If A[ooy] — B[] C[oo] € P, B[] = ait1...ax and Clan] = ajy1...ap D[a]ags: ... a;
then add the pI‘OdllCtiOIl (A,’)’, ’i,j, C,k,]) — (B, —17:7 k7 Ty _) (Cvnak’jaD7p’ Q)

Case 2b: If AJooy] — Bloo] C[] € P, Blan] = @it1...ap, D[a)agy: ...ax and C[] = Gry1---05
then add the production (4,v,14, j, B,i,k) = (B,n,1,k,D,p,q) (C,—,k,5,—, —,—)

Case 3a: If Afoo] — B[] C[oo] € P, B[] = ai41-..ax and Clan) = a4 -..a, D[a]agys - - a; then
add the production (A,7],i,j;D1p, Q) — (B, —,i,k, Ty T _) (Cynak7jaDap7 Q)

Case 3b: If A[oo] - B[oo] C[] € P, Blan] = ait1...ap D[a)agt ---ax and C[] = agy1 ...a; then
add the production (A4, ,1,j,D,p,q) = (B,n,%,k,D,p,q) (C,—, k,j,—, —,—)

Case 4a: If Afoo] — B[| Clooy] € P, Bl] = ai1...ax and Clapy] =
ars1---ap D[an] agy1 --.a; and Dlan] = api1...ar E[a]asts ...a, then add the production
(AanviajaEaTas) - <B7_7i7ka_a_7 _) (Cy’)’ak’jaD,P,Q) <D7777paan7Ta3)

Case 4b: If Afoo] — Blooy] C[| € P, Blamy] = ait1...apD[on]agyr...ar and
Cl] & arg1...a; and Dlen] = api1...a, Ele]assr-..a, then add the production
(AvnaivjaEar,S) - (B,’)’,’l:,k,D,p,Q) (Cv_akaja_v_a_) (DaU,P,q,E,T,S)

Case 5: If A[ooy] = Bloo] € P and Blan] = aiy1...ap D]a)agt --.a; then add the production
<A’fY7i7j7Baiaj> —) (B, n’i7j’D7p’q)

Case 6: If A[oo] — B[oo] € P and B[ay] = ait1-...ap D[@]ag41...a; then add the production
(4,7,1,5,D,p,q) = (B,7,4,5, D, ;)

38

Case 7: If Afoo] — Blooy] € P and Blagy] = ait1..-apD[on)agsr--.aj
and Dlan] S Apt1---ar Ela] agyr ... aq then add the production
(4,n,4,5, E,r,s) = (B,7,4,5,D,p,q) (D,n,p, 4, E, 7, 5)

In cases 4a, 4b and 7, derivations starting at (D,n,p,q, E,r,s) allow us to retrieve the rest of the
indices stack corresponding to A. Note that we are assuming a grammar with productions having at
most two children. Any production Ag[ooy] = A1[]... Ad[00y']... An[] can be translated into

Vo[] — € Vd+1 [oo] - Vd[oo] Ad+1[]
Vl[oo] e d Vo[oo] Al[] :

: Vm[oo] & Vim—1[00] Am|]
Vg-1[00] = Vy_2[00] Ag—1[] Ao[o0] = V[o0]
Vilooy] = Vy_1[] Aa[ooy]

where the V; are fresh symbols that represent partial recognition of the original production. In fact,
a V; symbol is equivalent to a dotted production with the dot just before the non-terminal A;,; or
with the dot at the end of the right-hand side in the case of V,,.

It is interesting to remark that the set of non-terminals is a subset of the set of items for CYK-
like and bottom-up Earley-like algorithms, and Earley-like algorithms without the VPP. The case of
the Earley-like algorithm preserving the valid prefix property is slightly different, as a non-terminal
(A,v,1,J, B,p, q) represent the class of items [E,h | A,v,%,j | D,p,q] for any value of E and h.

Like context-free grammars used as shared forest in the case of TAG [18], the derivations in G¥
encode derivations of the string w by G but the specific set of terminal strings that is generated by
G is not important. We do however have the language generated by G* is not empty if and only if w
belongs to the language generated by G. We can prune G¥ by retaining only production with useful
symbols to guarantee that every non-terminal can derive a terminal string. In this case, derivations
of w in the original grammar can be read off by simple reading off of derivations in G*.

The number of possible productions in G¥ is O(n”). The complexity can be reduced to O(n®) by
transforming productions of the form A[oo] = B[] C[oo7] into two productions A[oo] — B[] X [oo]
and X[oo] — C[ooy] where X is a fresh non-terminal. A similar transformation must be applied to
productions A[oo] — Blooy] C[.

7 Conclusion

We have described a set of algorithms for LIG parsing, creating a continuum which has the CYK-
like parsing algorithm by Vijay-Shanker and Weir [16] as its starting point and a new Earley-like
algorithm which preserves the valid prefix property as its goal. In the middle, a new bottom-up
Earley-like algorithm and a new Earley-like algorithm have been described. The time complexity for
all these algorithms with respect to the length of the input string is O(nf). Other algorithms could
also have been included in the continuum, but for reasons of space we have chosen to show only the

algorithms we consider milestones in the development of parsing algorithms for LIG.

Acknowledgements

We would like to thank Pierre Boullier, Patrice Lopez and Mark-Jan Nederhof for fruitful discussions.
This work was partially supported by the FEDER of EU (project 1FD97-0047-C04-02) and Xunta de

39

Galicia (projects PGIDT99X110502B and XUGA20402B97).

References

(1] Alonso, M. A., D. Cabrero, E. de la Clergerie, and M. Vilares. 1999 Tabular algorithms for TAG
parsing. Proc. of EACL’99, pages 150-157, Bergen, Norway.

[2] Alonso, M. A., E. de la Clergerie, and D. Cabrero. 1999. Tabulation of automata for tree adjoining
languages. Proc. of MOL-6, pages 127-141, Orlando, Florida.

[3] Billot, S. and B. Lang. 1989. The structure of shared forest in ambiguous parsing. Proc. of
ACL’89, pages 143-151, Vancouver, British Columbia, Canada.

(4] Boullier, P. 1996. Another facet of LIG parsing. Proc. of ACL’96, Santa Cruz, CA.

[5] De la Clergerie, E. and M. A. Alonso. 1998. A tabular interpretation of a class of 2-Stack
Automata. Proc. of COLING-ACL’98, volume II, pages 1333-1339, Montreal, Canada.

[6] De la Clergerie, E., M. A. Alonso, and D. Cabrero. 1998. A tabular interpretation of bottom-up
automata for TAG. Proc. of TAG+/, pages 42-45, Philadelphia.

[7] Gazdar, G. 1987. Applicability of indexed grammars to natural languages. In U. Reyle and
C. Rohrer, editors, Natural Language Parsing and Linguistic Theories, pages 69-94. D. Reidel
Publishing Company.

[8] Joshi, A. K. and Y. Schabes. Tree-adjoining grammars. In Grzegorz Rozenberg and Arto Salomaa,
editors, Handbook of Formal Languages. Vol 3: Beyond Words, chapter 2, pages 69-123. Springer-
Verlag, Berlin/Heidelberg/New York, 1997.

[9] Nederhof, M-J. 1997 Solving the correct-prefix property for TAGs. In T. Becker and H.-V.
Krieger, editors, Proc. of MOL-5, pages 124-130, Schloss Dagstuhl, Saarbruecken, Germany.

[10] Nederhof, M-J. 1998. Linear indexed automata and tabulation of TAG parsing. Proc. of TAPD’98,
pages 1-9, Paris, France.

[11] Nederhof, M-J. 1999. Models of tabulation for TAG parsing. Proc. of MOL-6, pages 143-158,
Orlando, Florida.

[12] Schabes, Y. 1992. Stochastic lexicalized tree-adjoining grammars. Proc. of COLING’92, pages
426-432, Nantes, France.

[13] Schabes, Y. and S. M. Shieber. 1994. An alternative conception of tree-adjoining derivation.
Computational Linguistics, 20(1):91-124.

[14] Shieber, S. M., Y. Schabes, and F. C. N. Pereira. 1995. Principles and implementation of deductive
parsing. Journal of Logic Programming, 24(1&2):3-36.

[15] Sikkel, K. 1997. Parsing Schemata — A Framework for Specification and Analysis of Parsing
Algorithms. Springer-Verlag, Berlin/Heidelberg/New York.

[16] Vijay-Shanker, K. and D. J. Weir. 1991. Polynomial parsing of extensions of context-free gram-
mars. In Masaru Tomita, editor, Current Issues in Parsing Technology, chapter 13, pages 191-206.
Kluwer Academic Publishers, Norwell, MA.

[17] Vijay-Shanker, K. and D. J. Weir. 1993. Parsing some constrained grammar formalisms. Com-
putational Linguistics, 19(4):591-636.

[18] Vijay-Shanker, K. and D. J. Weir. 1993. The use of shared forest in tree adjoining grammar
parsing. Proc. of EACL’93, pages 384—-393.

40

Customizable Modular Lexicalized Parsing

R. Basili, M.T. Pazienza, F.M. Zanzotto
Dipartimento di Informatica, Sistemi e Produzione,
Universita’ di Roma Tor Vergata (ITALY)
{basili ,pazienza, zanzotto}@info .uniroma2.it

Abstract

Different NLP applications have different efficiency constraints (i.e. quality of the results and through-
put) that reflect on each core linguistic component. Syntactic processors are basic modules in some NLP
application. A customization that permits the performance control of these components enables their
reuse in different application scenarios. Throughput has been commonly improved using partial syntactic
processors. On the other hand, specialized lexicons are generally employed to improve the quality of
the syntactic material produced by specific parsing (sub)process (e.g. verb argument detection or PP-
attachment disambiguation). Building upon the idea of grammar stratification, in this paper a method
to push modularity and lexical sensitivity, in parsing, in view of customizable syntactic analysers is
presented. A framework for modular parser design is proposed and its main properties are discussed.
Parsers (i.e. different parsing module chains) are then presented and their performances are analyzed in
an application-driven scenarios.

1 Introduction

NLP applications require efficient NLP core components both in terms of linguistic quality and
throughput. Different NLP applications have different efficiency constraints and this reflects on each
component. Several text processing applications include syntactic parsers as core components. Cus-
tomizing parsing processors enable the reuse of these components in different application scenarios.

Let us consider as an example a real time application like a front-end question-answering for on-line
services. Here fast are preferred to accurate parsing processors. Target sentences are rather simple
and structures are recurrent. For example, booking train tickets is often expressed by sentences like:
At what time is the next train from Rome to Paris?. A parsing processor able to produce partial
structures like At what time and from Rome to Paris is sufficient to support a deductive machinery
that answers the question. Complex analysis, e.g. clause boundary recognition, is not relevant as very
short sentences (with high expectation about the discourse domain) are always used.

On the other hand, an event recognition (ER) task in an Information Extraction (IE) [20, 21]
scenario asks for accurate syntactic material over complex sentences. As an example, let us consider
the Penn Tree-bank [19] sentence #1692(9):

(wsj-1692(9)) As part of the agreement, Mr. Gaubert contributed real estate valued at $ 25 million to the
assets of Independent American.

The focus here is on the extraction of the event mainly suggested by syntactic relations established
by the verb to contribute. Clause embedding, i.e. valued at § 25 million, plays here an important role.

As a consequence, deeper parsing, relying on a more expressive grammar, is mandatory.

41

It is also worth noticing that applications may differ in the type of necessary syntactic relations. In
order to limit the time complexity, underlying grammars should thus be designed to efficiently cover
specific phenomena of interest. All and only the information necessary to cover the specific target
phenomena with the suitable quality should be used.

A key issue is that limited coverage (i.e. low time complexity) and high confidence are conflicting
requirements for the kind of grammatical competence available to the parser. Application developers
search for technologies for the largest coverage and confidence of specific phenomena. Shallow parsing
[1, 2, 9, 4], introduced in the perspective of improving time performances, is, alone, inherently weak
and often lexical sensitivity has been suggested as successful approach. In order to increase accuracy,
syntactic parsing processors usually exploit lexical information; lexicalized grammar formalisms have
been widely proposed (e.g. HPSG [22], LTAG [16], LFG [12]) at this scope, although in frameworks
(i.e. linguistic theories) targeted to full syntactic analysis [13]. On the contrary, applications require
effective methods for specific phenomena. Flexibility is thus the crucial factor for the success of
parsing technologies in applications. It is our opinion that the integration of lexicalized approaches
in frameworks for shallow parsing [7] is a relevant area of research.

Building upon the idea of grammar stratification [1], we propose a method to push modularity and
lexical sensitivity in parsing in view of customizable syntactic analysers.

Supporting modularity within the parsing process requires:

e a formal and homogeneous definition /representation for the partial parsing results able to support

information sharing among subcomponents;

e principles for coherent composition of parsing subcomponents able to ease the design of application
specific parsers;

e methods for the systematic control of ambiguity within as well as among the components(i.e.
throughout a chain of interactions);

e the detection of specific language phenomena where lexical information is relevant to the control of

ambiguity, so that specific lexicalized components can be designed to reflect it.

In this paper a framework for modular parsing is presented. The principles for the stratification
of the grammatical analysis and their implications on modularity are defined in the next section.
In Section 3 the notion of syntactic module is introduced and a classification according to basic
grammatical properties of the different modules is given. In the same section an annotation scheme
useful for information exchange among modules is defined as a combination of a dependency and
constituency based formalism. Implications on grammatical properties and parsing architectures are
then discussed. Finally, section 4 discusses the evaluation of some parsing architectures within a

typical application scenario.

2 Fitting parsing performance through stratification and
modularization

The interest of NLP application developers is in customizing a parser in order to meet application
quality and time constraints. Final performances depend on the adopted trade-off between the two.

42

It is widely accepted that computational lexicons increase the quality of the syntactic information
produced by a parser [8]: this improvement is tightly dependent on the specific language level to which
lexical information refers. The stratification of a grammar resulting from a modular decomposition of
the parser should facilitates the use of lexical information specific to each level.

Let us again consider the (ws;-1692(9)) example and suppose that verb subcategorization informa-
tion is available. The verb to contribute would be associated to a direct object and to a recipient
(or beneficiary) argument as well. This would result in a frame like contribute-NP-PP(to)!. The
other verb in the sentence, to value, would be associated to its object (i.e. the evaluated entity) and
to a prepositional phrase expressing the ”degree/amount” (usually ruled by the preposition at), i.e.
value-NP-PP(at).

A strategy using a combination of clause boundary recognition and a verb argument detection
algorithms could decide that: (i) valued is linked to at $ 25 million; (ii) contributed is linked to to
the assets. At the level of PP-attachment, most of the ambiguities in the sample sentence disappear
since they are resolved by lexical information. Firstly, links derived on lexical basis (i.e. attachment
of verb argumental modifiers) have important effects on the remaining ambiguities: other potential
attachment sites of argumental PPs like at § 25 million and to the assets are discarded. Secondly,
persistent ambiguity is reduced. The (of Independent American)pp structure is no longer allowed to
attach to nouns like real estate or million as illegal bracket crossing of the clause related to contribute
would be generated: as a result the only allowed attachments are those with the verb contribute itself
or with the noun assets.

The search space of the parser during the above lexicalized process depends on the number of
sentence words. If an early parsing phase, i.e. chunking [1], is applied, later parsing steps (e.g.
the detection of verb modifiers) deal with a much lower amount of ambiguity. Chunking is widely
adopted to recognize sentence fragments whose boundaries are independent from the verb grammatical
projections. In the example sentence (wsj_1692(9)), noun phrases (e.g. Mr. Gaubert, real estate) and
modifiers (e.g. to the assets, at § 25 million) are simple examples of these segments. The detection
of verb modifiers is disburdened since it has to deal only with the representative elements of the
recognized structures.

The above example is a simple instance of a phenomenon (i.e. verb subcategorization) that plays
a relevant role in the control of the ambiguity propagation throughout the search space of the parser.
The level (i.e. after chunking) in which this algorithm is applied and the used lexical knowledge are

crucial for optimizing the derived advantage:

e the use of chunks provide an optimal representation as the search for verb arguments is limited to
chunk heads;

e the adopted lexical knowledge (i.e. subcat frames) in this specific process is a well focused compo-
nents of a lexical KBs;

e the verb argument detection suggested by the example strongly interact with other parsing
activities (e.g. detection of non-argumental and nominal modifiers), with positive side-effects on

the reduction of ambiguity.

The above properties are not specific to this kind of modular decomposition (i.e. chunking +
verb_phrase_parsing) but can be generalized to a variety of other potential decompositions. The

INote that the subject is missing as mandatory in syntax, although it can be omitted.

43

effects of lexical information within each component increase the accuracy with respect to each tar-
get specific (sub)problem. Modularity thus optimizes the lexical effects on the control of ambiguity
throughout chains of specific parsing steps.

The adoption of a modular view in parsing supports a more flexible design (via composition of
simpler subcomponents in different parsing architectures) and the throughput control is explicit.

First throughput constraints can be met via simplification (i.e. removing not crucial subcompo-
nents) of the overall architecture. If a modular design is adopted, functionalities of modules and
functional dependencies are well-defined. Eliciting processing capabilities consists in removing mod-
ules from the parsing architecture.

Moreover, modularity again helps in the control of losses in accuracy over the target phenomenon
due to the removal of modules. As an example, let us consider a parser aiming to determine NP
boundaries in order to detect candidate terms within a Terminology Extraction process. The removal
of a verb argument recognition module would increase the parser throughput, by reducing also the
resulting precision. In the example (wsj_-1692(9)), the lack of verb subcategorization information
provides, as a potential NP, the wrong excerpt $ 25 million to the assets of Independent American.
It is only by means of a well-defined notion of verb argument detection component that a systematic
measure of the trade-off between accuracy and throughput can be controlled and employed as a design
principle.

In the next section, a method for designing modular parsing systems is introduced able to support

principles of lexicalization and decomposition.

3 A modular approach to parsing

A syntactic processor SP, according to the classification given in [3], is a linguistic processing module. It
is a function S P(S, K') that, exploiting the syntactic knowledge K, produces a syntactic representation
of the input sentence S.

The stratification of the grammar induces modularization of the syntactic processor. The general
module component P; takes the sentence at given state of analysis S; and augments this information
in Siy1 exploiting the knowledge K;. The parser SP is thus a cascade of this modules.

It is crucial to define how the syntactic information produced and processed is represented. The
stratification of the parsing activity requires that the representation scheme adopted satisfies some
requirements. In fact, on the one hand, stratified parsing techniques require the handling of partially
parsed structures (cf. Sec. 2). On the other, lexicalized approaches require that the heads of some
types of phrases are accessible during the analysis. In sec. 3.1, classical representations are discussed
from the point of view of a modular perspective. Then, we propose, in sec. 3.2, an annotation scheme
that satisfies the two requirements, some properties of the annotation scheme are discussed and some
restrictions, i.e. planarity constraints, proposed. Finally, a classification of the modules is given in
Sec. 3.3 according to the kind of information K used and to the typical actions they perform in
augmenting the syntactic knowledge gathered for the input sentence.

3.1 Modularity vs. annotation scheme

Modularization and lexicalization impose strict requirements on the annotation scheme used to de-
scribe the syntactic information that the processors gather for a target sentence.

44

In a modularized approach, a stable representation of partially analyzed structures is crucial. In
particular, it is required to handle the representation of long-distance dependencies. For instance,
considering the example (wsj_1692(9)), at a given state of the analysis could be necessary to express
that contributed is linked to to the assets. In a constituency-based framework [11], it is quite hard
to express the above relation without specifying the role of the excerpt real estate valued at § 25
million. Furthermore, in the same framework, the relation between contiguous constituents can not
be expressed if the constituent captured is not completely formed. In the excerpt of the example
sentence (wsj-1692(9)) contributed real estate valued at § 25 million, the relation between contributed
and real estate can be expressed only if the constituent real estate valued at § 25 million has been
fully recognized. Extensions of constituency-based theories such as TAG [17] and D-Trees [23] allow
to express discontinuous links and partial trees. From this point of view, a dependency-based syn-
tactic [24] representation is preferable, since constituency-based approaches in the annotation are not
naturally conceived for the representation of distant dependencies without specifying the role of inner
structures. On the other hand, a fully dependency-based syntactic approach generally considers the
words of a sentence as basic constituents. Thus, each analyzing step has to deal with the same simple
constituents: no packing of information is allowed. However, packing is important in a modular ap-
proach. A processor using verb subcategorization frames as suggested in section 2, would be enhanced
by looking at the candidate complements as single structures. For instance (wsj_1692), the analysis
of the complements of the verb contribute-NP-PP (to) is disburdened if the candidate excerpt of the
sentence were factorized in its chunks [real estate]fvaluedf[at § 25 million/[to the assets][of Independent
American]. In fact, the argument PP(to) can be easily filled with the chunk [to the assets].

In a lexicalized approach, it is crucial to determine the potential governor [14] of a given structure
that is its semantic head [22] and activates lexicalized rules. For instance, given the structure [has
widely contributed], the annotation scheme should allow to express that the lexical item governing its
behavior is contribute.

3.2 Extended dependency graph

To satisfy the requirements imposed by the modularization and the lexicalization, the adopted
annotation scheme is a combination of the constituency-based and the dependency-based formalisms.
Basically, the syntactic information associated to a given sentence is gathered in a graph, i.e.
g = (n,a). The typed nodes (i.e. elements of n) of the graph g are the basic constituents of the sen-
tence, while the typed and oriented arcs (i.e. elements of a) express dependencies between constituents
(an head and a modifier). Since the order of constituents is important, the set n is an ordered set.
For the purposes of the syntactic parsing, nodes can represent sequences of words, i.e. constituents,
that can degenerate in a single word. To satisfy the constraint arisen by the lexicalization, a function
h that spot the head of each constituent has been introduced. The representation should allow
to express the type of each constituent and each arc. The possible types, elements, respectively,
of the sets NTAG and AT AG, depend on the underlying grammar model. In the following, we
refer to those representation graphs as eXtended Dependency Graph (XDG) that is defined as follows:

Def. 1

An XDG is a tuple XDG =< n,a, Ntag, Atag,h > where n are the nodes, a are the arcs, Ntag is the
function that relates n with the set of NT AG, Atag is the function that relates a with the set of ATAG,
and h is the function that elects for each node a representing head.

45

For sake of simplicity, we introduce a compact version G = (N, A) of the X DG. The compact version
is a transcription of the X DG defined as follows:

Def. 2
G = (N, A) related to XDG is such that N = {(node, tag, head)|node € n,tag = Ntag(n), head = h(n)}
and A = {(arc,tag)|arc € a,tag = Atag(arc)}.

The proposed XDG allows to model the grammatical information, i.e. the detected relation and
persisting ambiguity, in an efficient way. In an XDG alternative interpretations coexist. In general,
more than one interpretations projected by the same nodes are expressed by the same representation
graph that, by itself, do not allow multiple interpretations of the nodes. The ambiguity at this level
can be modeled with an inherent proliferation of the interpretation graphs. This limitation is an
inheritance of the dependency-based theory. Generally, in these theories, words in an interpretation
representation belongs to exactly a single word class (cf. [10]).

The XDG represents a single syntactic interpretation only if it is a dependency tree (defined in
[10]). In term of constraints on the XDG, the requirement translates in the property that forbids
multi-headed nodes [24]:

Prop. 1: Single headed nodes
if 3(a,b) € A then Va' € N then A(a’,d) € A.

For instance, in the example (wsj_1692(9)), an interpretation willing to be a single unambiguous
syntactic representation of the sentence can not include both the relations (fvalued],[at $ 25 million])
and ([contributed],[at § 25 million]).

In order to preserve the compatibility in the proposed representation with the constituency based
approach, the property (Prop. 1) is not enough. Not enabling crossing links may be required.
Crossing links are defined as follows:

Def. 3: Crossing links
Two links, (wa,w),(Wm,wn) € A where min{h,k} < min{m,n}, are crossing iff min{m,n} <
maz{h, k} < maz{m,n}.

The planarity property [15] can, thus, be introduced:

Prop. 2: Planarity
Vli1,l2 € Aly,l; are not crossing.

The two properties, Prop. 1 and Prop. 2, are called planarity constraints and make a X DG that
satisfies them a planar graph. An XDG satisfying planarity constraints is a single (partial) syntactic
interpretation.

Consequently, since a viable single interpretation of the sentence must be a planar graph, an interpre-
tation in which crossing links coexist is ambiguous. In the example, if both the relations (fvalued],/of
Independent America/) and ([contributed],[to the assets]) coexist, the interpretation is ambiguous.

3.3 Parsing modules

A component P of the modular syntactic parser is a processor that, using a specific set of rules R,
adds syntactic information to the intermediate representation of the sentence. Formally, a processor
P is a function P(R,G) where R the knowledge expressed in a specific set of rule, and G the input
graph. The result P(R,G) = G’ is still an XDG.

The syntactic parser modules are classified according to the actions they perform on the sentence,
and to the information they use to perform these actions.

The actions that modules perform on the input XDG can be conservative or not-conservative. In
the case of conservative modules, all the choices contained in the input graph are preserved in the

46

output. The property is not true for the not conservative modules. A conservative module results
in a monotonic function of the module. A not-conservative module is a not-monotonic function. A
syntactic processor is a cascade of processing modules. Note that the composition of modules preserve,
where it exists, the monotonicity.

Furthermore, since the representation of the syntactic information is an XDG, the ability of the
modules refers to: (i) constituent gathering; (ii) dependency gathering. Under this distinction,
processors are:

e constituent processors, P., that are purely constituent gatherer;
e dependency processors, Py, that are purely dependency gatherer;
e hybrid processors, P, that perform both dependency and constituent gathering.

Starting by a model of the process as previously described, i.e. P(R,G) = G', where G = (N, A)
and G' = (N', A'), and by the distinctions introduced, a description of the typology of processing
modules used in the whole parsing processor will be provided. The description is in term of the action
they perform on the syntactic graph.

The main characteristic of the processors of the typology P, is that, in the changing of the con-
stituents (i.e. nodes of the representation) the arcs between constituents are coherently translated, i.e.
for each arc in A, there is the correspondent arc in A’ if it connects different nodes. For this typology
of modules, a monotonic processor PCM preserves the property of not crossing-brackets between the
input and the output, i.e. N’ is a partition of IV or vice-versa. A not-monotonic processor PY™ does
not satisfy this property. In the monotonic processors, we distinguish:

[PM] N’ is a partition of N and A’ = {(a,b)|a # b,a = (a1,...,@s),b = (by,...,bm), (aj,b:) € A}

[PM] N is a partition of N’ and A’ = {(a’,b')|a’ = h(a),¥’ = h(b), (a,b) € A}

We now analyze how, according to this taxonomy, a tokenizer T' and a chunker [1] can be classified.
The aim of a tokenizer is to split a sentence S = c¢;c5 .. . ¢, represented by a stream of characters in its
composing words S’ = wiws ... wx. It is a P module. In fact, the input is a graph whose set of node
represents the stream of characters, i.e. G = ({(¢1,char,c1),...,(cm, char, cy)},0), while the output
G’ models the words, i.e. G' = ({(w1,token,w:),...,(wn,token, wy)},0). The relation between A
and A’ satisfies the constraint of the module typology. A chunker [1] falls in the typology PM. As,
a Chunker is a rewriting device of input sentences, according to the available chunk prototype(C P)
[6]. The objective of the chunker function is to build the chunk representation c¢s = chy...chn,
corresponding to each input sentence ws = w;...w,. Each chunk ch; is the instance of a chunk
prototype in CP and is a sequences of words that does not overlaps other chunk of the sentence.
Then, in the proposed framework, the chunker transforms G = ({(w;,m1,w1),-- ., (Wn,Mn,wn), A)}
in G’ = ({(ch1,cht1, h1),...,(chn,chtn, hn), A)}, A’), where m; is the pos-tag of the word w;, cht;
and h; are respectively the type and the head of the chunk.

The main characteristic of the processor of the type P, is that in the processing the property
N = N’ is met. For the not-monotonic processors PéVM of this type no additional property is
required. Monotonic processor we adopt in the architecture are defined as follows:

[PM] AC A, G and G' meet planarity constrains (G and G’ represent a single interpretation of the
sentence)

47

[PM] A C A, where for each a € A’ the graph G” = (N, AU {a}) meets planarity constrains, this means
that in general a module of this type introduces ambiguity

According to these definitions, a PM is a P}. Generally, P} processors gather unambiguous in-
formation and are used to trigger P24 processors. These latter are thought to complete the partial
information given by Pﬁ processors. Under this taxonomy, a link parser [15] is of the P}_’Il. In fact,
starting from a representation G = (ts, #) where ts is the set of ordered tokens representing the target
sentence, produces a G' = (ts, A') that is a planar graph, i.e. meets planarity constraints.

Another classification may be done considering the knowledge that a processor uses to produce
modification in the syntactic graph. Here the lexicalization of the grammatical rules plays a crucial
role. In this classification, processors are: (i) lexicon-driven processors; (2) grammar-driven
processors. A mildly lexicalized approach is also possible when grammars are only adopted if lexical
information is not available. A lexicalized approach usually depends on the availability of accurate
information, and it is usually domain dependent. Examples of the lexicalized modules will be given

in the next section.

4 Chaos: a modular lexicalized syntactic parser

The major result of the proposed parsing methodology is the possibility of customization given both
by the modular and by the lexicalized approaches. Given a set of syntactic processing modules,
this results in a range of possible parsers that differ in term of produced syntactic material and
performance. In the following sections, we will introduce Chaos, (Chunk Analysis Oriented System),
a customizable parser based on a pool of four modules: the Chunker, the Verb Shallow Analyzer, the
Shallow Analyzer, and the Projector. We will discuss its adaptability to different applications through
the analysis of performance obtained on the standard Penn Treebank [19].

4.1 Linguistic modules and parsing architectures

The stratification of Chaos and its parsing processor modules (Fig. 1), reflect the idea that verbs are
crucial in controlling the ambiguity at the level of PP-attachment and are important for applications.
Thus, the Chunker is especially conceived for packing the ambiguity not relevant at the level of PP-
attachment. This rely on syntactic categories and on the relative position between words. It processes
a POS tagged sentence ams = (ws,) and produces a chunked sentence chunks = (cs,?) using as
rules the chunks prototypes(see Fig. 1.(1)). According to the classification given in Sec. 3.3, this
processor is a grammar-based constituent gatherer (PM).

The verb subcategorization structures that play a disambiguating role are exploited by the verb-
driven analysis processor VSP(Fig. 1.(3)). It is conceived to efficiently extract dependencies that
involve verbs as heads (V —icds, i.e. verb inter-chunk dependencies). This processor is a dependency
lezicalized processor, that can work at different level of lexicalization, of the class P} . VSP demands
a syntactic graph whose node are chunks, and it works correctly if those chunks are conceived to
pack the ambiguity not controlled by verb connections. The module architecture exploits a clause
hierarchy approximation (H) via the loop Clause Boundary Recognition (CBR) and Verb Shallow
Analyzer (VSA).

The module of shallow analysis SP(Fig. 1.(2)) is designed to express all the syntactic links that are
compliant with a particular configuration of the input. It is a grammar-based dependency module of

48

Chunk prototy,pes
8 Verb Subcat lexicon 8
l VSP
ams chunks
——» | Chunker | ———

)

V-icd

Shallow Syntactic Rules

..
cﬁg}_

Figure 1: The pool of Chaos processors

the class PM.

The module of unambiguous projection Prj(Fig. 1.(4)) aims to project a given XDG on the unam-
biguous subgraph removing colliding arcs. This is a grammar-based dependency module of the type
PNM,

To meet the requirements of an application, different chains of analysis can be arranged. Note that
in the present configuration, the Verd Shallow Analyzer and Shallow Analyzer modules work at the
higher level of performance if the specific chunker is used.

A chain Chunker-Verb Shallow Processor can be sufficient for an IE application devoted to extract
events from sentences if the events prototypes are well described by the verb subcategorization frames.
On the other hand, for Lexical Acquisition applications such as verb subcategorization frames acqui-
sition that requires a high coverage of the phenomena [5], a parser composed by the Chunker and the
Shallow Analyzer is sufficient. For an application as Terminology Extraction focussed on Noun Phrase
boundary recognition, from the point of view of typology of the phenomena covered a chain composed
by the Chunker and the Shallow Processor is enough, but the performance are not sufficient for the
task. Thus, a chain Chunker-Verb Shallow Processor-Shallow Processor is required to augment the

performance.

4.2 Task oriented parser design

We here analyze how to choose parsing chains for given application scenarios through the investi-
gation of their performances. The examined applications are event recognition in an IE context,
and candidate term boundary detection in a Terminology Extraction framework. Performances in
term of quality of the syntactic material are evaluated through the metrics of Recall, Precision and
F-measure. Given a grammatical relation 7 (e.g. NP — PP), metrics defined as follows:

- _ card(ATNAT)) + _ card((ATNAT)) oy
(@ R==5ams O P==Tgame O PO =grmuam O

A7 are the correct syntactic relations of type T for the sentence, and A] are the syntactic relations
of type 7 extracted by the system. The oracle used is obtained via a translation from the Penn
Treebank [19]. The translation of the PTB constituency-based to the dependency-based annotation
scheme, compliant with the evaluation r?equirements, is a crucial problem. Translation algorithms

49

have been settled in previous works [18, 6]. In the present work the adopted translation algorithm
left untranslated about 10% of the oracle trees(i.e. reference corpus trees). The resulting evaluation
test-set consists of nearly 44,000 sentences.

For the event recognition, three parsing chains have been tested: two light and one lexicalized.
The first composes the chunker, the shallow analyzer and the disambiguator, i.e. Chunker-SP-Prj,
the second remove the disambiguator, i.e. Chunker-SA, and the third introduces the lexicalized verb
shallow analyzer, i.e. Chunker-VSP-SP-Prj. The interest here is in extracting relations whose verb is
the head (V-Sub, V-Obj, and V-PP).

Parsing chain Link Type | R P F(a=0.5)
V-Sub 0.75 0.89 0.82
Chunker-SP V-Obj 0.90 0.65 0.75

V-PP 0.82 0.58 0.68
V-Sub 0.75 0.89 0.82
Chunker-SP-Prj V-Obj 0.90 0.66 0.76
V-PP 0.58 0.94 0.72
V-Sub 0.76 0.89 0.82
Chunker-VSP-SP-Prj V-Obj 0.90 0.69 0.78
V-PP 0.70 0.86 0.77

Table 1: verb arguments

Analyzing the table 1, from the point of view of the coverage of the phenomena, a better architecture
appears to be Chunker-SP, but it guarantees a low level of precision compared to the other two. In
case the interest of event extraction is in populating a database of facts, the most suitable process is
the chain that guarantees the higher precision degree: the chain Chunker-VSP-SP-Prj. While, if the
developer will feed an information retrieval system, the chain Chunker-SP-Prj is more appropriate.

In the case of NP recognition that Terminology Extraction (TE) requires, the application is inter-
ested in the relation typed NP-PP. Experimental evidence shows that the coverage of the phenomena
is assured by a chain Chunker-SP, but the quality of the syntactic material is improved through the
use of triggers provided by verb subcategorization lexicon in the chain Chunker-VSP-SP. The trade off
between the cost of the system in term of subcategorization lexicon production and the performance
required is another factor to be considered. The table 2 shows experimental results.

Parsing chain Link Type | R P F(a=0.5)
Chunker-SP NP-PP 085 0.65 0.73
Chunker- VSP-SP NP-PP 0.82 0.75 0.78

Table 2: noun phrases-prepositional phrases attachment

In a TE chain where the filtering is based upon statistical methods, the chain Chunker-SP is light
and assures an higher coverage of the phenomena. While in a TE chain where the filtering is done
manually, an high degree of precision disburden the work of the terminologists. The improvement
with respect to the precision from Chunker-SP to the chain Chunker-VSP-SP, even if there is a loss in
the recall, may justify the cost in term of time complexity of choosing the Chunker-VSP-SP instead
of the Chunker-SP.

50

5

Conclusions

A framework for modularization of the parsing process that eases their customization to the applica-

tions has been here described. The notion of syntactic module has been introduced and a classification

according to basic grammatical properties of the different modules has been provided. Particular at-

tention has been given to the syntactic annotation scheme. A useful syntactic information “holder”

for the exchange among modules has been defined as a combination of a dependency and constituency

based formalisms. An application of the given framework has been proposed. It has been shown and

measured how different NLP applications may select an appropriate parsing chain according to their

requirements.

References

[1]

[2]

3]

(4

(5]

[6]

[7)

(8]

[9)

[10]

(11]

Steven Abney. Part-of-speech tagging and partial parsing. In G.Bloothooft K.Church, S.Young,
editor, Corpus-based methods in language and speech. Kluwer academic publishers, Dordrecht,
1996.

Salah Ait-Mokhtar and Jean-Pierre Chanod. Incremental finite-state parsing. In Proceedings of
ANLP97, Washington, 1997.

Roberto Basili, Massimo Di Nanni, and Maria Teresa Pazienza. Engineering of ie systems: An
object-oriented approach. In Maria Teresa Pazienza, editor, Information Eztraction. Towards
Scalable, Adaptabe Systems, number 1714 in LNAI Springer-Verlag, Heidelberg, Germany, 1999.

Roberto Basili, Maria Teresa Pazienza, and Paola Velardi. A shallow syntactic analyser to extract

word association from corpora. Literary and linguistic computing, 7:114-124, 1992.

Roberto Basili, Maria Teresa Pazienza, and Michele Vindigni. Corpus-driven unsupervised
learning of verb subcategorization frames. Number 1321 in LNAI, Heidelberg, Germany, 1997.
Springer-Verlag.

Roberto Basili, Maria Teresa Pazienza, and Fabio Massimo Zanzotto. Evaluating a robust parser
for italian language. In Proc. of the Workshop on the Evaluation of Parsing Systems, held jointly
with 1st International Conference on Language Resources and Evaluation, Granada, Spain, 1998.

Roberto Basili, Maria Teresa Pazienza, and Fabio Massimo Zanzotto. Lexicalizing a shallow
parser. In Proc. of the TALN99, Cargese, FR, 1999.

Branimir Boguraev and James Pustejovsky, editors. Corpus Processing for Lezical Acquisition.
The MIT Press, Cambridge, Massachusetts, US, 1996.

Eric Brill. A simple rule-based tagger. In Proc. of 8rd Applied Natural Language Processing
Conference, Trento, IT, 1992.

Norbert Broker. A projection architecture for dependency grammar and how it compares to lfg.
In Proc. of LFG98 Conference, Brisbane, US, 1998.

Naom Chomsky. Aspect of Syntaz Theory. MIT Press, Cambridge, Massachussetts, 1957.

51

[12] Mary Darlymple, Ronald M. Kaplan, John T. Maxwell III, and Annie Zeanen, editors. Formal
Issues in Lezical-Functional Grammar. CSLI Publications, US, 1995.

[13] Christy Doran, Dania Egedi, Beth Ann Hockey, B. Srinivas, and Martin Zaidel. Xtag system - a
wide coverage grammar for english. In Proc. of 15th International Conference on Computational
Linguistic, COLING’94, Kyoto, Japan, 1994.

[14] S. Federici, S. Montemagni, and V. Pirrelli. Shallow parsing and text parsing: a view in under-
specification in syntax. In Proc. of Workshop on robust parsing ESSLLI, Prague, 1996.

[15] D. Grinberg, J. Lafferty, and D. Sleator. A robust parsing algorithm for link grammar. In Proc.
of 4th International workshop on parsing tecnologies, Prague, 1996.

[16] A. Joshi and Y. Shabes. Tree-adjoining grammars and lexicalized grammars. In M. Nivat and
A. Podelsky, editors, Definability and Recognizability of Sets of Trees. Elsevier, 1991.

[17] A.J. Joshi, L. Levy, and M. Takahashi. Tree adjunct grammars. Journal of Computer and System
Science, 1975.

[18] D. Lin. A dependency-based method for evaluating broad-coverage parsers. In Proc. of the 1th
IJCAI pages 1420-1425, Montreal, Canada, 1995.

[19] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large annotated corpus of
english: The penn treebank. Computational Linguistics, 19:313-330, 1993.

[20] Maria Teresa Pazienza, editor. Information Eztraction. A Multidisciplinary Approach to an
Emerging Information Technology. Number 1299 in LNAI. Springer-Verlag, Heidelberg, Germany,
1997.

[21] Maria Teresa Pazienza, editor. Information Extraction. Towards Scalable, Adaptabe Systems.
Number 1714 in LNAI. Springer-Verlag, Heidelberg, Germany, 1999.

[22] C. Pollard and I.A. Sag. Head-driven Phrase Structured Grammar. Chicago CSLI, Stanford,
1994.

[23] Owen Rambow, J. Vijay-Shanker, and David Weir. D-tree grammars. In Proc. of ACL’95, 1995.

[24] L. Tesniere. Elements de syntaze structural. Klincksiek, Paris, France, 1959.

52

RANGE CONCATENATION GRAMMARS

Pierre Boullier
INRIA-Rocquencourt
BP 105
78153 Le Chesnay Cedex, France

Pierre.Boullier@inria.fr

Abstract

In this paper we present Range Concatenation Grammars, a syntactic formalism which possesses many
attractive features among which we underline here, power and closure properties. For example, Range
Concatenation Grammars are more powerful than Linear Context-Free Rewriting Systems though this
power is not reached to the detriment of efficiency since its sentences can always be parsed in polynomial
time. Range Concatenation Languages are closed both under intersection and complementation and
these closure properties may allow to consider novel ways to describe some linguistic processings. We
also present a parsing algorithm which is the basis of our current prototype implementation.

1 Introduction

The great number of syntactic formalisms upon which natural language (NL) processing is based
may be interpreted in two ways: on one hand this shows that this research field is very active and
on the other hand it shows that, at the evidence, there is no consensus for a single formalism and
that the one with the right properties is still to be discovered. What properties should have such
an ideal formalism? Of course, it must allow the description of features that have been identified
so far in various NLs, while staying computationally tractable. We know that, due to their lack
of expressiveness, context-free grammars (CFGs) cannot play this role (See [Shieber, 1985]). Yet,
context sensitive grammars are powerful enough although they are too greedy in computer time. A
first answer is given by the notion of mild context-sensitivity. This notion is an attempt to express
the formal power needed to define NLs (see [Joshi, 1985] and [Weir, 1988]). However, there exist some
phenomena such as large Chinese numbers or word scrambling that are outside the power of mildly
context-sensitive (MCS) formalisms. In this paper, we present a convincing alternative: the range
concatenation grammars (RCGs). RCG is a syntactic formalism which is a variant of the simple
version of literal movement grammar (LMG), described in [Groenink, 1997], and which is also related
to the framework of LFP developed in [Rounds, 1988]. In fact it may be considered to lie halfway
between their respective string and integer versions; RCGs retain from the string version of LMGs or
LFPs the notion of concatenation, applying it to ranges (couples of integers which denote occurrences
of substrings in a source text) rather than strings, and from their integer version the ability to handle
only (part of) the source text (this later feature is the key to tractability). The rewriting rules of
RCGs, called clauses, apply to composite objects named predicates which can be seen as nonterminal
symbols with arguments. We have shown that the positive version of RCGs, as simple LMGs or integer
indexing LFPs, exactly covers the class PTIME of languages recognizable in deterministic polynomial

53

time. Since the composition operations of RCGs are not restricted to be linear and non-erasing, its
languages (RCLs) are not semi-linear. Therefore, RCGs are not MCS and they are more powerful than
linear context-free rewriting systems (LCFRS) [Vijay-Shanker, Weir, and Joshi, 1987],! while staying
computationally tractable: its sentences can be parsed in polynomial time. However, this formalism
shares with LCFRS the fact that its derivations are CF (i.e., the choice of the operation performed
at each step only depends on the object to be derived from). As in the CF case, its derived trees
can be packed into polynomial sized parse forests. Besides its power and efficiency, this formalism
possesses many other attractive properties. Let us emphasize in this introduction the fact that RCLs
are both closed under intersection and complementation, and, like CFGs, RCGs can act as syntactic
backbones upon which can be grafted decorations from other domains (probabilities, logical terms,
feature structures).
This paper studies the full class of RCGs and presents a polynomial parse time algorithm.

2 Positive Range Concatenation Grammars

Definition 1 A positive range concatenation grammar (PRCG) G = (N, T,V, P,S) is a 5-tuple where
N is a finite set of predicate names, T' and V are finite, disjoint sets of terminal symbols and variable
symbols respectively, S € N is the start predicate name, and P is a finite set of clauses

Yo—P1...Ym
where m > 0 and each of g, 1, ...,%n is a predicate of the form
A(a, ..., qiy...,0p)

where p > 1 is its arity, A € N and each of a; € (TUV)*, 1 <i < p, is an argument.

Each occurrence of a predicate in the RHS of a clause is a predicate call, it is a predicate definition
if it occurs in its LHS. Clauses which define predicate A are called A-clauses. This definition assigns
a fixed arity to each predicate name A € N whose value is arity(A). By definition arity(S), the arity
of the start predicate name, is one. The arity k of a grammar (we have a k-PRCQ), is the maximum

arity of its predicates.

2.1 Ranges & Bindings

If we consider a derivation in a CFG, headed at the start symbol and leading to some sentence,
we know that each nonterminal occurrence is responsible for the generation of the substring laying
between two indexes say 7 and j. For a given input string w = a; .. .an, such a couple (3, j) is called a
range. We know that in CF theory, ranges play a central role. For example the (unbounded number
of) parse trees, associated with some input string w can be represented by a CFG, called shared forest
[Lang, 1994]. Its nonterminal symbols have the form (A,%,j) where A is a nonterminal of the initial
grammar and (z,7) is a range in w. In an analogous way, ranges are the core of our formalism.
Inthesequel terminal symbol in T are denoted by early occurring lower case letters such asa, b, c, . . .,
while variables in V' are denoted by late occurring upper case letters such as X, Y, Z. If w € T*, |w| = n,
its set of ranges is Ry, = {p | p = (4,7),0 < 7 < j < n}. We shall sometimes use vectors to denote
elements of cartesian products. For example elements in R, (i.e., tuple of ranges of length k) may be
denoted by 7' and clauses by Ag(cip) — Ay(al)... Am(cim), a; € (TUV)*)%, k; = arity (4;).

1In [Boullier, 1999a], we argue that this extra power can be used in NL processing.

54

We shall use several equivalent denotations for ranges in R,,. If w = wywowsz with w; = a; ...a;,
W2 = @i41-..6; and w3 = @jy1...an,, the range (7,7) can be denoted either by an explicit dotted
term w; e wo @ w3, or by (i..J)y, or even by (i..j) when w is understood or of no importance. Given a
range (i..J), the integer i is its lower bound, j is its upper bound and j —i is its size. A range such that
i = j is an empty range. The three substrings w;, wy and w;z associated with (i..j) are respectively
denoted by w(®-%, w(i-3) and w'¥"). Therefore we have, w7 = ¢, wi=19) = ¢; and w{® " = w.
If 9= p1,...,Pi,-..,Pp is a vector of ranges, by definition w? denotes the tuple of strings w1, ...,
wPi, ..., wPr,

In any PRCG, terminals, variables and arguments in a clause are supposed to be bound to ranges
by a substitution mechanism. Any couple (X, p) is called a variable binding denoted by X/p, p is the
range instantiation of X, and w? is its string instantiation. A set 0 = {X1/p1,...,Xp/pp} of variable
bindings is a variable substitution iff X;/p; # X;/p; = Xi # X;. A couple (q, p) is a terminal binding
denoted by a/p iff p = (j — 1..j) and a = q;.

The concatenation of ranges is a partial (associative) binary operation on R, defined by
(i1.-J1)w(2-J2)w = (81..J2)w iff j1 = i2. If we consider a string w € T*, a string & = u; ... u;. .up €
(T'U V)*, a variable substitution o and a range p € R,,, the couple (g, p) is a string binding for o,
denoted a/p iff

o for each u; there exists a range p; s.t.

—ifu; €V, u;/p; € o,

— ifu; € T, ui/p; is such that u; = wf",
eand P1---Pi---Pp=0p

For a given variable substitution o, a set w = {a1/p1,...,0p/pp} is called a string substitution
(for {a1,...,ap}), iff each ai/p; is a string binding for 0. A clause c is instantiable by w iff there
is a string substitution w for the set of arguments of its predicates. If a clause is instantiable by w,
and if each of its arguments « is replaced by the range p s.t. a/p € w, we get a positive instantiated
clause whose components are positive instantiated predicates. For example, A({g..h), (i..J), (k..l)) —
B((g+1..h), (i+1..j-1), (k..I-1)) is a positive instantiation of the clause A(aX,bY¢c,Zd) - B(X,Y, Z) if
the source text a; ...a, is such that ag,, = a,a;,, = b,a; = c and a; = d. In this case, the variables
X,Y and Z are bound to {g+1..h), (i+1..j-1) and (k..l-1) respectively.?

For some w € T*, the set of positive instantiated predicates IP}, is defined by IP} = {A(p) | A €
N, € RE k= arity(A)}.

2.2 Derivation, Language, Derived Tree & Shared Forest

For a PRCG G = (N,T,V,P,S) and a source text w, we define, on strings of positive instantiated
predicates, a binary relation called positive derive and denoted by E=>' If I’y and I’y are strings in

(IPF)*, we have
Iy Ao(po) T2 = Iy A1(A1) ... Am(pm) T2

20ften, for a variable binding X/p, instead of saying that p is the range which is bound to X or denoted by X, we
shall say, the range X, or even for w”, instead of saying the string whose occurrence is denoted by the Tange which is
bound to X, we shall say the string X.

55

iff Ag(po) — A1(p1)-.. Am(pm) is the instantiation of some clause Ag(ap) — Ai(ai)...Am(am) in
P for some string substitution.
A sequence of strings of positive instantiated predicates I'o,...,[;—-1,T;,..., I st. V5,1 < ¢ <1

| P E=> T'; is called a derivation, or more precisely a I'g-derivation or even a I'g/T'j-derivation. Each
2w

consecutive couple of strings (I';—1,T;) is a derivation step.

Definition 2 The (string) language of a PRCG G = (N,T,V, P,S) is the set
LG) = {w]|S(sws) E“; e}

Aninput string w € T*, |w| = n is a sentence iff the empty string (of positive instantiated predicates)
can be derived from S({0..n)), the positive instantiation of the start predicate on the whole source
text.

More generally, we define the string language of a nonterminal A by £(A) = Uyer-L(A, w) where
L(A,w) = {w? | § € RE:, h = arity(A), A(p) E‘% €}. However, with this definition, we can note that
L(S) and L(G) are different. Consider the gra;nmar G s.t.

S(X) — A(Xa)
AX) — ¢

We can see that we have £(G) = 0 and £(S) = T*.3 In fact, we have £(G) C L(S), and the equality
is reached for non-increasing grammars.*

As in the CF case, if we consider a derivation as a rewriting process, at each step, the choice of
the (instantiated) predicate to be derived does not depend of its neighbors (the derivation process is
context-free). All possible derivation strategies can be captured in a single canonical tree structure
which abstracts all possible orders and which is called a derived tree (or parse tree). For any given
A(p)-derivation, we can associate a single derived tree whose root is labeled A(p). Conversely, if we
consider a derived tree, there may be associated derivations which depend upon the way the tree is
traversed (for example a top-down left-to-right traversal leads to a leftmost derivation). Note that
from a derivation step (T, I"), it is not always possible to determine which predicate occurrence in T
has been derived. Moreover, even if this occurrence is known, the clause used cannot be determined
in the general case. This is due to the fact that Ag(gg) — A1(p1) ... Am(pm) may be an instantiation
of different clauses. But, of course, each of these interpretations is a valid one.

Consider a k-PRCG G = (N,T,V,P,S), a terminal string w and the set D, of all complete
S(ewe)/c-derivations. We define a terminal-free CFG G,, = (N x Rk 0, P, S(swe)) whose set of
rules P, is formed by all the instantiated clauses Ag(p9) — A1(p1) ... Am(pm) used in the derivation
steps in D,,. This CFG is called the shared forest for w w.r.t. G. Note that, if D,, is not empty, the
language of a shared forest for w is not {w}, as in the CF case, but is {e}.

Moreover, this shared forest of polynomial size may be viewed as an exact packed representation of
all the (unbounded number of) derived (parse) trees in G for w: the set of parse trees for G on the
input w and the set of parse trees of its associated CF shared forest G,, (on the input €), are identical.

+
3For every w = wj uzav, ujuzv € T*, we have S(u1 o uz ® av) -Gf-é €.
yw

4A grammar is non-increasing iff for every instantiated clause and for each argument binding o'/p’, p' = (j..k) in
its RHS there exists in its LHS an argument binding a/p, p = (i..l) such that i < j < k < l. Non-increasing grammars
represent an important and fairly large subclass of RCGs

56

The arguments of a given predicate may denote discontinuous or even overlapping ranges. Fun-
damentally, a predicate name A defines a notion (property, structure, dependency, ...) between
its arguments, whose associated ranges can be arbitrarily scattered over the source text. PRCGs are
therefore well suited to describe long distance dependencies. Overlapping ranges arise as a consequence
of the non-linearity of the formalism. For example, the same variable (denoting the same range) may
occur in different arguments in the RHS of some clause, expressing different views (properties) of the
same portion of the source text.

Note that the order of predicate calls in the RHS of a clause is of no importance (in fact, RHS of
clauses are sets of predicate calls rather than lists).

Example 1 As an ezample of a PRCG, the following set of clauses describes the three-copy language
{www | w € {a,b}*} which is not a CFL and even lies beyond the formal power of tree adjoining
grammars (TAGs).

S(XYZ) o AX,Y,2)
A(aX,aY,aZ) — A(X,Y,2)
A(bX,bY,0Z) — A(X,Y,Z)
A(e,g,€) - €

Below, we check that the input string w = ajbsaszbsasbg is a sentence. Of course, indices are not
part of the input letters, they are used to improve readability of ranges: for each couple (letter, indez),
we know where letter occurs in the source text. At each derivation step, we have made clear both the
clause and the variable substitution used.

S(XYZ)-A(X,Y,Z)

S(a1b2a3b4a5b6) 'lc-:=u>] A(albg,a3b4,a5b6) {X/albz,Y/a3b4,Z/a5b6}
A(aX,aY,aZ)—A(X,Y,Z)
E?u A(b2,b4’b6) {X/bQ’Y/b‘laZ/bG}
ABXBY pZ)— A(X,Y,Z)
= A(eg,€,¢) {X/(2..2),Y/(4.4),2/(6..6)}
A(e,ee)—e ’
€5 £ 0

G,w

Example 2 Another way to define the previous language is with the following set of clauses:

S(XYZ) — L(X)eq(X,Y)eq(X,2)
L(e) -+ €

L(Xa) — LX)

L(Xb) — L(X)

L(Xc) — L(X)

where the equality predicate eq is defined by

eq(Xt,Yt) — eq(X,Y)
eq(e, €) - €

in which the first clause is a schema over all terminals t € T.

Example 3 The power of this formalism is shown by the following grammar that defines the non
semi-linear language £ = {a* | p > 0}

S(XY) - S(X)eq(X,Y)
S(a) - €

57

3 Negative Range Concatenation Grammars

Definition 3 A negative range concatenation grammar (NRCG) G = (N,T,V,P,S) is a 5-tuple, like
a PRCG, except that some predicates occurring in RHS, have the form A(ay, ..., ap).

A predicate call of the form A(ay,...,a,) is said to be a negative predicate call.
Definition 4 A range concatenation grammar (RCG) is a PRCG or a NRCG.

The term PRCG (resp. NRCG) will be used to underline the absence (resp. presence) of negative
predicate calls.

In a NRCG, the intended meaning of a negative predicate call is to define the complement language
(w.r.t. T*) of its positive counterpart: an instantiated negative predicate succeeds iff its positive

_counterpart (always) fails. This definition is based on a “negation by failure” rule.

More formally, let G = (N,T,V,P,S) be a RCG, and let w be a string in T*. The set of negative
instantiated predicate IP] is defined by IP; = {A(5) | A(p) € IP}},% and the set of instantiated
predicate IP, is defined by IP,, = IP} U IP.

For RCGs, we redefine the positive derive relation +=> in the following way. If I'; and I'y are strings

in (IP,)*, we have ’
Ty Ao(po) T2 r I ¢1...0m T2

iff Ao(pp) — ¢1-..0m is the instantiation of some clause Ao(ap) — ¥1...¥m in P for some string
substitution w. If &;/f; € w,® we have, either if ¥; = A;(&;) then ¢; = Ai(p}), or if ¥; = A;(d) then
¢i = Ai(p3)-
Note that negative instantiated predicates cannot be derived further on by positive derive relations.
We also define on strings of instantiated predicates a negative derive relation, denoted by 67:13. If

I'; and I'; are strings in (IP,)*, we have

Ty A(p) T2 —(_;’:u>1 Iy

iff A(p) is a negative instantiated predicate such that (A(p),¢) ¢5+:>
Yw

Note that this definition of —=> “erases” negative instantiated predicates whose positive counterpart

w
is not related to the empty string (of instantiated predicates) by the transitive closure of +=. As a
consequence of this definition, the structure (parse tree) associated with a negative derivat’;())n step
is void, and, more generally, the structure of the (complement) language associated with a negative
predicate call is void. In other words, within the RCG formalism, we cannot define any structure
between a negative predicate call and the parts of an input string that it selects.

Let ——= be any subset of —=>. We define a positive/negative derive relation :é:g by

W G,w

5 = +=53U-——=>
G,w G,w G,w

We say that §=> is consistent (otherwise inconsistent) iff for each A(5) € IP} we have either
w
+ m—
A(p) :5=> € or A(p) :é:;=> €, but not both. Note that the existence of both such derivations would show
Yw ,w

that the tuple of strings w” simultaneously belongs to the language of A and to its complement!

5The previous definition of IPZ still holds for (N)RCGs.
6a;/p; is a shorthand notation for {@i1/pi1,- .., aip, [Pip; } if i = ci1,...,aip; and pi = pi1,-- -, Pip; -

58

We say that a grammar G is consistent if for every w € T*, there exists a consistent relation =

a2 W

(otherwise G is inconsistent).
A consistent positive/negative derive relation is simply called derive and is denoted by G=> . Ifa

2w
derive relation exists, we can show that it is unique. However, such a derive relation does not always

exist, and thus some grammars are inconsistent.
Consider the RCG G whose set of clauses is the singleton P = {S(X) — S(X)}. By definition, for
any w € T* and for any p € R, we have

{(5(),5(p))} C =

,'l.U

{(5(p),)} < =

,w

There are two possibilities for ——=>: the couple (S(p), €) either does not belong or does belong to

2w
+ PR
——=. In the first case, §=> is inconsistent since we have both (S(p), €) ¢é=> and (S(p),¢€) ¢ié=>. In
W W W W

the second case, +=> is also inconsistent since we have

a2 W

{(S(P),m),(myf)} - 5,:;
(50 5, (5@, (S} € 5

thus G is inconsistent.
In the sequel, we shall only consider consistent RCGs. Of course, PRCGs are always consistent.

Definition 5 The (string) language of ¢ RCG G = (N,T,V,P,S) is the set

LG) = {w]S(ows) 5 ¢}

The language of inconsistent RCGs is undefined.
In the sequel, without loss of generality, we will both prohibit clauses whose RHS contains arguments

that are in 7*, and assume that no argument has more than one instance of any variable.

4 A Parsing Algorithm for RCGs

In our prototype system, we have implemented a RCG parser which is based upon the algorithm
depicted in Table 1. Let G = (N, T,V, P, S) be a k-PRCG for which we also consider P as a sequence
of clauses denoted by P. In this algorithm, the functions clause and prdct are both memoized: their
returned values are kept in auxiliary 1+ k-dimensional matrixes I and II which are indexed by elements
in P x R and N x RE. We assume that their elements are all initialized to unset. The internal
loop at lines #35, #6 and #7 is executed for each possible instantiation of the current clause, with the
only constraint that its LHS arguments must always be bound to the parameter pp. In function prdct
at line #4, P4 designates the set of A-clauses. It is not difficult to see that we have implemented
a top-down recognizer’ for any PRCG if the function prdct is called, for some input string w, with
prdct(S, ewe).
To turn this recognizer into a parser, we simply add the statement

(6') output (Ag(p0) — Ai1(h1) ... A;j(p5) ... Am(pm))

7Bottom-up algorithms can also be devised.

59

(1) function clause (i, gy) return boolean

(2) ifITi, po) # unset then return I'[z, gp)

(3) let Ag(cd) — Ai(dir)...Aj(d). .. Am(ci) = Pli]

(4) ret-val :=I'[i, pp] = false

(5) foreach Ag(pp) — A1(p1)...A;(p;) ... Am(pm) do

(6) ret-val := ret-val V (prdct (Ay,p1) A ... prdct (Aj,p;) A ... prdct (Am,pm))
(7) end foreach

(8) return I'[i,gg] := ret-val

(9) end function

(1) function prdct (4, p) return boolean

(2) ifII[A, pp] # unset then return II[A, 5]
(3) ret-val := false

(4) foreach i such that P[i] € P4 do

(5) ret-val := ret-val V clause (z, p)

(6) end foreach

(7) return II[A, gp] = ret-val

(8) end function

Table 1: A Recognition Algorithm for PRCGs.

after line #6 in clause, statement which must only be executed if the expression (prdct (A1,p1)A--- A
prdct (Am, pm)) succeeds.

In order to handle the full class of RCGs, we simply have to change line #6 in clause by something
like

(6) ret-val := ret-val V (prdct (A1,p1) A ...prdct(Aj,p;) A ... prdct (Am, pm))

if P[i] has the form Ag(d) — A1(d1) ... A4;(a;) ... Am(cim).®
We can also note that the assignment of I'[i, gg] to false at line #4 in clause allows this recognizer

to handle cyclic grammars.®

4.1 Its Parse Time Complexity

For a given k-RCG, and an input string w € T*, |w| = n, the number of instantiations of a given
clause P[i], is less than or equal to n2*(1+%) where I; is the number of predicate calls in the RHS of
13[1] Thus, for a given clause, thanks to the memoization mechanism, the number of calls of the form
prdct (A;, p;) in line #6 of clause, is less than or equal to ;n2*(1+4) < [;n2k(1+]) where I is the length
of the longest clause. Thus, for all possible clauses this number is 171 L;n2k(1+D) = |G|n2k1+D) jf
G| = Elﬂl l; is the size of the grammar. Thus, if we assume that each use of the function prdct

2k(1+0)) 10 and its space

takes a constant time, the time complexity of this algorithm is at most O(|G|n
complexity is O(|P|n?F), the size of the memoization matrixes I' and II.
We emphasize the fact that a linear dependency upon the grammar size is extremely important in

NL processing where we handle huge grammars and small sentences.

8Note that in the corresponding shared forest, negative nodes of the form A;(g;) must be considered either as leaves
or, equivalently, we must add in the parser a statement such as output (4;(g;) — ¢€).
91.e., grammars for which there exist derivations such that A(p) G§> I'; A(p) T'2. However, in order to get a parser
w

for cyclic grammars, this simple mechanism had to be improved.
1015 fact we have O(|G|n3") where 7 is the maximum number of arguments in a clause.

60

In the above evaluation, we have assumed that arguments in a clause are all independent; this is
rarely the case. If we consider a predicate argument @ = u; ...u, € (V UT)* and the string binding
a/p for some variable substitution o, each position 0,1,...,p in @ is mapped onto a source indez (a
position in the source text) ig,%1,...,ip S.t. 1o < i1 < ... <1ip and p = (ig.ip). These source indexes
are not necessarily independent (free). In particular, if for example u; € T, we have i; = ¢;_1 + 1.
Moreover, most of the time, in a clause, variables have multiple occurrences. This means that, in a
clause instantiation, the lower source indexes and the upper source indexes associated with all the
occurrences of the same variable are always the same, and thus are not free. In fact, the degree d of
the polynomial which expresses the maximum parse time complexity associated with a clause is equal
to the number of free bounds in that clause. For any RCG G, if d is its maximum number of free
bounds, the parse time of an input string of length n takes at worst O(|G|n?).

If we consider a bottom-up non-erasing!! k-RCG G, by definition, there is no free bound in its RHS.
Thus, in this case, the number of free bounds is less than or equal to d = maxﬁ[i](ki + vi), wherE ki
and v; are respectively the arity and the number of (different) variables in the LHS predicate of P[i].

In Example 2, we have defined a predicate named eq which may be useful in many grammars, thus,
in our prototype implementation, we decided to predefine it, together with some others, among which

we quote here len and eglen:

len(l, X): checks that the size of the range denoted by the variable X is the integer I;
eqlen(X,Y): checks that the sizes of X and Y are equal;

eq(X,Y): checks that the substrings X and Y are equal.

It must be noted that these predefined predicates do not increase the formal power of RCGs insofar
as each of them can be defined by a pure RCG. Their introduction is justified by the fact that they
are more efficiently implemented than their RCG-defined counterpart and, more significantly, because
they convey static information which can be used to decrease the number of free bounds and may
thus lead to an improved parse time.

Consider again Example 2. This grammar is bottom-up non-erasing, and the most complex clause
is the first one. Its number of free bounds is four (one argument with three variables), and thus its
parse time complexity is at worst O(n?). In fact, this complexity is at worst quadratic since neither
the lower bound nor the upper bound of the argument XY Z is free since their associated source
index values are always 0 and n respectively. Note that the lower bound of the definitions of the
unary predicate L is not free either, since its value is always the source index zero. The parse time
complexity of this grammar further decreases to linear if eq is predefined, because in that case, we
statically know that the sizes of X, Y and Z must be equal (there is no more free bound within this
first clause which is thus executed in constant time). The linear time comes from the upper bound of
the LHS argument in the last three clauses. We can also check that the real parse time complexity of
Example 3 is logarithmic in the length of the source text!

5 Closure Properties & Modularity

We shall show below that RCLs are closed under union, concatenation, Kleene iteration, intersection
and complementation.

1A RCG is bottom-up non-erasing if, for each;'clause, all variables that occur in RHS also occur in LHS.

61

Let Gy = (N1,T1,V1,P1,S2) and G2 = (Na, T, Vs, P, S2) be two RCGs defining the languages
L, and L, respectively. Without loss of generality, we assume that N; N N> = @ and that S is a
unary predicate name not in N; U N,. Consider two RCGs G' = (N; U {S},T1,V1 U{X}, P UP',S)
and G" = (M UN, U{S},T1UT2, V1 UV, U{X},PLUP, U P",S) defining the languages L' and L"
respectively. By careful definition of the additional sets of clauses P’ and P", we can get L" = L; UL,
L"=LiLyor L"=LiNLyand L' =L} or L' = L.

Union: P" = {S(X) — S1(X), S(X) — S2(X)}
Concatenation: P" = {S(XY) — S;(X) S2(Y)}
Intersection: P" = {S(X) — S1(X) S2(X)}

Kleene iteration: P' = {S(e) — ¢,S(XY) — $1(X) S(Y)}
Complementation: P’ = {S(X) — 5;(X)}

In [Boullier, 1999d], we have shown that the emptiness problem for RCLs is undecidable and that
RCLs are not closed under homomorphism. In fact, we have shown that a polynomial parse time
formalism that extends CFGs cannot be closed both under homomorphism and intersection and we
advocate that, for a NL description formalism, it is worth being closed under intersection rather than
under homomorphism. This is specially true when this closure property is reached without changing
the component grammars.

Let G; and G» be two grammars in some formalism F, their sets of rules are P, and P, and they
define the languages L; and Ly respectively. We say that F is modular w.r.t. some closure operation
f if the language L = f(L;, L2) can be defined by a grammar G in F whose set of rules P is such
that P, U P, C P. The idea behind this notion of sub-grammar is to preserve the structures (parse
trees for G; and G2) built by the component grammars. In that sense, we can say that CFGs are
modular w.r.t. the union operation since CFGs have, on the one hand, the formal property to be
closed under union and, on the other hand, this union is described without changing the component
grammars G; and G, (we simply have to add the two rules S — S; and S — S2). Conversely, CFGs
are not modular w.r.t. intersection or complementation since we know that CFLs are not closed under
intersection or complementation. If we now consider regular languages, we know that they possess
the formal property of being closed under intersection and complementation; however we cannot say
that they are modular w.r.t. these properties, since the structure is not preserved in any sense. For
example, let us take a regular CFG G, defining the language L, we know that it is possible to construct
a regular CFG whose language is L, but its parse trees are not related with the parse trees of G.

Following our definition, we see that RCLs are modular w.r.t. union, concatenation, Kleene iteration,
intersection and complementation. Of course it is of a considerable benefit for a formalism to be
modular w.r.t. intersection and complementation.

Modularity w.r.t. intersection allows one to directly define a language with the properties P; A P,
assuming that we have two grammars G; and G describing P, and P,, without changing neither G,
nor Gs.

Modularity w.r.t. complementation (or difference) allows for example to model the paradigm “gen-
eral rule with exceptions”. Assume that we have a property P defined by a general rule R with some
exceptions E to this general rule. Thus, formally wehave P=R—E =RNE.

Within the RCG formalism, we simply have to add a clause of the form

62

P(X) — R(X)E(X)
assuming that P, R and F are unary predicate names. If, moreover, these exceptions are described

by some rules say D, we simply have to add the clause

P(X) — D(X)

6 Conclusion

In [Boullier, 1999d], we have shown that the 1-RCG subclass of RCGs with a single argument, is
already a powerful extension of CFGs which can be parsed in cubic time and which contains both the
intersection and the complement of CFLs. In [Boullier, 1999b&c], we have shown that unrestricted
TAGs and set-local multi-component TAGs can be translated into equivalent PRCGs. Moreover,
these transformations do not induce any over-cost. For example we have a linear parse time for
regular CFGs, a cubic parse time for CFGs and a O(n®) parse time for TAGs.

In this paper we present the full class of RCGs in which we can express several NL. phenomena
which are outside the formal power of MCS formalisms, while staying computationally tractable. The
associated parsers work in time polynomial with the size of the input string and in time linear with
the size of the grammar. Moreover, in a given grammar, only complicated (many arguments, many
variables) clauses produce higher parse times whereas simpler clauses induce lower times.

For a given input string, the output of a RCG parser, that is an exponential or even unbounded
set of derived trees, can be represented into a compact structure, the shared forest, which is a CFG
of polynomial size and from which each individual derived tree can be extracted in time linear in its
own size.

As CFGs, RCGs may themselves be considered as a syntactic backbone upon which other formalisms
such as Herbrand’'s domain or feature structures can be grafted.

And lastly, we have seen that RCGs are modular This allows to imagine libraries of generic linguistic
modules in which any language designer can pick up at will when he wants to specify such and such
phenomena.

All these properties seem to advocate that RCGs might well have the right level of formal power
needed in NL processing.

References

[Boullier, 1999a] Boullier P. (June 1999). Chinese Numbers, MIX, Scrambling, and Range Concate-
nation Grammars In Proceedings of the 9th Conference of the European Chapter of the Association
for Computational Linguistics (EACL’99), Bergen, Norway. See also Research Report No 3614 at
http://www.inria.fr/RRRT/RR-3614.html, INRIA-Rocquencourt, France, Jan. 1999, 14 pages.

[Boullier, 1999b&c] Boullier P. (July 1999). On TAG Parsing and On Multicomponent TAG Parsing.
In 6°™¢ conférence annuelle sur le Traitement Automatique des Langues Naturelles (TALN’99),
Cargese, Corse, France, pages 75-84 and pages 321-326. See also Research Report No 3668 at
http://www.inria.fr/RRRT/RR-3668.html, INRIA-Rocquencourt, France, Apr. 1999, 39 pages.

63

[Boullier, 1999d] Boullier P. (July 1999). A Cubic Time Extension of Context-Free Grammars In Sizth
Meeting on Mathematics of Language (MOLG6), University of Central Florida, Orlando, Florida,
USA. See also Research Report No 3611 at http://www.inria.fr/RRRT/RR-3611.html, INRIA-

Rocquencourt, France, Jan. 1999, 28 pages.

[Groenink, 1997] Groenink A. (Nov. 1997). Surface without Structure Word order and tractability in
natural language analysis. PhD thesis, Utrecht University, The Nederlands, 250 pages.

[Joshi, 1985] Joshi A. (1985). How much context-sensitivity is necessary for characterizing structural
descriptions — Tree Adjoining Grammars. In Natural Language Processing — Theoretical, Compu-
tational and Psychological Perspective, D. Dowty, L. Karttunen, and A. Zwicky, editors, Cambridge
University Press, New-York, NY.

[Lang, 1994] Lang B. (1994). Recognition can be harder than parsing. In Computational Intelligence,
Vol. 10, No. 4, pages 486-494.

[Rounds, 1988] Rounds W. (1988). LFP: A Logic for Linguistic Descriptions and an Analysis of its
Complexity. In ACL Computational Linguistics, Vol. 14, No. 4, pages 1-9.

[Shieber, 1985] Shieber S. (1985). Evidence against the context-freeness of natural language. In
Linguistics and Philosophy, Vol. 8, pages 333-343.

[Vijay-Shanker, Weir, and Joshi, 1987] Vijay-Shanker K., Weir D. and Joshi A. (1987). Characteriz-
ing Structural Descriptions Produced by Various Grammatical Formalisms. In Proceedings of the
25th Meeting of the Association for Computational Linguistics (ACL’87), Stanford University, CA,
pages 104-111.

[Weir, 1988] Weir D. (1988). Characterizing Mildly Context-Sensitive Grammar Formalisms. PhD
thesis, University of Pennsylvania, Philadelphia, PA.

64

AUTOMATED EXTRACTION OF TAGS FROM
THE PENN TREEBANK

John Chen K. Vijay-Shanker
Department of Computer and Information Sciences
University of Delaware
Newark, DE 19716, USA

{jchen,vijay }@cis.udel.edu

Abstract

The accuracy of statistical parsing models can be improved with the use of lexical information. Sta-
tistical parsing using Lexicalized tree adjoining grammar (LTAG), a kind of lexicalized grammar, has
remained relatively unexplored. We believe that is largely in part due to the absence of large corpora
accurately bracketed in terms of a perspicuous yet broad coverage LTAG. Our work attempts to alleviate
this difficulty. We extract different LTAGs from the Penn Treebank. We show that certain strategies
yield an improved extracted LTAG in terms of compactness, broad coverage, and supertagging accu-
racy. Furthermore, we perform a preliminary investigation in smoothing these grammars by means of an
external linguistic resource, namely, the tree families of an XTAG grammar, a hand built grammar of
English.

1 Introduction

Lexicalized grammars have been shown to be not only linguistically appealing but also desirable for
parsing disambiguation. For example, among others, [Charniak, 1996] and [Collins, 1996] have found
that lexicalizing a probabilistic model substantially increases parsing accuracy. As introduced in
[Schabes et al., 1988], lexicalized tree adjoining grammar (LTAG) is a lexicalized grammar formalism
in which lexical items are associated with sets of grammatical structures. [Resnik, 1992] shows that
parsing disambiguation can be aided by statistical knowledge of cooccurrence relationships between
LTAG structures. [Srinivas, 1997] and [Chen et al, 1999] show that considerable parsing disambigua-
tion is accomplished by assigning LTAG structures to words in the sentence using part of speech
tagging techniques (supertagging).

An LTAG grammar G and a means of estimating parameters associated with G are prerequisites
for probabilistic LTAG. [Schabes, 1992] shows how this may be done through grammar induction from
an unbracketed corpus. The number of parameters that must be estimated, however, is prohibitively
large for all but the most simple grammars. In contrast, [XTAG-Group, 1995] has developed XTAG,
a complex, relatively broad coverage grammar for English. It is difficult, however, to estimate pa-
rameters with XTAG because it has been verified to accurately parse only relatively small corpora,
such as the ATIS corpus. [Marcus et al, 1993] describes the Penn Treebank, a corpus of parsed sen-
tences that is large enough to estimate statistical parameters. From the treebank, [Srinivas, 1997]
heuristically derives a corpus of sentences where each word is annotated with an XTAG tree, thus
allowing statistical estimation of an LTAG. This method entails certain drawbacks: the heuristics
make several mistakes, some unavoidable because of discrepancies between how XTAG and the Penn
Treebank annotate the same grammatical constructions, or because XTAG does not cover all of the

65

S

= > Lo S foot node
NP VP substitution node
P
I~ D N\ O VP
y A S S o
v
(a) Prices also V () Prices also | V (C) IT | () |
| . also
Prices soared

soared soared

Figure 1: (a) Sentential structure (b) Sentential structure where nonterminals belonging to the same
trunk have been circled (c) Localizing argument dependencies in the same elementary tree (d) Each
instance of recursion is factored into a separate elementary tree.

grammatical phenomena found in the Penn Treebank. Furthermore, these corpus mistakes usually
propagate to the statistical model.

In this work, we explore extraction of an LTAG from the Penn Treebank. This allows us not
only to obtain a wide coverage LTAG but also one for which statistical parameters can be reliably
estimated. First, we develop various methods for extracting an LTAG from the treebank with the aim
of being consistent with current principles for developing LTAG grammars such as XTAG. Second, we
evaluate each grammar resulting from these methods in terms of its size, its coverage on unseen data,
and its supertagging performance. Third, we introduce a preliminary method to extend an extracted
grammar in order to improve coverage. Fourth, we situate our current work among other’s approaches
for tree extraction. Lastly, we present our conclusions and designs for future work.

2 Tree Extraction Procedure

In this section, we first describe the goals behind a tree extraction procedure and then describe the
tree extraction procedure and its variations.

An LTAG G is defined as a set of elementary trees T which are partitioned into a set I of initial
trees and a set A of auziliary trees. The frontier of each elementary tree is composed of a lexical
anchor; the other nodes on the frontier are substitution nodes, and, in the case of an auxiliary tree,
one node on the frontier will be a foot node. The foot node of a tree 3 is labeled identically with the
root node of 3. The spine of an auxiliary tree is the path from its root to its foot node. It is to be
distinguished from the trunk of an elementary tree which is the path from its root node to the lexical
anchor.

Although the formalism of LTAG allows wide latitude in how trees in 7" may be defined, sev-
eral linguistic principles generally guide their formation. First, dependencies, including long distance
dependencies, are typically localized in the same elementary tree by appropriate grouping of syntac-
tically or semantically related elements; i.e. complements of a lexical item are included in the same
tree as shown in Figure 1(c). Second, recursion is factored into separate auxiliary trees as shown in
Figure 1(d).

The genesis of a tree v lexicalized by a word w € S, where S is a bracketed sentence in the Penn
Treebank, using our tree extraction procedure proceeds as follows. First, a head percolation table is
used to determine the trunk of 7. Introduced in [Magerman, 1995], a head percolation table assigns
to each node in S a headword using local structural information. The trunk of v is defined to be

66

that path through S whose nodes are labeled with the headword w, examples of which are shown in
Figure 1(b). Each node n’ that is immediately dominated by a node 7 on the trunk may either be itself
on the trunk, a complement of the trunk’s headword—in which case it belongs to <y, or an adjunct of
the trunk’s headword—in which case it belongs to another (auxiliary) tree 8 which modifies +.

It is therefore necessary to determine a node’s status as a complement or adjunct. [Collins, 1997]
introduces a procedure which determines just this from the treebank according to the node’s label,
its semantic tags, and local structural information. As described in [Marcus et al., 1994], a node’s se-
mantic tags provide useful information in determining the node’s status, such as grammatical function
and semantic role. Our procedure for identifying complements or adjuncts closely follows the method
in [Collins, 1997]. The main differences lie in our attempt to treat those nodes as complements which
are typically localized in LTAG trees. A critical departure from [Collins, 1997] is in the treatment of
landing site of wh-movement. [Collins, 1997)’s procedure treats the NP landing site as the head and
its sibling (typically labelled S) as a complement. In our procedure for extracting LTAG trees, we
project from a lexical item up a path of heads. Then, by adopting [Collins, 1997]’s treatment, the
landing site would be on the path of projection and from our extraction procedure, the wh-movement
would not be localized. Hence, we treat the sibling (S node) of the landing site as the head child and
the NP landing site as a complement. Figure 4(c) shows an example of a lexicalized tree we extract
that localizes long-distance movement.

We have conducted experiments on two procedures for determining a node’s status as complement
or adjunct. The first procedure that we consider, “CA1,” uses the label and semantic tags of node 7
and 7’s parent in a two step procedure. In the first step, exactly this information is used as an index
into a manually constructed table, which determines complement or adjunct status. “IF current node
is PP-DIR AND parent node is VP THEN assign adjunct to current node” is an example of an entry
in this table. The table is sparse; should the index not be found in the table then the second step of
the procedure is invoked:

1. Nonterminal PRN is an adjunct.

2. Nonterminals with semantic tags NOM, DTV, LGS, PRD, PUT, SBJ are complements.
3. Nonterminals with semantic tags ADV, VOC, LOC, PRP are adjuncts.

4. If none of the other conditions apply, the nonterminal is an adjunct.

Whereas CA1 uses the label and semantic tags of a node 7 and its parent 7', the procedure described
in [Xia, 1999], “CA2,” uses the label and semantic tags of a node 7, its head sibling nn, and distance
between 7 and 7, in order to determine the complement or adjunct status of node . CA2 relies on
two manually constructed tables: an argument table and a tagset table. The argument table votes
for n being a complement given the label and semantic tags of 7 and 7, and the distance between
them. For example, if 7 is marked as NP, then the argument table votes for 7 if 7 is labeled VB and
if there is a less than four node separation between 7 and 7,. The tagset table votes for 1 being a
complement based on the semantic tags of n alone. If both the argument table and the tagset table
vote that n should be a complement, it is labeled as such. Otherwise, it is labeled as an adjunct.

A recursive procedure is used to extract trees bottom up given a particular treebank bracketing.
Figure 2(a) shows one step in this progess. Among all of the children of node 7),, one child 7
is selected using the head percolation table so that the trunk ¢ associated with 7; is extended to

67

S

n
n s VP s <
ADVP S
, VANV |~
ADVP NP-C ADVP ADVP S NP ADVP VP NP VP
S | | | T ey
RIB NIN RIB RlB NlN RIB ‘I’ Laer NN ADVP VP
. , . , | I I
Later prices drastically fell Later prices drastically fell prices RB v
(@) (b) () drastically fell

Figure 2: (a) Original Treebank bracketing with head sibling 7; and its parent 7, both on trunk of
headword “fell,” and siblings of 7; marked “-C” for complement or no annotation for adjunct. (b)
Extracted trees (c) Bracketing as defined from extracted trees.

NP
/\
NP NP DlT DL
DT(NWP CC NNP) NNP NNPCC NNP NNP S NTP
/'\
I " l .. | l NNP CC NNPcommision
the securities and exchange commision and exchange | | I
securities and exchange
(a) (b) (©

Figure 3: (a) Treebank bracketing of conjunction where instance of conjunction is circled (b) Trees
extracted from conjunct (c) Bracketing as defined from extracted trees

n2. m1’s siblings are subsequently marked as either complement or adjunct. Complement nodes are
attached to trunk ¢ and the trees that they dominate become initial trees. Adjuncts are factored into
auxiliary trees such that those farthest from 7; adjoin to 72 and those closest to 7; adjoin to 7, as
seen in Figure 2(b). These are modifier auxiliary trees, not predicative auxiliary trees, which will be
discussed later. Although the structure that is defined by the resulting grammar may differ from the
original bracketing (see Figure 2(c)), none of the modified bracketings contradicts those in the original
Treebank structure, unlike the heuristically derived corpus used by [Srinivas, 1997]. This is important
for our goal of ultimately comparing a parser based on this grammar to others’ parsers trained on the
Penn Treebank. This factoring tends to reduce the number of trees in the resulting grammar. For
example, the extracted trees in Figure 2(b) can be used to represent not only “Later prices drastically
fell” but other sentences such as “Prices fell” and “Later prices fell.”

Our tree extraction procedure also factors the recursion that is found in conjunction. Conjunction
in the Treebank is represented as a flat structure such as Figure 3(a). We define an instance of
conjunction to be a sequence of siblings in the tree ((X)1 (,)2 (X)2 ... (CC)r (X)i) where (,);,
(X);, and (CC); are labels of the siblings, and there are k conjuncts. This follows from a basic
linguistic notion which states that only like categories can be conjoined. When this configuration
occurs in a Treebank bracketing, each pair ((,):; (X);) (or ((CC)x (X)&)) is factored into elementary
trees as follows. The (,);th (or (CC)ith) sibling anchors an auxiliary tree 8 representing the ith
(kth) conjunct. The (X);th (or (X)th) sibling anchors an elementary tree that substitutes into 8.
See Figure 3(b) for an example where k¥ = 1. After factoring of recursion found in the conjunction
and in the adjuncts of Figure 3(a), the tree extraction procedure returns a grammar that defines the

68

structure in Figure 3(c).

This only considers conjunction of like categories. Although most conjunction is of this nature, it
sometimes occurs that constituents with unlike categories are conjoined. In the Penn Treebank, these
are annotated with the nonterminal label UCP. Although our current tree extraction procedure does
not treat these cases specially as conjunction, a similar strategy may be employed that does so, and

in any case they are quite rare.

The commas that were found in instances of conjunction were only one example of numerous cases
of punctuation that are found in the treebank. In general, these are treated the same as adjuncts. On
the other hand, it was found difficult to form a coherent strategy for dealing with quotes. Many times,
an open quote would be found in one sentence and the closed quote would be found in an entirely
different sentence. Therefore, we chose the simple strategy that quotes would anchor auxiliary trees
that would adjoin to a neighboring sibling, namely, that sibling that was closer to the head sibling.

The Penn Treebank has an extensive list of empty elements which are used to define phenomena
that are not usually expressed in LTAG. Among these are *U*, expressing a currency value, and
ICH, indicating constituency relationships between discontinuous constituents. This observation
led us to try two different strategies to cope with empty elements. The first strategy “ALL” is to
include all empty elements in the grammar. The second strategy “SOME?” is to only include empty
elements demarcating empty subjects (0), empty PRO and passive NP trace (*), and traces (¥*T*) of
syntactic movement; these are usually found in LTAG grammars of English.

The set of nonterminal and terminal labels in the Penn Treebank is quite extensive. A large set
generally means that a greater number of trees are extracted from the Treebank; these trees could
miss some generalization and exacerbate the sparse data problem of any statistical model based on
them. Also, some nonterminal labels are superfluous because they indicate structural configurations.
For example, NX is used to label nodes in the internal structure of multi-word NP conjuncts inside
an encompassing NP. If NX were replaced by NP, the tree extraction procedure can still determine
that an instance of conjunction exists and take appropriate action. On the other hand, distinctions
that are made in a larger set of labels may aid the statistical model. For these reasons, we evaluated
two different strategies. One strategy, “FULL,” uses the original Penn Treebank label set. Another
strategy, “M ERGED,” uses a reduced set of labels. In the latter approach, the original set is mapped
onto a label set similar to that used in the XTAG grammar ([XTAG-Group, 1995]). In our approach,
headedness and status as complement or adjunct was first determined according to the full set of

labels before the trees were relabeled to the reduced set of labels.

Besides modifier auxiliary trees, there are predicative auxiliary trees which are generated as follows.
During the bottom up extraction of trees, suppose trunk ¢ has a node 7 that shares the same label
as another node 7', where ' is a complement, not on @, but is immediately dominated by a node on
¢. In this case, a predicative auxiliary tree is extracted where 7 is its root, n' is its foot and with
¢ serving as its trunk. Subsequently, the path ¢’ dominated by 7’ becomes a candidate for being
extended further. See Figure 4(a). This mechanism works in concert with other parts of our tree
extraction procedure (notably complement and adjunct identification, merging of nonterminal labels
(from SBAR to S), and policy of handling empty elements) in order to produce trees that localize

long distance movement as shown in Figure 4(c).

69

WHNP-2 S
_" —
The effect'NP NP S
o T
s NP S
I o
Nﬁp -NONE- NP VP
A 1 S
Vs 0 ‘l' NIP
|
- has -NONE-
@ e i/ ®) sy (©) ,
oo has -NONE or*
B L ¥)

Figure 4 (a) Predicative auxiliary tree associated with ¢ is factored out because nodes n and 7' have
the same label, leaving trunk ¢' to be extended to capture long distance movement. (b) The extracted
predictive auxiliary tree (c) The tree showing long distance movement

Comp Empty Label Grammar Size

Adjunct | Elements | Set Frames | Lexicalized Trees
CAl ALL FULL 8996 118333
CAl ALL MERGED 5165 111220
CAl SOME FULL 8623 117527
CAl SOME MERGED 4911 110428
CA2 ALL FULL 5354 116326
CA2 ALL MERGED 2632 108370
CA2 SOME FULL 4936 115335
CA2 SOME MERGED 2366 107387

Table 1: Size of various extracted grammars in number of tree frames and number of lexicalized trees

3 Evaluation

Each variation of tree extraction procedure was used to extract a grammar from Sections 02-21 of
the Penn Treebank. These grammars were evaluated according to size, well formedness of trees, their
coverage on Section 22, and their performance in supertagging Section 22. We subsequently evaluated
truncated forms of these grammars which we term cutoff grammars.

The grammars’ sizes in terms of number of lexicalized trees and tree frames are shown in Table 1.
Removing the anchor from a lexicalized tree yields a tree frame. In terms of different tree extraction
strategies, MERGED yields more compact grammars than FULL, SOME more than ALL, and CA2
more than CAl. Perhaps the last dichotomy requires more of an explanation. Basically, CA2 factors
more nodes into auxiliary trees, with the result being that there are fewer trees because each one is
structurally simpler.

We may also qualitatively judge grammars according to how well they satisfy our goal of extracting
well formed trees in the sense of selecting the appropriate domain of locality and factoring recursion
when necessary. There is not much difference between SOME and ALL because the empty elements
that SOME ignores are the ones that are not usually captured by any LTAG grammar. Likewise,
there is little difference between MERGED and FULL because most of MERGE’s label simplification
does not occur until after completion of tree extraction. The main difference lies between CA1l and

70

S

NP VP \ PN
e G/\PP b NP VP NP \-;P
S&P 500 pit VB ADJP-PRD \
(a) - (b) S © y
being RB 1 | |
being being

uncharacteristically circumspect

Figure 5: (a) Bracketed sentence S (b) Lexicalized tree extracted from S using strategy CAl (c)
Lexicalized tree extracted from S using strategy CA2

Comp | Empty | Label % found % miss Supertag Cutoff
Adj Elemt | Set frames | lex trees | in dict | not in dict || Accuracy | Accuracy
CAl ALL FULL 99.56 91.57 5.67 2.76 77.79 77.85
CAl1 | ALL MERGED 99.82 92.18 5.06 2.76 78.70 78.57
CAl | SOME | FULL 99.60 91.66 5.58 2.76 78.00 78.07
CAl SOME | MERGED 99.83 92.27 4.98 2.76 78.90 78.78
CA2 ALL FULL 99.80 92.05 5.19 2.76 77.85 77.79
CA2 | ALL MERGED 99.94 92.71 4.53 2.76 78.25 78.25
CA2 SOME | FULL 99.83 92.14 5.10 2.76 78.07 78.08
CA2 | SOME | MERGED 99.96 92.80 4.44 2.76 78.55 78.50

Table 2: Coverage of various extracted grammars and their corresponding supertagging performance.
Coverage is in terms of percentage of tree frames and lexicalized trees in the test corpus. Missed
coverage is divided into in dict—word seen in training corpus and not in dict—word not seen in
training corpus. Supertagging performance is based on either the full grammar or cutoff grammar,
cutoff value k = 3.

CA2, strategies for labeling complements and adjuncts.

Nodes detected as complements of a particular lexical item belong in the same elementary tree,
thus satisfying the criterion of localizing dependencies. We believe that CA1l labels nodes closer to
what is traditionally found in LTAG grammars such as XTAG than does CA2, in that use of CA2 will
generate less appropriate subcategorization frames because it tends to factor what might be considered
as complements into separate auxiliary trees. It is difficult, however, to quantify the degree to which
strategies CA1 and CA2 are successful in distinguishing complements from adjuncts because there
are no precise definitions of these terms. Here we resign ourselves to a qualitative comparison of an
example of a lexicalized tree extracted from the same sentence by a CAl derived grammar G; (CAl-
SOME-MERGED) and a CA2 derived grammar G2 (CA2-SOME-MERGED). First, a tree frame F
is selected from G; that is absent from G5. A bracketed sentence S out of which the CAl approach
extracts F' is then culled from the training corpus at random. Figure 5(a) shows S, (b) shows the tree
corresponding to the main verb extracted to G, (c) shows the tree corresponding to the main verb
extracted to Ga. It is typical of the examples of divergence between CAl and CA2 derived grammars:
the CA1 approach leads to a verb subcategorization that is more complicated, yet more appropriate.

The various extracted grammars may also be evaluated according to breadth of coverage. In order to
evaluate coverage of a particular grammar G, the strategy used to produce G was used to produce trees
from held out data. We subsequently determined the degree of coverage of that strategy by the overlap
in terms of tree frames and lexicalized trees as shown in Table 2. For lexicalized trees t extracted
from held-out data such that ¢t ¢ G, we also show the percentage of time the lezical anchors of such

trees t were or were not found in the training corpus (column in dict and not in dict respectively). For

71

Number of Tree Frames in Extracted Grammar whose Frequency Equals or Exceeds Cutoff Value
9000 T T T T T T T

CA1-ALL-FULL -o—
CA1-ALL-MERGED -+-
CA1-SOME-FULL -8-- 4
CA1-SOME-MERGED -3
CA2-ALL-FULL -~
CA2-ALL-MERGED -*---
CA2-SOME-MERGED -o--- 7

8000

7000

Number of Tree Frames

5
Cutoff Value

Figure 6: Number of tree frames occurring k times or more in the training corpus

example, the first row of Table 2 reports that use of strategy CA1-ALL-FULL resulted in a grammar
such that 99.56% of instances of tree frames in held out data were available in the grammar, and
91.57% of instances of lexicalized trees in held out data were found in the grammar. Of the remaining
8.43%, 2.76% (not in dict) of the lexicalized trees in the held out data involved words not seen in the
training corpus. The remaining 5.67% therefore are anchored by words in the training corpus but the
corresponding associations of tree frames and lexical items were not made in the training corpus. The
table shows that strategies that reduce the number of extracted trees (SOME, CA2, MERGED) tend

to also increase coverage.

We also measure the accuracies of supertagging models which are based on the various grammars
that we are evaluating. Results are shown in Table 2. Curiously, the grammars whose associated
models achieved the highest accuracies did not also have the highest coverage. For example, CAl-
SOME-MERGED beat CA2-SOME-MERGED in terms of accuracy of supertagging model although
the latter achieved higher coverage. This could possibly be caused by the fact that a high coverage
grammar might have been obtained because it doesn’t distinguish between contexts on which a sta-
tistical model can make distinctions. Alternatively, the cause may lie in the fact that a particular
grammar makes better (linguistic) generalizations on which a statistical model can base more accurate

predictions.

A large grammar may lead to a statistical model that is prohibitively expensive to run in terms
of space and time resources. Furthermore, it is difficult to obtain accurate estimates of statistical
parameters of trees with low counts. And, in any case, trees that only infrequently appear in the
training corpus are also unlikely to appear in the test corpus. For these reasons, we considered the
effect on a grammar if we removed those tree frames that occurred less than k times, for some cutoff
value k. We call these cutoff grammars. As shown in Figure 6, even low values for k yield substantial

72

N N N
S NP S NP S NP S
N N N
NP VP NP VP NP VP NP VP
P
V NP V NP V NP VvV PP
| I N
€ € P NP
Declarative Topicalized Relative Clause Passive

Figure 7: Some trees that are found in an XTAG tree family corresponding to transitive verbs

decreases in grammar size.

Even though a cutoff grammar may be small in size, perhaps a statistical model based on such a
grammar would degrade unacceptably in its accuracy. In order to see if this could indeed be the case,
we trained and tested the supertagging model on various cutoff grammars. In the training data for
these supertagging models, if a particular full grammar suggested a certain tree ¢; for word w;, but
the cutoff grammar did not include ¢; then word w; was tagged as miss. The cutoff value of k£ = 3
was chosen in order to reduce the size of all of the original grammars at least in half. By the results
shown in Table 2, it can be seen that use of a cutoff grammar instead of a full extracted grammar
makes essentially no difference in the accuracy of the resulting supertagging model.

4 Extended Extracted Grammars

The grammars that have been produced with the tree extraction procedure suffer from sparse data
problems as shown in Table 2 by the less than perfect coverage that these grammars achieve on the
test corpus. This is perhaps one reason for the relatively low accuracies that supertagging models
based on these grammars achieve compared to, for example, [Srinivas, 1997] and [Chen et al., 1999].
Many approaches may be investigated in order to improve the coverage. For example, although XTAG
may be inadequate to entirely cover the Penn Treebank, it may be sufficient to ameliorate sparse data.
Here we discuss how linguistic information as encoded in XTAG tree families may be used for this
purpose and deliver some preliminary results.

[XTAG-Group, 1995] explains that the tree frames anchored by verbs in the XTAG grammar are
divided into tree families. Each tree family corresponds to a particular subcategorization frame. The
trees in a given tree family correspond to various syntactic transformations as shown in Figure 7.
Hence, if a word w; is seen in the training corpus with a particular tree frame ¢;, then it is likely for
word w; to appear with other tree frames ¢t € T' where T is the tree family to which ¢; belongs.

This observation forms the basis of our experiment. The extracted grammar Gy derived from CAl-
SOME-MERGED was selected for this experiment. Call the extended grammar G;. Initially, all of
the trees ¢t € Go are inserted into G;. Subsequently, for each lexicalized tree t € Gy, lexicalized trees
t' are added to G; such that ¢ and t' share the same lexical anchor and the tree frames of ¢ and ¢'
belong to the same tree family. Out of approximately 60 XTAG tree families, those tree families that
were considered in this experiment were those corresponding to relatively common subcategorization
frames including intransitive, NP, PP, S, NP-NP, NP-PP and NP-S.

We achieved the following results. Recall that in Table 2 we divided the lapses in coverage of a
particular extracted grammar into two categories: those cases where a word in the test corpus was
not seen in the training corpus (not in dict), and those cases where the word in the test corpus was
seen in training, but not with the appropriate tree frame (in dict). Because our procedure deals only

73

with reducing the latter kind of error, we report results from the latter’s frame of reference. Using
grammar Gy, the in dict lapse in coverage occurs 4.98% of the time whereas using grammar G, such
lapses occur 4.61% of the time, an improvement of about 7.4%. This improvement must be balanced
against the increase in grammar size. Grammar Gy has 4900 tree frames and 114850 lexicalized trees.
In comparison, grammar G; has 4999 tree frames and 372262 lexicalized trees.

The results are somewhat encouraging and we believe that there are several avenues for improve-
ment. The number of lexicalized trees in the extended extracted grammar can be reduced if we account
for morphological information. For example, a verb “drove” cannot occur in passive forms. Instead of
capitalizing on this distinction, our current procedure simply associates all of the tree frames in the
transitive tree family with “drove.” In related work, we are currently conducting an experiment to
quantitatively extract a measure of similarity between pairs of supertags (tree frames) by taking into
account the distribution of the supertags with words that anchor them. When a particular supertag-
word combination does not appear in the training corpus, instead of assigning it a zero probability, we
assign a probability that is obtained by considering similar supertags and their probability of being
assigned with this word. This method seems to give promising results, circumventing the need for
manually designed heuristics such as those found in the supertagging work of [Srinivas, 1997] and
[Chen et al., 1999]. We plan to apply this strategy to our extracted grammar and verify if similar
improvements in supertagging accuracy can be obtained.

5 Related Work

[Neumann, 1998] presents a method for extracting an LTAG from a treebank. Like our work,
[Neumann, 1998] determines the trunks of elementary trees by finding paths in the tree with
the same headword, headwords being determined by a head percolation table. Unlike our work,
[Neumann, 1998] factors neither adjuncts nor instances of conjunction into auxiliary trees. As a result,
[Neumann, 1998]’s method generates many more trees than we do. Using only Sections 02 through 04
of the Penn Treebank, [Neumann, 1998] produces about 12000 tree frames. Qur approaches produces
about 2000 to 9000 tree frames using Sections 02-21 of the Penn Treebank.

[Xia, 1999] also presents work in extracting an LTAG for a treebank, work that was done in parallel
with our own work. Like our work, [Xia, 1999] determines the trunk of elementary trees by finding
paths in the tree with the same headword. Furthermore, [Xia, 1999] factors adjuncts (according to
CA2 only) into separate auxiliary trees. Also, following our suggestion [Xia, 1999] factors instances
of conjunction into separate auxiliary trees. [Xia, 1999]’s approach yields either 3000 or 6000 tree
frames using Sections 02-21 of the Penn Treebank, depending on the preterminal tagset used. Our
work explores a wider variety of parameters in the extraction of trees, yielding grammars that have
between about 2000 to 9000 tree frames on the same training data. Unlike our work in the extraction
of an LTAG, [Xia, 1999] extracts a multi-component LTAG through coindexation of traces in the
Penn Treebank. Another difference is that [Xia, 1999] is more concerned with extraction of grammar
for the purpose of grammar development (for which [Xia, 1999] for example makes the distinction
between extracted tree frames that are grammatically correct and those that are incorrect), whereas
our current work in extraction of grammar betrays our ultimate interest in developing statistical
models for parsing (for which we perform an investigation of coverage, supertagging accuracy, effect
of cutoff frequency, as well as explore the issue of extending extracted grammars using XTAG tree

families for eventual use in statistical smoothing).

74

This work raises the question as to how parsing with LTAG may compare to parsing where the
model is based on a lexicalized context free formalism. Both recent work in parsing with lexicalized
models and LTAG appear to manipulate basically the same kinds of information. Indeed, only a
few trees in our extracted grammars from the Penn Treebank have the form to cause the generative
capacity of the grammars to exceed those of lexicalized context free grammars. The work presented
here makes it possible to see how a statistical parsing model based on an LTAG compares with models
based on lexicalized context free grammars. Furthermore, supertagging as a preprocessing step may
be used to improve the efficiency of a parsing using a statistical model based on an LTAG. We plan
to explore these issues in future research.

6 Conclusions

Our work presents some new directions in both the extraction of an LTAG from the Penn Treebank as
well as its application to statistical models. In the extraction of an LTAG from the Penn Treebank, we
have extended [Neumann, 1998]’s procedure to produce less unwieldy grammars by factoring recursion
that is found in adjuncts as well as in instances of conjunction. We have explored the effects that
different definitions of complement and adjunct, whether or not to ignore empty elements, and extent
of label sets have on the quality and size of the extracted grammar, as well as ability to cover an unseen
test corpus. We have also evaluated those grammars according to supertagging accuracy. We have
experimented with the notion of cutoff grammar, and seen that these grammars are more compact
and yet yield little in the way of supertagging accuracy. We have introduced a preliminary technique
for extending an extracted grammar using an external resource, namely, the tree families of XTAG.
We have seen that this technique expands the coverage of an extracted grammar, and discussed how
this technique may be developed in order to achieve better results.

There are a number of ways to extend this work of extracting an LTAG from the Penn Treebank.
Because our goal is to develop a grammar around which to base statistical models of parsing, we are
in particular interested in better procedures for extending the extracted grammars. Besides merely
extending a grammar, it is also necessary to develop a method for estimating how often trees that are
unseen in the training corpus, but are part of the extended grammar, are expected to occur in test
data. After such issues are resolved, the extracted grammar could be used in a probabilistic model
for LTAG, as delineated by [Schabes, 1992] and [Resnik, 1992]. This would provide not only another
means of comparing different varieties of extracted grammar, but would also allow comparison of
LTAG parsing against the many other lexicalized parsing models mentioned in the introduction.

Acknowledgements

This work was supported by NSF grants #SBR-9710411 and #GER-9354869.

References

[Charniak, 1996] Charniak, E. (1996). Tree-bank grammars. Technical Report CS-96-02, Brown

University, Providence, RI.

75

[Chen et al., 1999] Chen, J., Bangalore, S., and Vijay-Shanker, K. (1999). New models for improving
supertag disambiguation. In Proceedings of the 9th Conference of the European Chapter of the
Association for Computational Linguistics, Bergen, Norway.

[Collins, 1996] Collins, M. (1996). A new statistical parser based on bigram lexical dependencies. In
Proceedings of the 34th Annual Meeting of the Association for Computational Linguistics.

[Collins, 1997] Collins, M. (1997). Three generative lexicalized models for statistical parsing. In
Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics.

[Magerman, 1995] Magerman, D. M. (1995). Statistical decision-tree models for parsing. In Proceed-
ings of the 33th Annual Meeting of the Association for Computational Linguistics.

[Marcus et al., 1994] Marcus, M., Kim, G., Mary, Marcinkiewicz, MacIntyre, R., Bies, A., Ferguson,
M., Katz, K., and Schasberger, B. (1994). The penn treebank: Annotating predicate argument
structure. In Proceedings of the 1994 Human Language Technology Workshop, pages 110-115.

[Marcus et al., 1993] Marcus, M., Santorini, B., and Marcinkiewicz, M. A. (1993). Building a large
annotated corpus of english: the penn treebank. Computational Linguistics, 19(2):313-330.

[Neumann, 1998] Neumann, G. (1998). Automatic extraction of stochastic lexicalized tree grammars
from treebanks. In Proceedings of the Fourth International Workshop on Tree Adjoining Grammars
and Related Frameworks, pages 120-123.

[Resnik, 1992] Resnik, P. (1992). Probabilistic tree-adjoining grammar as a framework for statistical
natural language processing. In Fifteenth International Conference on Computational Linguistics
(COLING 92), pages 418-424.

[Schabes, 1992] Schabes, Y. (1992). Stochastic lexicalized tree-adjoining grammars. In Fifteenth
International Conference on Computational Linguistics (COLING 92), pages 426-432.

[Schabes et al., 1988] Schabes, Y., Abeillé, A., and Joshi, A. K. (1988). Parsing strategies with ‘lexi-
calized’ grammars: Application to tree adjoining grammars. In Proceedings of the 12th International
Conference on Computational Linguistics, Budapest, Hungary.

[Srinivas, 1997] Srinivas, B. (1997). Performance evaluation of supertagging for partial parsing. In
Proceedings of the Fifth International Workshop on Parsing Technologies, pages 187-198, Cam-
bridge, MA.

[Xia, 1999] Xia, F. (1999). Extracting tree adjoining grammars from bracketed corpora. In Fifth
Natural Language Processing Pacific Rim Symposium (NLPRS-99), Beijing, China.

[XTAG-Group, 1995] XTAG-Group, T. (1995). A Lexicalized Tree Adjoining Grammar for En-
glish. Technical Report IRCS 95-03, University of Pennsylvania. Updated version available at
http://www.cis.upenn.edu/ "xtag/tr/tech-report.html.

76

FROM CASES TO RULES AND VICE VERSA:
ROBUST PRACTICAL PARSING WITH ANALOGY

Alex Chengyu Fang
Department of Phonetics and Linguistics
University College London
Wolfson House, 4 Stephenson Way
London NW1 2HE, England

alex @phon.uclac.uk

This article describes the architecture of the Survey Parser and discusses two major components related to the
analogy-based parsing of unrestricted English. Firstly, it discusses the automatic generation of a large
declarative formal grammar from a corpus that has been syntactically analysed. Secondly, it describes
analogy-based parsing that employs both the automatically learned rules and the database of cases to
determine the syntactic structure of the input string. Statistics are presented to characterise the performance of

the parsing system.

1 Introduction

As the title indicates, this article describes two components related to the parsing of unrestricted English. Firstly, it
discusses the automatic generation of a large declarative formal grammar from a collection of pre-analysed
sentences of English. Secondly, it describes a parsing methodology that employs both the automatically learned
rules and the database of cases to determine the syntactic structure of the input string. The discussions will be based
on the Survey Parser that has been implemented by the author (Fang 1996a), in the course of which some of the
statistics will be presented to characterise the parsing approach to be reported here.

1.1 Background

In 1993-1996, the Survey of English Usage of University College London was engaged in the machine-aided
syntactic analysis of the mega-word British Component of the International Corpus of English (ICE-GB;
Greenbaum 1988 and 1996). The corpus comprises 600,000 words of transcribed speech and 400,000 words of
writing. The analysis of the corpus included wordclass tagging and syntactic parsing. Each word in the corpus is
assigned a contextually appropriate tag from a set of 270 grammatically possible tag-feature combinations. The
parsing scheme specifies the analysis for the category names (covering the clause and the canonical phrases) and
their syntactic functions such as subject, verb, and direct object. Both the tagging and parsing schemes were based
on work by the TOSCA group of Nijmegen University, the Netherlands (Oostdijk 1991) but substantially modified
for the project. ICE-GB initially used a parser that required certain amount of manual pre-processing of the input
text. For instance, all cases of coordination had to be manually marked and indicated. The parser then produced all
the possible analyses for each sentence, one of which was to be selected and modified if necessary as the correct
representation of the constituent structure. About 70% of the corpus was parsed before it became clear in 1995 that
the residue represented syntactic constructions beyond the capability of the parser. A parser that I had been
developing since 1994 was used instead. Together with a Windows-based graphic tree editor, the parser completed

77

the analysis of the corpus in 1996. It is now known as the Survey Parser, whose further development was supported
in 1995 for two years by the Engineering and Physical Sciences Research Council, UK.

1.2 Design Requirements

Because of the specific needs arising from the analyses of the ICE corpus, the design of the Survey Parser was

conditioned by the following requirements:

e Speed — The project required that input strings be batch parsed overnight so that researchers could supervise and
modify the analyses the following day. Since each researcher was assigned several texts a time and since there
were about six such people, the parser was typically required to batch parse about 20 texts at a time, which
represented 40,000 words. In addition, because of the correction of wrong wordclass tags, researchers needed to

frequently reparse individual sentences.

® Robustness — Because of the unsupervised batch parsing overnight of unrestricted English, the parser was
required to be capable of handling situations where the input string represents linguistic constructions beyond the
descriptive power of the formal grammar. In practice, the parser should be robust enough to produce a partial
analysis when a complete parse could not be achieved.

e One analysis per input string — The experience was that it took shorter for the researcher to modify one incorrect
analysis than to select from a number of possible analyses. This required the parser to produce one analysis that
entails minimal manual intervention. To achieve this, the parser should either ensure that the first solution is a
good one or be able to compute the best analysis from the competing ones.

o Ability to adapt to new grammatical constructions — The parser should be able to ‘learn’ and generalise about
new grammatical constructions not described by the current grammar. In practice, this meant that the parser

should be able to analyse a similar construction once the construction was manually analysed.
1.3 Analogy-Based Parsing

The parsing approach adopted in the Survey Parser seems to meet the above requirements. Briefly speaking, the
parsing methodology may be roughly described as analogy-based, variously discussed under case-, explanation-, and
example-based learning (Mitchell et al 1986; Minton 1988; van Harmelen and Bundy 1988; Knodner 1993). In the
light of analogy-based approach to problem solving, solutions to old problems can be used for new but similar
problems. In terms of parsing, this approach is conceptually very simple: given a database of input strings that have
already been syntactically analysed, the parsing of a new string is seen as identifying a same or similar case in the
database. Once the similarity is established, the analysis stored in the database is then transferred onto the new input
string. This approach to parsing has been explored by Samuelsson and Rayner (1991), Neumann (1994), Samuelsson
(1994), and Srinivas and Joshi (1995).

Such a parsing methodology requires a collection of syntactically analysed sentences as a case base and a
mechanism to establish the similarity between the input string and one of the cases. Since a string may be
represented as a sequence of words, a sequence of wordclass tags, or a sequence of grammatical phrases, there are
three obvious options to establish such similarity: Two sentences are judged as structurally identical or similar if
there is an exact match in terms of lexical items, wordclass tags, or phrases. Intuitively, these three matching criteria
have different levels of generalisability or coverage. The use of wordclass tags as a measurement of similarity, for
instance, should have a higher chance of finding a match than the use of lexical items because of the data sparsity
problem that is typically related to word sequences, a problem that has been extensively addressed within the speech

78

recognition community. The use of phrase sequence will, in turn, represent a more generalised model to measure
sentence similarities. A related problem, however, is that a more general model tends to produce less reliable
similarity indications. A match at the phrase level is less a guarantee than a match at the wordclass level that the two
sentences are structurally similar or identical. The simple phrase sequence NP VP NP, for example, has at least three
different syntactic structures according to the ICE-GB scheme. Thus a practical issue in analogy-based parsing is to
increase the coverage of the case base while maintaining an acceptable degree of confidence that the retrieved
syntactic structure is a good one.

1.4 An Overview of the Survey Parser

Generally put, the Survey Parser establishes N

Wordclass Tags

analogy or similarity between the input string Analysis
and a case in the knowledge base through a

match at the phrase level. To ensure an

Wordclass
Probability

acceptable degree of confidence, the phrase

Phrasal

Syntactically Analysis

Analysed
Corpus

sequence is constrained by features inherited
from the lexical properties of the head. The

Knowledge Base

parser has two major components. The first is

the syntactic knowledge base constructed on
Phrase

the basis of the syntactically analysed ICE-GB, e :r::r;:l's Types

from which we may automatically extract bi-
gram wordclass transitional probability, Figure 1: The major components in the Survey Parser
phrasal rules anchored to wordclass tags or
terminal symbols, and clausal rules anchored to phrase types. Each phrasal or clausal rewrite rule is associated to a
tree structure. The parsing component comprises wordclass analysis (tagging), phrasal analysis, and clausal analysis.
The stochastically selected tags serve as indexes that allow for the retrieval of a sub-tree for any phrase identified by
the phrasal rules in a left-to-right longest match manner. At the stage of clausal analysis, phrase types are used as
indexes to identify a similar clause and retrieve the tree structure as the proposal analysis for the input string. When
the process fails to find an identical clause from the database, the sequence of phrases with their internal structures
analysed is treated as an intermediate or partial analysis. The architecture described above is illustrated by Figure 1,
where double arrows indicate system queries to components of the knowledge base.

The following discussions will be divided into three parts. I shall first of all describe the construction of the
database, which is a process of automatic extraction of syntactic rules. I shall then describe the various analyses
performed on the input string, including wordclass tagging and phrasal and clausal analyses. Finally, statistics will

be presented to characterise the performance.

2 The Construction of the Syntactic Knowledge Base'

The syntactic knowledge base consists of two components: phrase structure (PS) rules and phrase structure cluster
(PSC) rules. The purpose of PS rules is to analyse sequences of wordclass tags into grammatical phrases, while PSC
rules mainly handles sequences of grammatical phrases and assigns the final hierarchical structure.

See also Fang (1996c¢) for additional information.

79

2.1 Phrase Structure Rules

PS rules determine the analysis of wordclass sequences into phrases including noun phrases (NP), verb phrases
(VP), adjective phrases (AJP), adverb phrase (AVP), and prepositional phrase (PP). The automatic generation of
such rules is achieved by collecting all the tags as terminal symbols attributed to a particular phrase. Since the
syntactic analyses of ICE-GB explicitly specify the boundaries of constituent structures as well as their syntactic
functions, the extraction is a fairly straightforward matter. As a general rule, complementation and post-modification
are not included. Thus, for instance, PS rules describing NPs all terminate at the head of the phrase; similarly those
describing VPs all terminate at the main verb. Differently, however, PS rules for PPs cover the complete span of the

phrase. Here is an example illustrating the extracting process.

(1]

And it’s a very nice group to be working with because it’s not too large

The syntactic tree for [1] is graphically represented in Figure 2, where each constituent has two elements of
description, the first being the name of syntactic function and the second that of category type. Thus, su Ne() is
interpreted as “noun phrase functioning as clausal subject”. As another example, AVHD CONNEC (ge) {And} isread
as “lexical item And is a general connective and functions as the head of the adverb phrase”.

indi A Adverbial PRON Pronoun
---PU CL (main, act,decl, indic,cop, pres, unm, ¥
= B i AVP () 1oPP) act Active PRTCL Particle
ADJ Adjective PU Parsing unit
| — AVHD CONNEC(ge) {And} ADV_ Adverb SBHD SUBP head
E—SU NP () AJHD AJP head sing Singular
E {—NPHD PRON(pers,sing) {it) AJP Adjective phrase su Subject
B—VB VP (act, indic, cop, pres) AJPR AJP pre-modifier -su Without subject
_mVB V(cop, pres,encl) {'s) ART Article sus Subordination
‘ ’ attru Attributive sub With subordinator
E3--CS NP () AUX Auxiliary subord Subordinating
E}-—DT DTP() AVHD AVP phrase SUBP SUB phrase
i i-..DTCE ART(indef) {a) AVP Adverb phrase TO Infinitive marker to
o NPPR AJP (attru) g;-m gff#:o . :Jlnm Snrgarked order
i erl
| E]“" s L afen) CONNEC Connector VB Verbal
I i L.—AVHD ADV(inten) {very) cop Copula VP Verb phrase
: i—. AJHD ADJ(ge) (nice) CSs Subject complement
i...NPHD N(com,sing) {group) decl Declarative
i =L def Definite
&-~NPPO CL (depend,-su,act, indic, infin, intr, unm, zero)
[_..TO PRTCL(to) {to) depend Depend_ent clause
DT Determiner
E-«-VB. VP (act, indic, infin, intr, prog) DTCE Central determiner
§u_~ OP AUX(prog,infin) (be) DTP DT phrase
i i...MVB V(intr, ingp) (working)} encl Enclitic
El--i PP() ge General
S T h indef Indefinite
- (phras) (with} indic Indicative
E--A CL(depend, act, indic,cop, pres, sub, unm) ingp Present participial
E}- SUB SUBP() inten Intensifying
| !_.SBHD CONJUNC (subord) {because)} intr wl"_aﬂsliﬁve
main ain clause
?—"Sug NPI\(I:JHD PRON)) MVB Main verb
i (pers,sing) {it} NP Noun phrase
E}--VB VP(act, indic, cop, pres) NPHD NP head
] {__.MVB V(cop,pres,encl) {'s) NPPO NP post-modifier
E’ A Avp(ge) NPPR NP pre-modifier
[AVHD ADV(ge) {not} op Operator
H pers Personal
& csv AJP (prd) phras Phrasal
a---AJPR AVP (inten) PP Prepositional phrase
! L.~ AVHD ADV(inten) {too} pres Present tense
L. AJHD ADJ(ge) {large) prog Progressive

From the analysis of [1], PS rules for the five major phrases can be extracted and stored in the syntactic knowledge
base. Each rule comprises a sequence of wordclass tags and is associated to a constituent structure that specifies the

Figure 2: The tree structure for Example [1]

analysis of the sequence. Table 1 illustrates such rules from [1].

80

Phrase Rule Associated constituent structure Example
E}--— AJP (prd)
AJP ADV (inten) BJ--AJPR AVP (inten) too
ADJ (ge) L.—AVHD ADV(inten) {-) large
iw—.AJHD ADJ(ge) {(-)
B~ AVP()
CONNEC (ge) L_ AVHD CONNEC(ge) (-} furthermore
AV B--- AVP(ge)
o ge .
ADV(ge) L_AVHD ADV(ge) (-} briefly
) B~ NP() .
PRON (pers, sing) L...NPHD PRON(pers,sing) (-) it
-~ NP
E}--DT DTP()
NP ART (indef) L. DTCE ART(indef) (-} a
ADV (inten) -NPPR AJP (attru) very
ADJ (ge) E}—»A-{PR AVP (inten) nice
N(com, sing) i.—AVHD ADV(inten) (-} group
L_AJHD ADJ(ge) (-}
NPHD N(com,sing) {(-)
B-—- PP() .
PP PREP (phras) L_P PREP(phras) (-) with
8—- YP(acc, indic, cop, pres)
V(cop,pres,encl) L_.MVB V(cop,pres,encl) (-) =
VP . . =2-- \]P (act,indic, infin, intr, prog) b
30}((1€rog,1nf1n) I—OP AUX(prog,infin) (-} = .
(intr, ingp) L._mvB V(intr,ingp) (-) e

Table 1: PS rules automatically extracted from [1]

2.2 Phrase Structure Cluster Rules

The second component of the syntactic knowledge base deals with phrase structure clusters and superimposes the
hierarchical structure of this cluster. In most of the cases, these clusters correspond to the conventional clause, but
occasionally they represent co-ordinated or juxtaposed phrases. Again, such rules may be automatically extracted

from a set of pre-analysed sentences. For example, the syntactic analysis of [1] yields one PSC rule as represented in

Table 2:

Type

Clause

PS Cluster Associated Tree
8- PU' CL (main, act,decl, indic, cop, pres, unm)
B--A AVP ()
AVP @~ SU NP ()
NP E--—VB VP (act, indic, cop, pres)
VP:cop B.,..,,cs‘ NP ()
NP i ©---NPPO CL (depend, -su, act, indic, infin, intr, unm, zero)
TO L. TO PRTCL(to) {to)
VP:intr:infin .VB VP(act,indic, infin, intr, prog)
PP:ps i H--A PP
CONJUNC : subord ' o
geubor E-—«.\ CL (depend, act, indic, cop, pres, sub, unm)
NP qos
—SUB SUBP()
VP:cop
AVP U NP{)
AJP --VB VP (act, indic,cop, pres)
A AVP (ge)
B—CS AJP(prd)

As mentioned at the beginning, analogy-based parsing has two practical issues: confidence and coverage.
Confidence is the system assurance that the retrieved tree structure for the input string is a good one while coverage
is the adaptation of the indexed cases so that they are useful to as many structural variations as possible. In the
Survey Parser, confidence is maintained through the use of feature constraints and the increase of coverage is

achieved through the identification and removal of non-obligatory syntactic elements.

Table 2: A phrase cluster automatically extracted from [1]

81

Feature Constraints

To ensure the correct association between the PS cluster and the corresponding tree, some of the phrase types are
normally described or restricted with features. This typically applies to VPs, whose sub-categorisation determines
the analysis of their complements. For example, the phrase cluster NP VP PP may have at least two different
analyses for the complementing PP: as subject complement if the VP is copula and as adverbial if the VP is
intransitive. In the case of a non-finite VP, the very same phrase cluster needs to be analysed as a noun phrase post-
modified by a non-finite clause, e.g., countries pressurised by the decision and countries voting against the decision.
Feature constraints inherited from the main verb help to dissolve such ambiguities. In Table 2, the first and second
VPs are described by cop, a feature name meaning copula. This feature ensures that the complementing NPs are
correctly analysed as subject complement (cs). The other two constraint features for VPs are intr (intransitive)
and tr (transitive). Non-finite VPs are described with additional features to indicate their forms, e.g., infin for
infinitive, edp for past participle, and ingp for present participle.

Non-obligatory Elements

Non-obligatory elements include AVPs and PPs that do not complement any particular VPs. They are called non-
obligatory in the sense that their removal does not affect the overall syntactic structure of the sentence. In order to
maximise the coverage of phrase cluster rules, such elements are removed. The example in Table 2, for instance, is
in fact written as NP VP:cop NP TO VP:intr:infin PP:ps CONJUNC:subord NP VP:cop AJP.

Adverbial clauses may also be treated as non-obligatory and, indeed, they are probably the most active
constructions that contribute to the complexity of the clause. There is very good reason to expect a greatly increased
coverage if such clauses could be treated separately and removed from the host clause. For the time being, however,

this has not been implemented in the Survey Parser.

3 Parsing with PS and PSC Rules

The Survey Parser has three major modules that handle (1) assigning a wordclass tag to each item in the input string, (2)
chunking the tags into a PSC, and (3) querying in the knowledge base for possible analyses for this PSC.

3.1 The Analysis of Wordclasses

The Survey Parser currently uses AUTASYS (Fang and Nelson 1994; Fang 1996b) as a pre-processor that tokenises the
input string into lexical items and then assigns one wordclass tag to each of the tokens. This tagger has a probabilistic
backbone supported by a list of rules in order to achieve the informationally rich tagset designed for the ICE-GB project.
The tagset features 22 general wordclasses with around 70 descriptive features, totalling about 270 grammatically
possible tags (Fang 1994; Greenbaum and Ni 1994). The descriptive features represent a detailed system of lexical sub-

categorisation critical for parsing with wide-coverage lexicalised grammars (Briscoe and Carroll 1997). Consider
[2] The search menu in the Circulation module may make additional search methods available to library staff.

AUTASYS assigns one ICE tag to each of the lexical items in [2] and the result is illustrated in Table 3. It is worth
noting that the tagging process provides the maximum grammatical information at this stage. For example, all
compound nouns have already been marked up with ‘ditto tags’ that carry sequential numbers to indicate the

boundary of the compound. The grammatical features related to the compound are selected according to the head.

82

As a result, search in the compound noun search methods is tagged as The

ART (def)

. . . h N ,8ing):1/2
a plural common noun, the first in the two-item sequence. Lexical :lzif,c N§§$ ziﬁg; :2/2
verbs are also analysed for detailed sub-categorisations and, as Figure 3 :ﬁe iﬁfég:;
: : : Circulation N(com,sing) :1/2
shows, there are 7 different types of verbs in the ICE tagging scheme. module N(com. sing) :2/2
5 3 s : i 5 i may AUX (modal,pres)
The verb make in [2], for instance, is tagged as infinitive ditransitive = Y(aite, intiny
though it should be correctly analysed as complex transitive additional NUM(ord)
search N(com,plu):1/2
complemented by both a NP and an AJP. methods N(com,plu) :2/2
i) . . . available ADJ(ge)
As mentioned in Section 2.2 where feature constraints are discussed, to PREP (ge)
: libra N(com, sing):1/2
VPs are described as copula, intransitive, and transitive only. Detailed staffry N(com, sing) :2/2

Lexical Verb
Intransitive Copula
Transitive
Mono-
transitive UELD
. - Complex-
Di-transitive e
Di-mono- transitive

transtive

Figure 3: Subcategorisation of verbs

3.2 The Analysis of Phrases

transitivity information
for the verb is mainly

PUNC (per)

Table 3: Grammatical tagging of [2]

for passivised VPs, which undergo the following valency shifts:

mono-transitive—intransitive, complex-transitive—copula, ditrans-

itive—»mono-transitive. The transitivity of a passivised complex-

transitive VP, for example, is shifted to that of copula in order to

cater for the analysis of the complementiser as subject complement,

e.g., The home front was kept ignorant of the reality. Detailed verb

transitivity sub-categorisation is of great use when the system fails

to find a global analysis for the input string and has to label

syntactic functions from limited context.

The input string, as a sequence of wordclass tags, is then processed at the phrase level according to the PS rules,

which are applied deterministically on a left-to-right longest match heuristic. When applied, these PS rules chunk

the input string into a cluster of PSs, with feature information about the head. They also assign phrase types,

boundaries, and internal structures to tag
sequences that have a direct match in the PS
rule base. Analysed at this level, the input
string is represented as a cluster of syntactic
phrases, each of which is now associated to a
sub-tree. As demonstrated by Figure 4, the
sub-trees already present a neat representation
of the constituent structure of the phrases. Note
that the VP is described by a feature (tr,
meaning transitive) inherited from the
corresponding wordclass tag except that there
is no further distinction of sub-categorisation
for transitive verbs (Figure 3). What still
remains uncertain at this stage is the syntactic

function to be determined by the PSC rules.

i—P PREP(ge) {in)
&--PC NP()
B&—DT DTP()

B--- NP()
B DT DTP()
ie. DTCE ART(def) {the)
L--NPHD N(com,sing) {search menu)
B~ PP{)

i...DTCE ART(def) {the)
L_NPHD N(com,sing) {Circulation module}

VP:tr |
B---- VP(modal, pres,ditr)

E___OP AUX (modal, pres) {(may)
L...MVB V(ditr, infin) (make)

B&--DT DTP()
; {—~-DTPS NUM(ord) {additional)
L.—NPHD N(com,plu) {search methods)
E--- AJP(prd)
5—AJHD ADJ (ge) {available}
(S ?P()
i~--P PREP(ge) {(to)
&—PC NP()
g»—--NPHD N(com,sing) {library staff}

Figure 4: Input string as a PS cluster with associated sub-trees

83

3.3 The Analysis of Clauses

As a final step, the input string as a cluster of phrase
structures is then queried in the database of PSC rules
to see if an identical sequence can be located. With a
positive feedback from the database, the associated
tree structure for that sequence in the database is
retrieved and used to specify the labelling and the
attachment of the phrases of the input string. In our
example, the parser determined that the PSC of the
input string was the same as that of [3], already

analysed and stored in the database:

(3]

system renders it vulnerable to injury.

The cellular anatomy of the peripheral nervous

Accordingly, the parser retrieved the analysis for [3]
and superimposed it on [2]. The final analysis is
shown in Figure 5. In this particular example, the

parser successfully retrieved the correct tree structure for the input string. The incorrect sub-categorisation of the
verb make as ditransitive at the stage of tagging did not prevent the parser from correctly labelling the sentence-final

B--PU CL (main,act,cxtr,decl, indic, pres, unm)
BJ—SU NP ()
&—DT DTP()
L__DTCE ART(def) {(the)
i..-NPHD N(com,sing) (search menu)
B-—NPPO PP ()
l-—P PREP(ge) (in)
B —PC NP()
E}--DT DTP()
! L_DTCE ART(def) (the)
i—_NPHD N(com,sing) (Circulation module)
f3—VB VP (modal, pres,ditr)
f——-«OP AUX(modal,pres) {may)
| l—~MVB V(ditr, infin) (make)
£]—OD NP ()
| §-DT DTP()
i L_.DTPS NUH(ord) (additional}
i— NPHD N{com, plu) {search methods)
B—CO AJP (prd)
}-—AJHD ADJ(ge) {availeble)
E-—AJPO PP()
L _.p PREP(ge) (to}
E}--PC NP()
L_npHD N(com,sing) {library staff}
'——PUNC PUNC(per) (.}

Figure S: The final analysis of [2]

AJP as object complement (CO), suggesting the possibility of a post-parsing correction of wordclass tags.

Partial Analysis

If a global analysis cannot be achieved, the parser will
enter a fallback mode, where all the non-obligatory PPs
are removed from the phrase cluster and a second
attempt is made to find a match. When successful, the
parser will paste the removed PPs back into the host
clause. Failure in the fallback mode will then put the
parser in the partial mode, where all the associated sub-
trees in the phrase cluster are written out as a partial
analysis. The boundaries and the internal structures of
the component phrases have already been analysed and
labelled. The parser also naively assigns missing names
guess-estimated from neighbouring phrases. Figure 6 is
an example of a partial analysis. The major cause for the
failure to find a global analysis was the exclusion of the
coordinating conjunction and from the PP between 1 and
n. The parser automatically inserted a CT CL node after
the initial VP, indicating that what follows is a non-finite

clause with an overt subject. This was correctly achieved

As Fang (forthcoming) argues, it is feasible to determine the syntactic functions of, for instance, prepositional phrases according to

El—PU CL (main,trans, imp)

E--VB VP (trans, imp)

: |- MvB V(trans,imp) {(Let)

El—CT CL(depend, trans, imp)
B—sU NP()
; L_NPHD PRON(pers,sing) {us)
B~--VB VP (montr, infin)
i L._MVB V(montr,infin) (associate)
é----—on NP ()

i E--DT DTP()
! ! L_DTCE ART(indef) (an)
é i——NPHD N(com,sing} (integer code)
B PP()
E-m—P PREP (ge) {betueen)
E-—PC NP()
L_NPHD NUH(card,sing) (1)
{-—COOR CONJUNC (coord) (and}
B-cJ -
&S0 NP ()
! L._.NPHD N{com,sing) (n}
E& PP()
i—P PREP(ge) (to)
E—PC NP()
B&--DT DTP()
] L...DTPE PRON(univ,sing) {each)
“}.-NPPR AJP (attru)
‘ {..AJHD ADJ(ge) {possible)
{~—NPHD N(com,sing) {commwand)}
__—PUNC PUNC(per) {.)

Figure 6: A partial analysis

lexical descriptions. It is also possible to label the syntactic functions of non-finite clauses in a similar fashion.

84

through the sub-categorisation of the antecedent VP as trans. Limited context and verb sub-categorisation information

also enabled the correct labelling of the subject, the verb, and the direct object of the dependent clause.

4 Evaluation

In this section, I report empirical tests carried out to evaluate the performance of the Survey Parser. In particular,

these tests were designed to indicate the coverage of the extracted grammar in terms of PS and PSC rules, labelling

precision, the accuracy of analysis according to human judgements, and finally the processing speed.

4.1 Evaluating the Coverage of Phrase Structure Rules

The syntactic knowledge base currently makes use of about 50,000 syntactically analysed utterances from ICE-GB.

Table 4 presents statistics about the rule extractions from the set.

Type

AJP

AVP

NP

PP VP PSC

No

103

49

3,695

8,974

987 178,045

Table 4: A summary of PS and PSC rules extracted from ICE-GB

To estimate the coverage of PS rules automatically extracted from ICE-GB, the analysed corpus was divided into 10

equal sets (1-10) of about 70,000 words each, with each individual set used as test data and the rest as training data

in a rotating manner. Precautions were taken to make sure that the test set did not make up the training data. Figure 7

displays the coverage of VP rules when tested by the training data of varying sizes. The Y-axis represents the

coverage (0.0-1.0), though the graph only displays a region of .95 to 1.0 as all the figures were higher than .95. The

89

2 p——
'E N .
Q g3 -"';’%ﬁ;‘fw
- ol
‘6 L
© o A
& o7 = -
o . > 7
u>_) / M'/A.,’
o ,/'
Q / B
96 .
//‘
//
a5 H ;
1 2 3 4 5 6 7 8 9
Corpus size (number of samples)

Sample No 7
Sample No 8
Sample No 9

Sample No 10

Figure 7: The coverage of VP rules extracted from ICE-GB

4.2 Evaluating the Coverage of Phrase Structure Cluster Rules

X-axis represents the size of the training data,
which is an increment of one sample up to
nine samples. Training data of one sample in
size yields a coverage of over .95 for all the
four testing samples. The coverage constantly
rises with the increase of the training data
size. The nine-sample training data produced
a coverage of over .98 for the four testing
samples used in the experiment. The start of
plateau visibly rests on eight-sample training
data. For discussions on the forms and sub-
categorisations of these verbs, see Fang
(1997).

The corpora used for the evaluation included Air Travel Information System (ATIS), the Wall Street Journal (WSJ),

and the Survey of English Usage Corpus (SEU; Fang and Nelson 1994),

all different in terms of subject matter, style, and national variety. A total

of 3,654 sentences were randomly selected to test the coverage of the

PSC rules in order to estimate the probability of the input string as a

phrase structure cluster to have a direct match in the database. According

85

Corpus | Sent No. | Coverage
ATIS 654 64.9%
WSJ 2,000 60.0%
SEU 1,000 60.3%

Table S: The recall rates

to Table 5, such probability is 60% for test sets from WSJ and SEU. The ATIS set had a higher percentage mainly
because of the relatively shorter sentence length in this corpus than the other two. Input strings that cannot be

described by the PSC rules were given partial analyses.

4.3 Evaluating the Labelling Precision

3

A set of 60 AMALGAM sentences” from a computer manual were [~g, "~ 60
used to measure the precision of labelling by the Survey parser. A Constituent No. 4,597
scoring program for evaluating the performance of speech recognition | Correct 4,142 | 90.1%
systems was used that measures not only the correct and wrong labels Wi ong 272 3.9%

. . ! " Deletion 183 4.0%
but also insertion and deletion rates. As Table 6 indicates, 90.1% of the Insertion 147
constituents for the 60 sentences were correctly labelled by the Survey | Overall 86.9%
Parser. With wrong labels and deletion and insertion rates considered, Table 6: Labelling precision

the overall precision rate was 86.9%.
4.4 Evaluating the Accuracy of Analysis

Finally, the performance of the parser was subjected to the strictest human evaluation where an input string was
judged to be wrong with a single parsing error in terms of labelling, attachment, or tokenisation. For this purpose,
the test used a set of 117 dictionary definitions extracted from the

Longman Dictionary of Contemporary English (see Briscoe and | Definition No. 117
Carroll, 1991). Table 7 summarises the results. Of these input strings, Full analysis 84 | 71.8%

Ci t analysi g
84 were fully parsed, a coverage of 71.8%. Of the fully parsed strings, orrect anaysis 7 65_ 2
Table 7: Accuracy of analysis

77 were correctly labelled and attached, a precision rate of 65.8% of
the total number of input strings. It is significant that the majority of the fully analysed strings (91.7%) were correct
even according to the strictest requirements, indicating a high level of system confidence that the proposed analysis

is a good one.
4.5 Evaluating the Processing Speed

Two sub-language corpora were used to measure the processing speech of the Survey Parser. One is a corpus of the
English for science and technology collected at the Shanghai Jiao Tong University (JDEST; Huang 1991) and the other a
corpus of the English of computer science collected at the Hong Kong University of Science and Technology (HKUST;
Fang 1992). The statistics summarised in Table 8 were obtained with Dell OptiPlex Gxa. The tagging module, according
to the test, ran at a speed of 6,012 words per second. The parsing module was able to process 177 words per second.

Corpus Source | No.ofwords | No. of sentences No.Tzf.f;:(fn ds No.Po‘jz::;:'lg nds
JDEST 104,014 4,692 18 540
HKUST 70,331 4,297 11 443
Total 174,345 8,989 29 983

Table 8: The processing speed of the Survey Parser

3 Available at http://www.scs.leeds.ac.uk/amalgam/amalgam/corpus/tagged/raw/ipsm_raw.html. The output from the Survey

Parser for this set of sentences, manually checked and corrected by me, are available at
http://www.scs.leeds.ac.uk/amalgam/amalgam/corpus/parsed/ice.html

86

5 Concluding Remarks

In this article, I have described the architecture of the Survey Parser as well as the construction of the syntactic
lnowledge base that comprises PS and PSC rules automatically extracted from a syntactically analysed corpus, ICE-GB.
I then reported evaluation statistics that characterise the performance of analogy-based parsing. They indicate that while
the clause structure rules have a coverage of 60%, the grammar has a high coverage in terms of phrase structures as the
statistics for the verb phrase indicated. One conclusion we can draw here is that it is indeed feasible to automatically
generalise a comprehensive formal grammar from a syntactically analysed corpus the size of ICE-GB and to apply it to
large-scale practical parsing. A second conclusion is that analogy-based parsing enjoys a high degree of analysis
precision, with over 90% of the constituents correctly labelled. When subjected to human inspection, 91.7% of the
complete parses were found to be correct. Other observed advantages include high parsing speed and the ability to
produce an analysis for every input string. A true strength of analogy-based parsing is its intrinsic ability to learn over the
acquisition of new phrase structure clusters. Since the formal grammar can be automatically learned, the parser can
easily adapt itself to new constructions. Unlike probabilistic grammars, the automatically constructed grammar can be
visually supervised and manipulated because of its declarative nature. The empirical tests suggested that the analogy-
based parsing reported here is capable of the design requirements outlined at the beginning of the article.

As can be envisaged at this stage, the future work on the analogy-based parser will focus on methods to increase the
coverage of the clause cluster rules. I have already mentioned the removal of non-obligatory elements such as AVP and
PP in order to increase the coverage. Another effective method, yet to be tested, is the segmentation of the input string
into component finite clauses, which are then parsed individually and glued back into the host clause. The syntactic
functions of the clauses can be reliably assessed independent of the host clause because of the conjunction markers. The
key process to achieve this is an algorithm that automatically, and reliably, identifies the boundaries of component
clauses.

Acknowledgement

The author would like to thank the three anonymous reviewers for their valuable comments on an earlier version.
This article was supported in part by Engineering and Physical Sciences Research Council, UK, Grant No GR/L81406.

References

Briscoe, E., and J. Carroll. 1991. Generalised Probabilistic LR Parsing of Natural Language (Corpora) with
Unification-Based Grammars. Technical Report No. 224. University of Cambridge.

Briscoe, E., and J. Carmroll. 1997. Automatic extraction of subcategorization from corpora. In Proceedings of the 5th
ACL Conference on Applied Natural Language Processing, Washington, DC. pp 356-363.

Fang, A.C. 1992. Building a Corpus of the English of Computer Science. In English Language Corpora: Design,
Analysis and Exploitation, ed. by Aarts, de Haan and Oostdijk. Amsterdam: Rodopi.

Fang, A.C. 1994. ICE: Applications and Possibilities in NLP. In Proceedings of International Workshop on
Directions of Lexical Research, 15-17 August 1994, Beijing. pp 23-44.

Fang, A.C. 1996a. The Survey Parser: Design and Development. In S. Greenbaum. pp 142-160.

Fang, A.C. 1996b. Grammatical Tagging and Cross-Tagset Mapping. In S. Greenbaum. pp 110-124.

Fang, A.C. 1996c. Automatically Generalising a Wide-Coverage Formal Grammar. In Synchronic Corpus
Linguistics, ed. by C. Percy, C. Meyer, and I. Lancashire, Amsterdam: Rodopi. pp 207-222.

87

Fang, A.C. 1997. Verb Forms and Subcategorisations. In Oxford Literary and Linguistic Computing, 12:4.

Fang, A.C. forthcoming. A Lexicalist Approach towards the Automatic Determination for the Syntactic Functions of
Prepositional Phrases. To appear in the Journal of Natural Language Engineering.

Fang, A.C., and G. Nelson. 1994. Tagging the Survey Corpus: a LOB to ICE experiment using AUTASYS. ALLC
Literary & Linguistic Computing, 9:2. pp 189-194.

Greenbaum, S. 1988. A Proposal for an International Computerized Corpus of English. In World Englishes 7, 315.

Greenbaum, S. 1996. The International Corpus of English. Oxford: Oxford University Press.

Greenbaum, S., and Ni, Y. 1994. Tagging the British ICE Corpus: English Word Classes. In Corpus-Based
Research into Language, ed. by N. Oostdijk and P. de Haan. Amsterdam: Rodopi. pp 33-45.

Huang, RJ. 1991. A Technical Report of the JDEST Corpus Tagging Project. Shanghai: Shanghai Jiao Tong
University.

Kolodner, J. 1993. Case-Based Reasoning. San Mateo, CA: Morgan Kaufmann Publishers, Inc.

Minton, S. 1988. Quantitative results concerning the utility of explanation-based learning. In Proceedings of 7th
AAAI Conference, Saint Paul, Minnesota, pp 564-569.

Mitchell, T., R. Keller, and S. Kedar-Carbelli. 1986. Explanation-based generalization: A unifying view. In Machine
Learning 1:1, pp 47-86.

Neuman, G. 1994. Application of explanation-based learning for efficient processing of constraint-based grammars.
In 10th IEEE Conference on Artificial Intelligence for Applications, San Antonio, Texas.

Oostdijk, N. 1991. Corpus Linguistics and the Automatic Analysis of English. Amsterdam: Rodopi.

Samuelsson, C. 1994. Grammar specialization through entropy thresholds. In 32nd Meeting of the Association for
Computational Linguistics, Las Cruces, New Mexico.

Samuelsson, C. and M. Rayner. 1991. Quantitative evaluation of explanation-based learning as an optimization tool
for large-scale natural language system. In Proceedings of the 12th International Joint Conference on
Artificial Intelligence, Sydney, Australia.

Srinivas, B. and A. Joshi. 1995. Some novel applications of explanation-based learning to parsing lexicalized tree-
adjoining grammars. In Proceedings of the 33rd Annual Meeting of the Association for Computational
Linguistics (ACL-95), Morgan Kaufmann, San Francisco, 1995.

van Harmelen, F. and A. Bundy. 1988. Explanation-based generalisation = Partial evaluation. In Artificial
Intelligence, 36. pp 401-412.

88

1

A Transformation-based Parsing Technique
With Anytime Properties

Kilian Foth, Ingo Schréder, Wolfgang Menzel
(foth | ingo | wolfgang@nats.informatik.uni-hamburg.de)
Fachbereich Informatik, Universitdt Hamburg
Vogt-Kolln-Strafie 30, 22527 Hamburg, Germany

Abstract

A transformation-based approach to robust parsing is presented, which achieves a
strictly monotonic improvement of its current best hypothesis by repeatedly applying local
repair steps to a complex multi-level representation. The transformation process is guided
by scores derived from weighted constraints. Besides being interruptible, the procedure
exhibits a performance profile typical for anytime procedures and holds great promise for
the implementation of time-adaptive behaviour.

Introduction

Parsing procedures always have to be designed around a number of pre-specified requirements

which arise from specific conditions of the individual application area in mind. Text retrieval

tasks, for instance, can be accomplished already with a rather shallow analysis whereas speed

and fail-soft behaviour are of utmost importance. Grammar checking and foreign language

learning applications, on the other hand, must provide for highly precise error detection ca-

pabilities but differ considerably in their coverage requirements. One of the most demanding

combination of target specifications results from the development of spoken language dialogue

systems. Since this task is an attempt to model central capabilities of the human language fac-

ulty, rather strong criteria have to be met in order to achieve natural communicative behavior

on a competitive level:

¢ Robustness:

A spoken language dialogue system is typically confronted with a rich variety of linguistic
constructs and will almost inevitably have to deal with extragrammatical input sooner or
later. Also, repairs, hesitations, and other grammatical deviations will frequently produce
ungrammatical utterances, while the recognition uncertainty inherent in spoken language
input further increases the ambiguity.

The parsing component must be able to cope with these problems in a robust way. Be-
sides being able to return (possibly partial) analyses even for unexpected and arbitrarily
distorted input it is also necessary to provide some kind of measure of how sure the parser

is about its results.

Complete disambiguation: Natural language utterances typically exhibit ambiguity
when treated in isolation. Nevertheless, a simple enumeration of different (structural)
readings almost never can be considered a sensible contribution to a practical language
processing task. Although interactive applications can engage the speaker in a kind of
clarification dialogue, usually this possibility brings many additional complications and
should only be considered a measure of last resort. Instead, a well-designed system should

89

make use of all the available information to obtain a single interpretation of the utterance,

which is only abandoned if the user explicitly signals a communication failure.

e Multiple-source disambiguation: A vast variety of knowledge sources can contribute
to disambiguation: Syntactic constraints, semantic preferences, prosodic cues, domain
knowledge, the dialogue history, etc. All the available knowledge should be put to use as
soon as possible so that local ambiguity will not create a large space of useless hypotheses
during processing. For reasons of perspicuity and accessibility the integration of these
knowledge sources should be organized in a way which maintains their modularity. Only
then can the respective contributions of individual components be evaluated and properly
balanced against each other.

e Time-aware behavior: Three closely related aspects must be considered with respect
to the temporal behavior of a language processing component: Efficiency, incremental
processing and temporal ad aptivity. Whereas efficiency always has been an issue of major
concern, explorations into incremental and time-ad aptive parsing attracted more attention
only recently [GKWS96, Amt99, Men94]. Since speech unfolds in time, speaking time is a
valuable resource and an immediate response capability can be achieved only if incoming
information is processed in an on-line fashion. Temporal adaptivity, on the other hand, is
the capability of a component to dynamically control its processing regime depending on
how much time is available to complete the task. In principle, such an anytime behaviour
can be achieved by trading time against quality. Therefore a baseline performance will
be required which allows the quality of available results to grow monotonically as more
effort is made, and which is robust enough so that results of slightly reduced quality can

still be considered being acceptable in a certain sense.

Obviously, the most natural measure of external temporal pressure is given by the speaking
rate of the dialogue partner. Thus temporal adaptivity makes sense first of all under an
incremental processing scheme. Its basic mechanisms, however, can also be studied in the

far simpler non-incremental case.

This paper investigates a non-standard parsing approach, which attempts to reconcile two
different kinds of robustness, namely robustness against unexpected and ill-formed input and
robustness against external temporal pressure. It is based on the application of constraint
satisfaction techniques to the problem of structural disambiguation and allows the parser to
include a wide variety of possibly contradicting informational contributions. Different solution
procedures are presented and compared taking into account solution quality and the observed
temporal behavior. '

2 Parsing As A Consistent Labeling Problem

Although most contemporary unification-based grammars can be said to employ constraints,
none of them fulfill the traditional definition of a Constraint Satisfaction Problem (CSP) con-
sisting of a fixed number of wariables, which receive their values from domains, i. e. sets of
alternative value assignments. The global consistency of a value assignment is defined by

means of local constraints, which can be understood as sets of admissible value tuples, specified

90

intensionally.! A conflict then can be defined as a tuple outside a constraint, and a solution is
a complete value assignment without conflicts. Finally, Consistent Labeling Problems (CLP)
are characterized by their domains being discrete, finite and known in advance.

Parsing a given utterance can be viewed as an instance of such a problem in that every word
form fulfills a specific function (i. e. complement, specifier, etc.) in a particular analysis. As long
as a grammar theory is defined over a finite number of such functions, they can immediately be
used as the values of a CSP. Since an utterance often contains multiple instances of the same
grammatical function (i. e. a determiner modifying a noun), it always has to be specified in
what context the word form fulfills its function. Therefore, every word form in an utterance is
annotated with a pair consisting of a label (i. e. the grammatical function of the form) and a
pointer to another word form, which is modified by the first one. This way, an entire dependency
tree can be encoded in a CSP of a fixed size.

Conversely, some word forms require other word forms to fulfill certain functions for them
as obligatory complements. Such valence requirements can be modeled as constraint require-
ments as well. Furthermore additional relations between word forms can be included easily
(e. g. semantic arguments or aspects of the informational structure), thus creating a fairly rich
structural representation.

Figure 1 shows an example of such a multi-level representation including syntactic depen-
dencies (the arcs above the word forms), semantic arguments (e. g. the arcs labeled agens and
patiens) and a bunch of valence requirements (all those with the label prefix n_, e. g. n_subj, n_inf
etc.). Admissible combinations between dependency relations on two different representational
levels are also defined by means of suitable constraints.

inf obj
det subj m
Y YA\ R
The dog seems to like the cat.
‘_,//Nm_*///' \ e n def‘\~—/’/
n_det n_subj n_to =
n_inf n_obj
patiens

agens

Figure 1: A CDG analysis

The notion of a constraint dependency grammar was first introduced by Maruyama [Mar90].
Harper et al. [HH94] extended the idea in order to cope with ambiguity arising from lexicon
lookup and speech recognizer uncertainty. Menzel [MS98a] incorporated soft constraints, i. e.,
constraints that can be violated by a valid solution if no other solution can be found otherwise.
For this purpose, constraints are annotated with a weight or score between zero and one that
determines how easily that constraint may be violated. Hard constraints have a weight of zero

1From this perspective, the constraint-solving mechanism of a typed unification grammar, like the one un-
derlying e. g. HPSG, might be considered a degenerate CSP with only a single variable, a domain consisting of
all possible top-level feature structures, and constraints licensing parts of a complex value assignment.

[

91

and must not be violated by any solution. Constraints which reflect regularities of the grammar
receive a small weight greater than zero while constraints that model mere preferences will
be weighted close to one. A solution candidate to the CSP can then be assigned a score by
determining the product of the weights of all the constraints which are violated somewhere in the
structural description. Under these premises, parsing becomes a multidimensional optimization
problem.

For reasons of efficiency at most binary constraints can be allowed, hence the universal ex-
pressive power of constraints is not available in practice. This serious shortcoming, however,
can be neutralized to a certain degree by approximating higher order constraints using binary
ones. Another disadvantage is the lack of a variable binding mechanism like the one which is
provided by a unification operator together with the missing notion of a constituent (which,
however, is shared with most dependency grammar approaches). Experience with grammar
writing has confirmed that nevertheless nontrivial subsets of grammar can be encoded suc-
cessfully, although some phenomena such as long-distance dependencies can only be modeled
approximatively [SMFS].

Constraint dependency grammar is a purely declarative formalism. This property makes it
amenable to a variety of problem solving strategies that can be compared, e. g. with respect to
their temporal behaviour. The possibility to add further representational levels supports the
integration of knowledge contributions from very different sources into a single solution space
without sacrificing the strict modularity of the grammar and of the structural representation.
Of course, this possibility is limited to only those knowledge sources that can meaningfully
attach information to single word forms. A single interpretation of the incoming utterance can
be obtained by using all available evidence, including minor preference indicators like ordering,
distance or default cases. A truly ambiguous sentence will usually allow several analyses with
only small differences between their scores, which can be ignored if desired.

The approach exhibits a remarkable robustness against unexpected and ill-formed ‘input
[MS98b], which obviously can be attributed to three important characteristics:

e the use of weighted constraints, which provides for the accommodation of conflicting
evidence and therefore makes the analysis of deviating structures possible,

e the redundancy between loosely coupled representational levels, which allows conflicting
information on one level to be overridden by sufficient evidence from a complementary

one, and

o the possibility to license arbitrary categories as an acceptable, but in most cases highly
disfavored, top node of a dependency tree, thus introducing a partial parsing scheme as

a natural extension of the normal mode of operation.

Note that the resulting robust behavior follows immediately from the fundamental principles
of the approach and no error rules or special operations become necessary.

Two other characteristics of the approach contribute to the rich potential for obtaining the
desired anytime behaviour. In contrast to other parsing approaches the space of all possible
analyses for constraint dependency parsing is always finite and very regularly structured. Pars-
ing therefore becomes a process of selection between different analyses with virtually identical
formal properties, which considerably facilitates their mutual comparison.

92

3 Solution Procedures

3.1 Consistency-based Methods

The canonical method for solving a constraint satisfaction problem is to establish a certain
degree of consistency in it by deleting incompatible values from its domains, and then select
an assignment to all constraint variables from the remaining values. This approach contrasts
strongly with common parsing methods that are constructive in nature. Usually, grammatical
structures are built up recursively from simpler structures, and ultimately from the information
associated with the lexical items present in an utterance. Thus, the number of structures
available increases over time. In contrast, the achievement of consistency is an eliminative
process: The more progress is made, the fewer values remain in the problem. An attractive
property of this kind of parsing is that it can be exactly determined, at any time, how much
progress has already been made and how much work remains to be done until disambiguation
is completed. This information will be of great use to a time-aware solution procedure.

Various well-defined degrees of consistency can be achieved in a CSP, and general algorithms
exist to establish any desired degree of consistency. Consistency-based methods are used exten-
sively in a constraint dependency parser by Harper et al. [HHZ195]. However, this approach
does not lend itself to robust processing of deviating input. Since consistency algorithms only
remove those values that cannot appear in any solution, only hard constraints are effective.
If a constraint grammar predominantly employs soft constraints, a consistency algorithm may
remove very few values or none at all.

A suitable algorithm for consistency in a partial CSP should remove all those values that
do not appear in the optimal solution—a property that is much more difficult to determine.
The usual consistency algorithm will find a value that cannot appear in a solution by noting
that it cannot appear in a valid n-ary assignment. A similar approach for partial CSP would
be to select those values for deletion that only occur in n-ary assignments with low scores. The
obvious method is to define a fixed limit and consider all scores below it unacceptable; this has
much the same effect as employing the unmodified algorithms on a grammar in which more
constraints are hard.

Another method known as pruning [MS98b] goes one step further. While a consistency
algorithm cannot guarantee how much progress it will achieve, a pruning method will invoke a
selection function at regular intervals to select exactly one value for deletion. If this function
uses a fixed amount of time, an exact appraisal can be given not only of the amount of work to
be done, but also of the actual runtime left until termination.

To guarantee that a value is selected for deletion within the allotted time, the selection
function will usually have to be heuristic in nature. A simple selection function mimics the
behaviour of a 2-consistency algorithm: Tables of mutual support are constructed for all pairs
of domains in the problem. The support of a value v from another domain d can be defined as
the maximal or the average compatibility of v with any value from d, or in a more elaborate
way. The value whose maximal support by any other domain is smallest is selected for deletion.

Since the globally optimal solution may consist of values that are locally suboptimal, in
general this method of assessing values exclusively by local information may remove the wrong

values from a problem. While the CDG formalism ensures that the remaining values form

93

a complete assignment, in general it cannot be guaranteed that this assignment will be the
optimal solution, or even a grammatically valid one. Thus, a heuristic consistency algorithm
may fail without result even though there is a valid solution, which defies the purpose of robust

processing.

3.2 Enumeration

Most parsers use some kind of search algorithm to enumerate all alternatives for local or global
ambiguities arising in the analysis of their input. A great number of search variants has been
invented for different parsing applications (top-down vs. bottom-up parsing, depth-first vs.
breadth-first search, linear vs. island parsing), and choosing the right method can have dramatic
impact on the efficiency of a parser. In general, considering every possible alternative ensures
that an algorithm is complete as well as correct, but may require so many resources that it
becomes impractical to apply.

Since in a problem in CDG, consistency-based methods cannot guarantee either complete or
correct behaviour, a complete method of solution is desirable even if it has other disadvantages.
For instance, a complete but inefficient algorithm will still be of great use to the developer of a
constraint grammar to check the validity of their model, or to verify the results of an incomplete
method.

For the CSP, a complete search of all possible assignments can be conducted that is guar-
anteed to find the optimal solution.

In the partial CSP, a normal best first search can be employed which finds the optimal
solution without ever having to expand a partial solution with a lower score. The current
implementation of the CDG parser provides a straightforward best-first search in which the
variables of a problem are instantiated in a fixed order. This will usually be the order of the
words corresponding to the constraint variables. Compared with other parsers, this would be
classified as a heuristically driven left-to-right search. It resembles bottom-up parsing in that
each word can immediately be integrated into a tree that forms part of the complete dependency
structure. A top-down parsing method could be simulated by arranging the search so that every
additional dependency edge must modify a word that has already been analyzed, starting with
those words that can modify the root of the dependency tree.

Since the CSP is N"P-complete, probably any complete solution method will have an expo-
nential worst-case complexity. Although the actual runtime of a complete search algorithm is
usually far below the worst possible case, and heuristic re-ordering of both domains and values
can greatly improve the efficiency, it is difficult to predict even approximately how long a par-
ticular instance of the problem will take to search. Therefore, a complete search is inadequate
as a solution method when time-aware behaviour is required. However, in contrast to other
methods a complete search can easily enumerate globally near-optimal structures such as those

defined by syntactically ambiguous sentences.

3.3 Transformation

An obvious way to overcome the unacceptable temporal behaviour of complete algorithms is to
employ suboptimal methods. A strategy that works well in practice is that of heuristic repair.
Rather than attempting to build the correct structure by selecting correct values step by step,

9

this method first constructs an arbitrary dependency structure with errors in it and then tries

to correct the errors.

Suppose that the dependency structure shown in Figure 2 has been constructed, in which

both nouns have been analyzed as subjects of the same verb.

det N
VY /1o Q

like

The

\ S
\.n_subj

n_det

dog

inf

seems to
_/
n_to
_ A
n_inf
agens

subj

det/—\\

the cat.
n_det‘\/
patiens

Figure 2: A suboptimal dependency analysis

Figure 3 a) shows part of the corresponding matrix of constraint variables. If a constraint

exists that excludes multiple subjects, one of the two annotations with the label ‘subj’ must be

replaced. By analyzing the word ‘cat’ as an object instead, this assignment can be transformed

into the assignment shown as Figure 3 b). Note that when providing an object for the verb

‘like’ we also changed the corresponding value of the ancillary level OBJ to reflect the fact that

the object required by the verb is actually present now. The new assignments represent the

optimal analysis shown above as Figure 1.

a) Syntax SUBJ OBJ b) Syntax SUBJ OBJ
the; det/2 - - the; det/2 - -

dog2 subj/3 - - dog2 subj/3 - -

seemsz | — nsubj/2 - _, seemss | - nsubj/2 -

toq to/5 = = toq to/5 - -

likes inf/3 - -~ likes inf/3 - n_obj/7
theg det/7 - - thes det/7 -

catz subj/3 caty obj/5 -

Figure 3: Transformation of a dependency structure.

This method has several advantages as opposed to the previous ones:

e Because a complete dependency analysis is maintained at all times, the algorithm may

be interrupted at any time and still return a meaningful answer, though not always the

optimal one. Thus, it automatically fulfills a strong anytime criterion.

e The constraints that cause conflicts in a suboptimal assignment can suggest which value

is inappropriate and what other value should be substituted.

e Becauseallanalysesof a given utterance comprise the same number of values, it is guaran-

teed that the optimal solution (if any exists) can be constructed from any other assignment

by successively replacing one value at a time.

95

A transformation step is usually defined as the exchange of one value of a constraint variable
for another. By this definition, the correct solution of a CSP of degree n can always be reached
in not more than n transformation steps, if the correct replacement value is chosen at any
point. To accomplish this, however, every value in the problem has to be considered as an
alternative in each step, whereas a backtracking search only has to try out all values from
one particular domain. Obviously the transformation algorithm will encounter a much greater
branching factor. However, the search space is now graph-shaped, and so not every alternative
must be pursued further because the order in which several values are inserted into an analysis
does not matter. Instead, the number of alternatives that are tried out at all can be used as a
parameter to speed up the computation.

Obviously, the efficiency of such a repair algorithm depends on its ability to select the correct
values for repair. Even a totally uninformed repair method can ultimately find the correct
solution, since it is simply a random walk through the problem space. For better results,
heuristic decision methods must be found to guide the selection. The simple hill climbing
method will always choose the value that results in the best immediate improvement. The
principal difficulty with this method is that it can get stuck in local optima of the problem
space where no immediate improvement is possible.

Different methods exist to allow an algorithm to leave such misleading areas of the search

space.

e Occasional downbhill steps may be allowed so that an algorithm may escape from a local
maximum. For example, in the popular method of simulated annealing downhill steps are

allowed but gradually discouraged as analysis progresses.

e In another approach, hill climbing does not optimize the score of an analysis itself, but
an ancillary cost function that is adapted in each step, so that the local optimum can be

turned into an ascent.

e The definition of a transformation step can be changed so that several values may be
replaced simultaneously. Assignments which differ in several variables will then become
adjacent to the current assignment. Again, the number of values that may be changed in
one step can be used as parameter to influence the speed of the algorithm.

A subsequent difficulty is that after such a repair algorithm has converged to the optimal
solution, it may not terminate. If the optimal solution still causes some minor conflicts, the
algorithm will continually try to repair these conflicts without success, since there is no simple
way to distinguish a local optimum from the global one. In this case the individual constraints
of the grammar can be used as a taboo criterion: If no repair step is allowed to re-introduce
the conflict that prompted it in the first place, termination can be guaranteed.

Although repair-based solution methods cannot guarantee to find the optimal solution in
all cases, in practice they achieve results comparable to those of exhaustive methods. This
demonstrates that the values contained in a complete parse are helpful in selecting correct
values even though some of them may themselves be incorrect [Minton92]. In this way, parsing
by transformation can make use of global information without suffering the full combinatorial

explosion of a complete search.

96

0%k |

10%

L L I 1

. s s
30s 40s 50s 60s 70s 80s 90s 100s

0% L

Figure 4: Solution quality as a function of time.

In a series of experiments, repair methods have been successfully applied to the the constraint
parsing problem. The corpus comprised 200 consecutive utterances from the Verbmobil corpus
of spoken dialogue utterances, segmented and slightly regularized by hand. Figure 4 illustrates
the average temporal behaviour of a transformation-based algorithm grouped by the number n
of constraint variables? in the resulting CSP. For each problem class, the average score after
the indicated runtime is given relatively to the optimal score attainable.

With the observed increase of the solution quality the parser has a performance profile
typical for anytime procedures [BD89]. In 90% of all problems, the solutions found were either
identical to those found by a complete search or had even better scores (since the search uses
a finite agenda, it may actually become incomplete in large problems). In the final analyses,

99.7% of all dependency links were established correctly.

5 T T T T

runtime

=i problem size

0 H
50 100 150 200 250 300 350 400

Figure 5: Ratio of runtime for transformation and search methods.

2In this particular constraint grammar, a sentence of five words will typically map to a CLP with about 100

variables.

97

In general, a near-optimal structure will be constructed after a short time. Finding the
exact optimal analysis may take considerably more time in medium-sized and large optimization
problems. However, particularly in these cases the algorithm will be consistently faster than
a complete search. Figure 5 gives the average time that the transformation-based solution
method takes to terminate, measured in terms of the runtime of a best-first search of the same
problems. Clearly, the repair method is faster in most large problems except for the highest
problem class (which only has two members in our corpus, however). Comparison of the time
until the last successful repair with the total runtime shows that the algorithm will usually
terminate not long after having reached the optimal analysis.

For applications that have to react to varying external time constraints, a parameter is
provided that adjusts the number of alternatives to be tried out at each transformation step.
In the cases investigated so far, decreasing this parameter can speed up the repair substantially,
with an acceleration by a factor of about 3 reducing the accuracy to 86% of correct dependency

links.

4 Related work

There is a striking analogy between constraint dependency parsing and customary approaches
to the task of tagging natural language data: In both cases each word form in the utterance
is annotated with a label from a finite set of alternatives and the approaches differ only in the
information content of the labels. Although tagging usually means to classify word forms into
(syntactic and semantic) types, the idea can also be extended to the use of functional tags in a
straightforward way. Karlsson et al. [KVHA95] use such functional descriptions in Constraint
Grammar parsing. Their tagset contains elements like “subject” or “a determiner modifying
a noun to the right”. Usually these tags are underspecified, because the exact identity of the
modified item is unknown. Constraint Dependency Grammar as discussed in this paper extends
this approach to fully specified structural representations. Since the identity of the modified
word is now included into the composite tags, the size of the tagset additionally depends
on the number of word forms in the given utterance. Moreover, the extension to multi-level
disambiguation allows to treat considerably richer representations as compared to what a usual
tagger is taking into account.

Another approach using complex tags is Supertagging [BJ99], where complex tree fragments
are attached to word forms by means of a stochastic model. These tags represent considerably
more structure than values in CDG, which correspond to single dependency edges. However,
tags are treated in isolation and the compatibility between adjacent structures is modeled only
probabilistically. In order to combine tags to complete parse trees an additional processing step
has to be carried out after the tagging itself.

The idea to obtain a structural description of natural language utterances by applying a
sequence of transformations which successively modifies an intermediate representation has
first been pursued within the framework of parsing as tree-to-tree transduction [BGQA82],
although no explicit notion of scoring and quality improvement was involved at that time. The
dynamics of the transformation process was fully under the control of the grammar writer,
taking into account the precedence ordering implicit in a sequence of rules and some additional
means to influence the degree of non-determinism. Transformation-based approaches have later

98

been applied to the problem of syntactic tagging [Bri95]. However, focus was on inducing an
appropriate set of transformation rules from the information contained in an annotated corpus.

Possibilities to model grammar by means of contradicting principles are investigated cur-
rently in the framework of optimality theory [PS91]. The grammatical principles postulated
there are ranked rather than weighted, with higher ranked regularities completely overriding
the influence of the lower ones. First applications have been identified in phonology and syntax.

5 Conclusion

A novel approach to parsing as constraint-based structural disambiguation has been presented.

By combining techniques for robust parsing (graded constraints, multi-level-disambiguation and

partial parsing) with the idea of a transformation-based problem solving mechanism, a parser

can be created that shows the typical temporal behavior of an interruptible anytime algorithm.
Further investigations will focus on

1. transferring these procedural characteristics to the case of incremental parsing, thus ad-
dressing particularly the problem of processing time for long utterances,

2. a more thorough investigation into time-adaptive behaviour, which should be able to
speed up the convergence towards the optimum solution under temporal pressure, at the
risk of missing it completely, and

3. the combination of different solution techniques to improve the termination behaviour.

The resulting parsing method mimics human language processing in that it is time-adaptive

and robust and therefore lends itself to the implementation of human-machine dialogue systems.

References

[Amt99] Jan W. Amtrup. Incremental Speech Translation, volume 1735 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, Heidelberg, New York, 1999.

[BJ99] Srinivas Bangalore and Aravind K. Joshi. Supertagging: An Approach to Almost
Parsing. Computational Linguistics, 25(2):237-265, 1999.

(BD89] Mark Boddy and Thomas L. Dean. Solving Time-dependent Problems. in Proceed-
ings 11th Int. Joint Conference on Artificial Intelligence, Detroit, 1989.

[BGQAS82] Ch. Boitet, P. Guillaume, and M. Quezel-Ambrunaz. Implementation and conver-
sational environment of ariane-78. In Proceedings 9th International Conference on
Computational Linguistics, Coling ’82, pages 19-28, Prague, CSSR, 1982.

[Bri95] Eric Brill. Transformation-based error-driven learning and natural language pro-
cessing: A case study in part-of-speech tagging. Computational Linguistics,
21(4):543-565, 1995.

[GKWS96] Giinther Gorz, Marcus Kesseler, Hans Weber, and Jorg Spilker. Research on archi-
tectures for integrated speech/language systems in verbmobil. In Proceedings 16th

99

[HHO4]

[HHZ+95]

[KVHA95]

[Mar90)]

[Men94]

[MS98a)

[MS98b]

[Minton92]

[PS91]

[SMFS]

International Conference on Computational Linguistics, Coling ’96, pages 484—489,
Kopenhagen, Denmark, 1996.

Mary P. Harper and Randall A. Helzerman. Managing multiple knowledge sources
in constraint-based parsing of spoken language. Technical Report EE-94-16, School
of Electrical Engineering, Purdue University, West Lafayette, 1994.

Mary P. Harper, Randall A. Helzermann, C. B. Zoltowski, B. L. Yeo, Y. Chan,
T. Steward, and B. L. Pellom. Implementation issues in the development of the

parsec parser. Software - Practice and Ezperience, 25(8):831-862, 1995.

Fred Karlsson, Atro Voutilainen, Juha Heikkila, and Arto Anttila, editors. Con-
straint Grammar — A Language-Independent System for Parsing Unrestricted Text.
Mouton de Gruyter, Berlin, New York, 1995.

H. Maruyama. Structural disambiguation with constraint propagation. In Proceed-
ings 28th Annual Meeting of the ACL, pages 31-38, 1990.

Wolfgang Menzel. Parsing of spoken language under time constraints. In T. Cohn,
editor, Proceedings 11th European Conference on Artificial Intelligence, pages 560—
564, Amsterdam, 1994.

Wolfgang Menzel and Ingo Schroder, Constraint-Based Diagnosis for Intelligent
Language Tutoring Systems. In Proceedings IT €& KNOWS, XV. IFIP World Com-
puter Congress, 484-497, Wien and Budapest, 1998.

Wolfgang Menzel and Ingo Schréder. Decision procedures for dependency parsing
using graded constraints. In Sylvain Kahane and Alain Polguére, editors, Proc. of
the Joint Conference COLING/ACL Workshop: Processing of Dependency-based
Grammars, Montréal, Canada, 1998.

Minton, Steven, Johnston, Mark D., Philips, Andrew B. and Laird, Philip. Mini-
mizing conflicts: a heuristic repair method for constraint satisfaction and scheduling

I problems. In Artificial Intelligence 58, 161-205, 1992.

Alan Prince and Paul Smolensky. Linguistics 247: Notes on connectionism and
harmony theory in linguistics. In Technical Report CU-CS-533-91, Department of
Computer Science, University of Colorado, Boulder, Colorado, 1991.

Ingo Schroder, Wolfgang Menzel, Kilian Foth and Michael Schulz. Dependency
modeling with restricted constraints. Submitted to Traitement automatique de

langage, Special Issue on Dependency Grammar.

100

SOUP: A PARSER FOR
REAL-WORLD SPONTANEOUS SPEECH

Marsal Gavalda
Interactive Systems, Inc.
1900 Murray Ave. Suite 203
Pittsburgh, PA 15217, U.S.A.

marsal@interactivesys.com

Abstract

This paper describes the key features of SOUP, a stochastic, chart-based, top-down parser, especially
engineered for real-time analysis of spoken language with very large, multi-domain semantic grammars.
Soup achieves flezibility by encoding context-free grammars, specified for example in the Java Speech
Grammar Format, as probabilistic recursive transition networks, and robustness by allowing skipping of
input words at any position and producing ranked interpretations that may consist of multiple parse
trees. Moreover, SOUP is very efficient, which allows for practically instantaneous backend response.

1 Introduction

Parsing can be defined as the assignment of structure to an utterance according to a grammar, i.e.,
the mapping of a sequence of words (utterance) into a parse tree (structured representation). Because
of the ambiguity of natural language, the same utterance can sometimes be mapped into more than
one parse tree; statistical parsing attempts to resolve ambiguities by preferring most likely parses.
Also, spontaneous speech is intrinsically different from written text (see for example [Lavie 1996]),
therefore when attempting to analyze spoken language, one must take a different parsing approach.
For instance one must allow for an utterance to be parsed as a sequence of parse trees (which cover
non-overlapping segments of the input utterance), rather than expect a single tree to cover the entire
utterance and fail otherwise.

The SoUP parser herein described, inspired by Ward’s PHOENIX parser [Ward 1990], incorporates
a variety of techniques in order to achieve both flexibility and robustness in the analysis of spoken
speech: flexibility is given by the lightweight formalism it supports, which allows for rapid grammar
development, dynamic modification of the grammar at run-time, and fast parsing speed; robustness
is achieved by its ability to find multiple-tree interpretations and to skip words at any point, thereby
recovering in a graceful manner not only from false starts, hesitations, and other speech disfluencies
but also from insertions unforeseen by the grammar. SOUP is currently the main parsing engine of
the JANUS speech-to-speech translation system [Levin et al. 2000, Woszczyna et al. 1998].

Section 2 briefly describes the grammar representation, section 3 sketches the parsing process,
section 4 presents some performance results, section 5 emphasizes the key features of Soup, and

section 6 concludes this paper.

101

0.3:T:"bye"

0.4:T:"good"

(0.7:POP)
1.0:T:"bye"

0.6:LAMBDA

Figure 1: Representation of right-hand side *good +bye as a probabilistic recursive transition network
(PRTN). A PRTN has a unique initial node (double circle) and possibly many final nodes (painted
gray). A pop arc leaving each final node is implicit.

2 Grammar Representation

The grammar formalism supported by SOUP is purely context-free. Each nonterminal (whose value
is simply a label), has a set of alternative rewrite rules, which consist of possibly optional, pos-
sibly repeatable terminals and nonterminals. We have found over the years [Mayfield et al. 1995,
Woszczyna et al. 1998] that, at least for task-oriented semantic grammars used in speech transla-
tion systems, the advantages in parsing speed and ease of grammar construction of such a formalism
outweight the lack of the more expressive power offered by richer formalisms (cf., for example, the
[Verbmobil Semantic Specification 1994]).

SOUP represents a context-free grammar (CFG) as a set of probabilistic recursive transition networks
(PRTNs), where the nodes are marked as initial, regular or final, and the directed arcs are annotated
with (7) an arc type (namely, specific-terminal (which matches and consumes a particular word), any-
terminal (which matches and consumes any out-of-vocabulary word or any word present in a given
list), nonterminal (which recursively matches a subnet and, in the parsing process, spawns a subsearch
episode) or lambda (the empty transition, which can always occur)), (i) an ID to specify which
terminal or nonterminal the arc has to match (if arc type is specific-terminal or nonterminal), and (i)
a probability (so that all outgoing arcs from the same node sum to unity). For example, the right-hand
side *good +bye (where * indicates optionality and + repeatability and therefore matches good bye,
bye, bye bye (and also good bye bye, etc)) is represented as the PRTN in Figure 1.

SouP also directly accepts grammars written in the Java Speech Grammar Format (see section 5.5).

Grammar arc probabilities are initialized to the uniform distribution but can be perturbed by a
training corpus of desired (but achievable) parses. Given the direct correspondence between parse
trees and grammar arc paths, training the PRTNs is very fast (see section 4).

There are two main usages of this stochastic framework of probabilities at the grammar arc level:
one is to incorporate the probabilities into the function that scores partial parse lattices, so that more
likely ones are preferred; the other is to generate synthetic data, from which, for instance, a language
model can be computed.

The PRTNs are constructed dynamically as the grammar file is read; this allows for eventual on-line
modifications of the grammar (see section 5.4). Also, strict grammar source file consistency is enforced,
e.g., all referenced nonterminals must be defined, warnings for nonterminal redefinitions are issued, and
a variety of grammar statistics are provided. Multiple grammar files representing different semantic
domains as well as a library of shared rules are supported, as described in [Woszczyna et al. 1998].

The lexicon is also generated as the grammar file is being read, for it is simply a hash table of

grammar terminals.

102

s [time]
(+[point])

[point] [time]

([hour])

([minute]) /\
[hour] [point] [point]

('nine) /gc%\ XOR

(ten) [hour] [minute] [hour] [minute]
[minute] \/ \V/

. nine ten

(nine)

(ten)

(a) (b)

Figure 2: (a) Grammar fragment to illustrate ambiguity packing. The s indicates that nonterminal
[time] is a starting symbol of the grammar. (b) Parse lattice for input nine ten according to the
grammar fragment. It can give rise to four different parse trees, but some will be more likely than
others.

3 Sketch of the Parsing Algorithm

Parsing is a particular case of search. In SOUP, parsing proceeds in the following steps:

1. Construction of the input vector: Given an utterance to be parsed, it is converted into a vector of
terminal IDs. Special terminals <s> and </s> are added at the beginning and end of an utterance,
respectively, so that certain rules only match at those positions. Also, user-defined global search-
and-replace string pairs are applied, e.g., to expand contractions (as in I’d like — I would like) or
to remove punctuation marks. Other settings allow to determine whether out-of-vocabulary words

should be removed, or whether the input utterances are case-sensitive.

2. Population of the chart: The first search populates the chart (a two-dimensional table indexed
by input-word position and nonterminal ID) with parse lattices. (A parse lattice is a compact
representation of a set of parse trees (similar to Tomita’s shared-packed forest [Tomita 1987]); see
Figure 2 for an example).

This beam search involves top-down, recursive matching of PRTNs against the input vector. All
top-level nonterminals starting at all input vector positions are attempted. The advantage of the
chart is that it stores, in an efficient way, all subparse lattices found so far, so that subsequent
subsearch episodes can reuse existing subparse lattices.

To increase the efficiency of the top-down search, the set of allowed terminals with which a nonter-
minal can start is precomputed (i.e., the FIRST set), so that many attempts to match a particular
nonterminal at a particular input vector position can be preémpted by the lack of the correspond-
ing terminal in the FIRST set. This bottom-up filtering technique typically results in a threefold
speedup.

The beam serves to restrict the number of possible subparse lattices under a certain nonterminal
and starting at a certain input position, e.g., by only keeping those subparse lattices whose score is

103

Figure 3: Parse of Hello Cynthia I'd like to fly to Barcelona on April fifth sometime in the evening.
Uppercased nonterminals such as PRO-1-3 denote auxiliary nonterminals and are typically removed
from the parse trees before backend processing. Note the ability to combine rules from different
task domains (XDM for cross-domain, TPT for transportation) and to parse out-of-vocabulary words

(Cynthia, Barcelona).

at least 30% of the best score. The score function is such that (i) coverage (number of words parsed)
and (42) sum of arc probabilities are maximized, whereas (4ii) parse lattice complexity (approximated
by number of nonterminals) and (iv) usages of the wildcard (approximated by maximal number of
any-terminal arcs along the parse lattice) are minimized. Also, pruning of structurally-equal parse
lattices is performed, thereby eliminating the redundancy that arises from several right-hand sides

matching the same input vector span under the same nonterminal.

3. Finding the best interpretations: Once the chart is populated, a second beam search finds the best
N interpretations, i.e., the best IV sequences of top-level, non-overlapping parse lattices that cover
the input vector. Scoring of interpretations adds, to the above scoring function, a fifth factor,
namely the minimization of parse fragmentation (number of parse trees per utterance). This search
problem can be divided into subproblems (divide and conquer strategy) since both unparsed words
and words parsed by a single parse lattice offer a natural boundary to the general problem. A
beam search is conducted for each subproblem. In this case, the beam limits the number of active
sequences of top-level, non-overlapping parse lattices that form a partial interpretation. Since the
single best interpretation is simply the concatenation of the best sequence of each subproblem,
even when asked to compute the top N interpretations (N > 1), the best interpretation is always
computed separately and output immediately so that backend processing can begin without delay.
The final result is a ranked list of N interpretations, where the parse lattices have been expanded

into parse trees.

Figure 3 shows a sample interpretation in a travel domain.

104

Scheduling Grammar Scheduling + Travel Grammar
Nonterminals 600 (21 top-level) 6,963 (480 top-level)
Terminals 831 9,640
Rules 2,880 25,746
Nodes 9,853 91,264
Arcs 9,866 97,807
Average cardinality of FIRST sets 44.48 terminals 240.31 terminals
Grammar creation time 143 ms 3,731 ms
Training time for 1000 example parse trees 452 ms 765 ms
Memory 2 MB 14 MB
Average parse time 10.09 ms/utt 228.99 ms/utt
Maximal parse time 53 ms 1070 ms
Average coverage 85.52% 88.64%
Average fragmentation 1.53 trees/utt 1.97 trees/utt

Table 1: Grammar measurements and performance results of parsing 606 naturally-occurring schedul-
ing domain utterances (average length of 9.08 words) with scheduling grammar and scheduling plus
travel grammar on a 266-MHz Pentium II running Linux.

4 Performance

SouP has been coded in C++ and Java and compiled for a variety of platforms including Windows
(95, 98, NT) and Unix (HP-UX, OSF/1, Solaris, Linux). The upper portion of Table 1 lists some
parameters that characterize the complexity of two grammars, one for a scheduling domain and the
other for a scheduling plus travel domain; the lower portion lists performance results of parsing a
subset of transcriptions from the English Spontaneous Speech Scheduling corpus (briefly described in
[Waibel et al. 1996]).

Parsing time increases substantially from a 600-nonterminal, 2,880-rule grammar to a 6,963-
nonterminal, 25,746-rule grammar but it is still well under real-time. Also, as depicted in Figure 4,
although worst-case complexity for chart parsing is cubic on the number of words, SOUP’s parse time
appears to increase only linearly. Such behavior, similar to the findings reported in [Slocum 1981],
is due, in part, to SOUP’s ability to segment the input utterance in parsable chunks (i.e., finding
multiple-tree interpretations) during the search process.

Therefore, even though comparisons of parsers using different grammar formalisms are not well-
defined, SOUP appears to be faster than other “fast parsers” described in the literature (cf., for
example, [Rayner and Carter 1996] or [Kiefer and Krieger 1998)).

5 Key Features

The following are some of the most interesting features of SOup.

5.1 Skipping

Given the nature of spoken speech it is not realistic to assume that the given grammar is complete
(in the sense of covering all possible surface forms). In fact it turns out that a substantial portion of
parse errors comes from unexpected insertions, e.g., adverbs that can appear almost anywhere.
SouP is able to skip words both between top-level nonterminals (inter-concept skipping) and inside
any nonterminal (intra-concept skipping). Inter-concept skipping is achieved by the second search step

105

T T T T ° T T T T L T T T
50 °_| 1000 .
o
=]
(4
40 4 4 800 4 ° -
[
g o’ z 00, ®
o 30} o6 ° % » 600 - o0 290780 &
E °s 8 o0 °°° E 8408508
= ° =
8 sedsge o © 3 o °§8§§° 2
[o [} L -
g 20 g2 §sgg§ & i a 400 s!°§°
8 gg 80 ll
10 §§§ - 200 i'il'o H
!
3~ o
o Q8§§¢ 1 1 L 1 I 1 0 '!' 1 1 1 1 1 L 1
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35
utterance length (words) utterance length (words)

(a) (b)

Figure 4: Utterance length vs. parse time for (a) scheduling grammar and (b) scheduling plus travel
grammar. Same test and machine as in Table 1. Parse time appears to increase only linearly with
regard to utterance length.

described in section 3 (the search that finds the best interpretation as a sequence of non-overlapping
parse lattices), since an interpretation may naturally contain gaps between top-level parse lattices.
Intra-concept skipping, on the other hand, occurs during the first search step, by allowing, with a
penalty, insertions of input words at any point in the matching of a net. The resulting exponential
growth of parse lattices is contained by the beam search. A word-dependent penalty (e.g. one based on
word saliency for the task at hand) can be provided but the experiments reported here use a uniform
penalty together with a list of non-skippable words (typically containing, for example, the highly
informative adverb not). The parameter mcs regulates the maximal number of contiguous words that
can be skipped within a nonterminal. Figure 5 plots coverage and parse times for different values of
mcs. These results are encouraging as they demonstrate that coverage lost by skipping words is offset
(up to mcs = 4) by the ability to match longer sequences of words.

5.2 Character-level Parsing

To facilitate the development of grammars for languages with a rich morphology, SOUP allows for
nonterminals that operate at the character-level (see Figure 6 for an example). Character-level parsing
is achieved using the same functions that parse at the word-level. In fact it is during word-level parsing
that character-level parses are spawned by exploding the current word into characters and recursively
calling the parse functions. The only difference is that, in a character-level parse, the desired root
nonterminal is already known and no skipping or multiple-tree interpretations are allowed.

5.3 Multiple-tree Interpretations

SoupP is designed to support a modular grammar architecture and, as we have seen, performs seg-
mentation of the input utterance into parse trees as part of the parsing process itself. Different
interpretations of the same utterance may have different segmentations and the most likely one will
be ranked first. Knowledge of the grammar module (which usually corresponds to a task domain)
that a nonterminal is from is used in the computation (see [Woszczyna et al. 1998] for details on the

statistical model employed).

106

40

66 T T T T T 300 T T T T

average coverage (%) <o— average parse time (ms) o—
8T i 280 »
64 -
260 E

63 I -
240 .

62 | 4
61 220 B
60 1 1 1 A L 1 200 1 1 = 7 i 1
0 1 2 3 4 5 0 1 2 3 4 5

mes mcs
(a) (b)

Figure 5: (a) Average coverage and (b) parse times for different values of mcs (maximal number of
contiguous words that can be skipped within a nonterminal). Same test set and machine as in Table 1
but with travel grammar only.

Figure 6: Parse of German Ich mdéchte gern ein kleines gemiitliches Zimmer to exemplify character-
level nonterminals and skipping. Repeated nonterminals (as in EIN with daughter EIN) indicate the
joint between word-level and character-level parse trees. Also note the intra-concept skipping of gern
(an adverb with practically zero information content).

5.4 Dynamic Modifications

Encoding the grammar as a set of PRTNs gives SOUP the flexibility to activate/deactivate nonterminals
and right-hand sides at run-time. For example, grammar nonterminals can be marked as belonging
only to a specific speaker side (say, agent vs. client); then, at run-time and for each utterance,
nonterminals not belonging to the current speaker are deactivated. Also, in the case of a multi-
domain grammar, one could have a topic-detector that deactivates all non-terminals not belonging to
the current topic, or at least lowers their probability.

More generally, nonterminals and right-hand sides can be created, modified and destroyed at run-
time, which allows for the kind of interactive grammar learning reported in [Gavaldd and Waibel 1998).

5.5 Parsing JSGF Grammars

Soup has been extended to natively support grammars written according to the specifications of
the Java Speech Grammar Format [JSGF 1998]. The JSGF is part of the Java Speech Application
Programming Interface [JSAPI 1998] and is likely to become a standard formalism for specifying

semantic grammars, at least in the industrial environment.

107

#JSGF V1.0 IS08859-1 en;
grammar Toy;
public <get> <polite>* (get | obtain | request) <obj>+;
<polite> please;
<obj> = apple | pear | orange;

Figure 7: Toy JSGF grammar used in Figures 8 and 9. In this case * indicates the Kleene star (i.e.,
optionality and repeatability), + repeatability, and | separates alternatives.

<get>

ABWD

Figure 8 PRTNs for the grammar in Figure 7 and schematic parse of Please obtain orange. Upside-
down lambdas mark end of JSGF Rule scope.

SouP is able to represent a RuleGrammar as defined by JSGF with the same underlying PRTNs.
This is accomplished by the usage of lambda arcs to encode the JSGF Rule source, so that, out of
a parse tree, the corresponding RuleParse (the result of a parse as specified by the JSAPI), can
be constructed. In more detail, for each JSGF RuleSequence, RuleAlternatives, RuleCount and
RuleTag, a corresponding lambda-SEQ, lambda-ALT, lambda-CNT or lambda-TAG arc is built in the
PRTNSs, as well as a closing lambda arc (pictured upside-down) to indicate the end of scope of the
current JSGF Rule.

Figure 7 shows a toy grammar in the JSGF formalism. Figure 8 depicts the corresponding PRTNs

as well as a schematic sample parse tree. Figure 9 shows the resulting RuleParse object constructed

from such parse.

108

RuleParse

RuleName
RuleSequencei
RuleSequence*
RuleParse
> RuleName

RuleToken

RuleAlternatives

RuleToken

RuleSequence* :
RuleParse

RuleAlternatives

RuleName

RuleToken

Figure 9: Resulting JSGF RuleParse constructed from the parse in Figure 8. Note that RuleCounts
become RuleSequences as specified by the JSAPI (marked with *).

6 Conclusion

We have presented SOUP, a parser designed to analyze spoken language under real-world conditions,
in which analysis grammars are very large, input utterances contain disfluencies and never entirely
match the expectations of the grammar, and yet backend processing must begin with minimal delay.
Given its robustness to ill-formed utterances, general efficiency and support for emerging industry
standards such as the JSAPI, SOUP has the potential to become widely used.

Acknowledgements

Laura Mayfield Tomokiyo wrote the Scheduling grammar, Donna Gates and Dorcas Wallace wrote
the Travel grammar; Detlef Koll programmed the methods that read in a JSGF RuleGrammar. Klaus
Zechner, Matthias Denecke and three anonymous reviewers gave helpful comments to earlier versions
of this paper.

References

[Gavalda and Waibel 1998] Marsal Gavalda and Alex Waibel. 1998. Growing Semantic Grammars.
In Proceedings of COLING/ACL-1998.

[JSAPI 1998] Java™ Speech API, version 1.0. 1998. http://java. sun.com/products/java-media/
speech/

[JSGF 1998] Java™ Speech Grammar Format, version 1.0. 1998. http://java.sun.com/products/
java-media/speech/forDevelopers/JSGF/

109

[Kiefer and Krieger 1998] Bernd Kiefer and Hans-Ulrich Krieger. 1998. A Bag of Useful Techniques
for Efficient and Robust Parsing. DFKI Research Report 98-04.

[Levin et al. 2000] Lori Levin, Alon Lavie, Monika Woszczyna, Donna Gates, Marsal Gavalda, Detlef
Koll and Alex Waibel. 2000. The JANUS-III Translation System. To appear in Machine Translation.

[Lavie 1996] Alon Lavie. 1996. GLR*: A Robust Grammar-Focused Parser for Spontaneously Spoken
Language. Doctoral dissertation. School of Computer Science, Carnegie Mellon University.

[Mayfield et al. 1995] Laura Mayfield, Marsal Gavalda, Wayne Ward and Alex Waibel. 1995. Concept-
Based Speech Translation. In Proceedings of ICASSP-1995.

[Rayner and Carter 1996] Manny Rayner and David Carter. 1996. Fast Parsing using Pruning and
Grammar Specialization. In Proceedings of ACL-1996.

[Slocum 1981] Jonathan Slocum. 1981. A Practical Comparison of Parsing Strategies. In Proceedings
of ACL-1981.

[Tomita 1987] Masaru Tomita. 1987. An Efficient Augmented-Context-Free Parsing Algorithm. In
Computational Linguistics, Volume 13, Number 1-2, pages 31-46.

[Verbmobil Semantic Specification 1994] Universitit des Saarlandes. 1994. The Verbmobil Semantic
Specification. Verbmobil Report 1994-6.

[Waibel et al. 1996] Alex Waibel, Michael Finke, Donna Gates, Marsal Gavalda, Thomas Kemp, Alon
Lavie, Lori Levin, Martin Maier, Laura Mayfield, Arthur McNair, Ivica Rogina, Kaori Shima, Tilo
Sloboda, Monika Woszczyna, Torsten Zeppenfeld and Puming Zhan. 1996. JANUs-II: Translation
of Spontaneous Conversational Speech. In Proceedings of ICASSP-1996.

[Ward 1990] Wayne Ward. 1990. The CMU Air Travel Information Service: Understanding sponta-
neous speech. In Proceedings of the DARPA Speech and Language Workshop.

[Woszczyna et al. 1998} Monika Woszczyna, Matthew Broadhead, Donna Gates, Marsal Gavalda,
Alon Lavie, Lori Levin and Alex Waibel. 1998. A Modular Approach to Spoken Language Trans-
lation for Large Domain. In Proceedings of AMTA-1998.

110

A RECOGNIZER FOR MINIMALIST
GRAMMARS

Henk Harkema
Department of Linguistics

University of California
Los Angeles, CA 90025, USA

harkema@humnet.ucla.edu

Abstract
Minimalist Grammars are a rigorous formalization of the sort of grammars proposed in the linguistic
framework of Chomsky’s Minimalist Program. One notable property of Minimalist Grammars is that they
allow constituents to move during the derivation of a sentence, thus creating discontinuous constituents.
In this paper we will present a bottom-up parsing method for Minimalist Grammars, prove its correctness,
and discuss its complexity.

1 Introduction

It seems to be a general feature of natural language that the elements of a sentence are pronounced
in one position, while at the same time serving a function in another part of the structure of the
sentence. Linguistic theories in the transformational tradition have tried to capture this fact by
proposing analyses that involve movement of constituents. Stabler ([8]) presents a formalism for
defining minimalist grammars that allow for movement of constituents. This formalism is based on
Chomsky’s Minimalist Program ([2]).

Michaelis ([5]) provides an argument showing that minimalist grammars as defined in ([8]) are weak-
ly equivalent to multiple context-free grammars as described in Seki et al. ([6]).! Multiple context-free
grammars are non-concatenative in the sense that a non-terminal symbol in this grammar can domi-
nate a sequence of strings of terminal symbols, rather than just one string, as in the case of ordinary
context-free grammars. Each of the strings dominated by a non-terminal symbol in a multiple context-
free grammar will be a substring of a sentence whose derivation includes this non-terminal, but in the
sentence these strings are not necessarily adjacent. The main insight contained in [5] is that minimal-
ist grammars are non-concatenative in a similar way. In minimalist grammars, non-concatenativity
arises as the result of movement. Thus, in a minimalist grammar a constituent can dominate non-
adjacent substrings of a sentence. Seki et al. ([6]) also describe an algorithm for recognizing multiple
context-free grammars. Stabler ([10]) sketches how this algorithm may be extended to minimalist
grammars.

This paper contains a formal specification of a recognizer for minimalist grammars. Furthermore,
it is shown that the recognizer is sound and complete, and that its time complexity is polynomial
in the length of the input string. Besides this introduction, this paper